Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление тяжести

    Движение жидкостей в двух трубопроводах будет подобно в том случае, если в подобных потоках будут постоянны отношения действующих в них сил. В потоке жидкости каждая частица находится под воздействием сил давления, тяжести и трения. Кроме того, в движущейся жидкости возникает сила инерции, равная по величине, но обратная по. знаку равнодействующей перечисленных выше сил. В свою очередь сила инерции равна произведению массы частицы на ее ускорение. [c.147]


    Из уравнения (1.9) следует физический смысл критериев подобия как мер отношения сил, действующих на любой элемент внутри движущейся вязкой жидкости (силы давления, тяжести и вязкого трения). Если рассматривать две или более гидродинамические системы, для которых комплексные параметры К,е и Рг численно одинаковы, то оказывается, что такие системы описываются одними и теми же дифференциальными уравнениями (1.9) и (1.10). В сходственных точках таких систем, имеющих одинаковые значения относительных переменных Хс [c.15]

    Движение жидкостей в двух трубопроводах будет подобно в том случае, если в подобных потоках будут постоянны отношения действующих в них сил. В потоке жидкости каждая частица находится под воздействием сил давления, тяжести и трения. Кроме того, в движущейся жидкости возникает сила инерции, [c.105]

    Ар — падение давления в конденсаторе в у — удельный вес воды у= 1000 кг/м т) — коэффициент полезного действия насоса д — ускорение силы тяжести в м/сек . [c.174]

    Потенциальная энергия пласта выражается в следующих формах энергии напора краевых вод потенциальной энергии упругой деформации жидкости и породы пласта потенциальной энергии сжатия свободного и выделяющегося из жидкости при снижении давления газа энергии, обусловленной силой тяжести пластовых жидкостей. [c.33]

    В случае одномерного течения несжимаемых несмешивающихся жидкостей в условиях, когда поверхностное натяжение между фазами невелико и можно пренебречь капиллярным давлением, а также влиянием силы тяжести, процесс вытеснения допускает простое математическое описание, впервые предложенное американскими исследователями С. Бакли и М. Левереттом (1942 г.). Это описание основано на введении понятия насыщенности, относительных фазовых проницаемостей и использовании обобщенного закона Дарси (см. гл. 1). Анализ одномерных течений позволяет выявить основные эффекты и характерные особенности совместной фильтрации двух жидкостей и сопоставить их с результатами лабораторных экспериментов. [c.228]

    В случае одномерного течения несжимаемых жидкостей в условиях, когда можно пренебречь капиллярным давлением, а также влиянием силы тяжести, процесс вытеснения допускает простое математическое описание. [c.263]


    Рассмотрим особенности одномерной двухфазной фильтрации несжимаемых флюидов с учетом капиллярного давления в предположении, что силой тяжести можно пренебречь. Тогда процесс двухфазного течения описывается уравнениями (9.17) и (9.26) при М = = О, которые приводятся к виду [c.278]

    Распределение насыщенности в стабилизированной зоне устанавливается в результате совместного действия сил вязкого сопротивления, капиллярных сил, а также сил тяжести. Все эти силы находятся в равновесии при постоянной скорости вытеснения. Оценивая грубо величину сил, действующих на флюиды в стабилизированной зоне, можно сказать. что капиллярное давление, вызывающее размывание фронтов, [c.280]

    Работа внешних сил 6 , совершаемая при перемещении из сечения X в положение л + с/х, складывается из работы сил давления ЗА " и силы тяжести 8А / которые соответственно равны  [c.318]

    Следует ввести две предпосылки, очень важные для работы каскада первая — требование противоточного движения фаз в ступени равновесия, вторая — возможность превращения фаз. В случае дистилляции пар вследствие разности давлений движется вверх, а жидкость под действием силы тяжести течет вниз. Для осуществления превращения фаз самую нижнюю ступень каскада следует нагревать, а самую верхнюю — охлаждать таким образом поступающий вверх пар конденсируется. [c.190]

    Т — УД- вес газа или жидкости, протекающих по трубопроводу (аппарату), при том давлении и температуре, которые они имеют во время измерения тл) — скорость газа или жидкости, протекающих по трубопроводу (аппарату), выраженная в метрах в секунду g— ускорение силы тяжести, равное 9,81 м/сен . [c.15]

    Хранилища сжиженных газов могут быть подземными и наземными. В подземных хранилищах в больщинстве случаев хранят сжиженные углеводородные газы под незначительным избыточным давлением (изотермические хранилища) при температуре несколько ниже температуры кипения углеводорода при данном давлении. В этих хранилищах, как правило, хранят большие объемы сжиженных углеводородных газов (пропан, изобутан, пропилен, пропан-бутановые смеси и др.) и ЛВЖ, так как этот способ хранения является более безопасным и в значительной мере позволяет уменьшить масштабы и тяжесть последствий возможных пожаров и взрывов. [c.166]

    Техническое оформление процесса фильтрации может быть самым разнообразным. Он может осуществляться под действием силы тяжести на фильтрах периодического действия различных устройств, на фильтрпрессах под давлением, на барабанных фильтрах непрерывного действия под вакуумом или под давлением и т. д. Но при всем указанном выше многообразии технического оформления механизм и сущность этого процесса, а также [c.117]

    С учетом соотношений (2.5), (2.6), (2.11), (2.13)-(2.15) систему уравнений (2.3), (2.4), для случая одномерного взаимопроникающего движения двух несжимаемых фаз в поле сил тяжести с одинаковым давлением в фазах и монодисперсным составом частиц, можно представить в следующем виде 1) уравнения сохранения массы [c.63]

    Идеальный дисперсный поток может быть описан двухскоростной моделью взаимопроникающего движения двух несжимаемых фаз в поле сил тяжести, с одинаковым давлением в фазах, одинаковыми частицами, форма которых близка к сферической, при отсутствии вязкого трения на стенках колонны, дробления и коагуляции частиц. [c.87]

    При температуре экстракции (для пропана при температуре и давлении экстракции) все эти растворители представляют собой жидкости, а их низкая вязкость облегчает полный контакт с исходным сырьем без эмульгирования. Плотность растворителя такова, что различие плотности образующихся экстракта и рафината в большинстве случаев достаточно для быстрого расслоения их под действием силы тяжести. При этом объем экстракционной аппаратуры сводится к минимуму. Чтобы избежать значительного изменения состава растворителей, они должны обладать значительной термической стабильностью при температурах экстракции и перегонки. Химическая стабильность предохраняет от чрезмерных потерь растворителя, от коррозии или загрязнения аппаратуры, а также от химического взаимодействия с разделяемыми смесями. Литература по этим процессам настолько обширна, что цитировать ее нет необходимости. Соответствующие свойства некоторых растворителей приведены в табл. 5. [c.193]

    Уравнение Д. Бернулли справедливо и для потока идеальной жидкости при умеренных скоростях движения жидкости и плавно изменяющемся живом сечении. В этом случае р — среднее гидростатическое давление в данном живом сечении, 2 — геодезическая высота центра тяжести этого сечения, а хз — средняя скорость потока в том же живом сечении. [c.14]

    Хроническое отравление (при совместном действии с дивинилацетиленом) вызывает нервные расстройства, головные боли, ощущение тяжести в голове, потливость, нередко понижение кровяного давления. [c.48]

    Центробежные силы оказывают на обрабатываемые материалы значительно большее воздействие, чем силы тяжести или давление. [c.81]


    ИЗ горизонтального положения в вертикальное. Установку грузозахватных приспособлений рекомендуется делать возможно выше, но обязательно выше центра тяжести (ЦТ) не менее чем на 200— 300 мм. Горизонтальные аппараты обычно поднимают, обхватывая их стропами (рис. 63), поэтому грузозахватные устройства для них, как правило, не требуются. Для подъема крышек аппаратов предусматривают три ушка. Для стальных аппаратов ушки, крюки и цапфы приваривают к корпусу аппарата, на литых аппаратах их от-ливают заодно с корпусом, на толстостенных аппаратах высокого давления делают съемные цапфы (рис. 64). [c.80]

    Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение масс, охватывающих очень большие числа молекул (т. е. макроскопических масс), под действием каких-либо сил. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением, и др. Общей мерой передаваемого такими способами движения является работа. Работа в различных случаях может быть качественно своеобразна, но любой вид работы всегда может быть полностью превращен в работу поднятия тяжести и количественно учтен в этой форме. [c.25]

    Д я того чтобы лучше разобраться в этом, представьте себе свинцовый блок длиной 7,0, шириной 3,0 и высотой 2,0 дюйма. Такой блок весил бы (при наличии силы тяжести) 17 фунтов. Хотя вес блока остается постоянным, оказываемое давление зависит от площади грани, на которой лежит этот блок (см. три положения блока на рис. VI.4). Вот расчеты давления для трех разных положений блока  [c.383]

    Суш,ествует и другое предположение, в силу которого нефть и.газ могут переместиться в пески и без наличия высоких давлений, а под действием капиллярных сил, возникаюш их вследствие разницы в величине поверхностного натяжения между водой и нефтью. В результате поверхностного натяжения вода и нефть вопреки силе тяжести проникают в отверстия и. поры капиллярных размеров (см. об этом выше), примером чего могут служить пропитывание водою губки и подъем керосина по фитилю в лампе. Опытами установлено, что величина поверхностного натяжения воды на границе с воздухом равняется приблизительно 75,6 динам на сантиметр при 0° С и 72,8 динам при 20° С. [c.187]

    Физическая модель движения жидкости. Рассмотрим равновесие движущейся жидкости, непрерывно распределенной в пространстве (сплошная среда). Движение жидкости происходит под действием массовых (объемных) и поверхностных сил. Прн выводе уравнений за основу возьмем второй закон Ньютона, согласно которому сумма векторов всех сил (силы тяжести, силы от гидростатического давления, а для реальных жидкостей — силы трения), действующих на выделенный элемент жидкости, равна произведению его массы на ускорение. [c.276]

    Для многих реальных случаев, которые будут рассмотрены ниже, давление газа над пленкой можно считать постоянным, а влиянием силы тяжести и капиллярного давления можно пренебречь по сравнению с градиентом расклинивающего давления. Это позволяет в уравнения течения смачивающих пленок ввести в качестве градиента гидродинамического давления градиент расклинивающего давления, взятый с обратным знаком, или градиент толщины пленки  [c.27]

    Вода — самое распространенное в природе химическое соединение. Она покрывает 70,8% земной поверхности и занимает примерно 1/800 объема Земли. Содержание воды в литосфере, по современным оценкам, превышает 10 км , т. е. сопоставимо с ее количеством в морях и океанах. Вода присутствует в горных породах в свободном или связанном виде. Принято выделять несколько разновидностей воды, различающихся по степени связанности от гравитационной воды, способной перемещаться под действием силы тяжести или напорного градиента, до химически связанной конституционной воды, входящей в кристаллическую решетку минералов, как правило, в виде гидроксильных групп. Содержание свободной воды может достигать десятков процентов в пористых и трещиноватых породах верхних горизонтов земной коры, резко уменьшаясь с глубиной, хотя не всегда монотонно. Распределение воды по горизонтали также весьма неоднородно на всех глубинах встречаются участки различной степени обводненности, которую, однако, нигде нельзя считать нулевой. Физическое состояние воды зависит от давления, увеличение которого составляет примерно 100 МПа на каждые 3 км глубины, и температуры, определяемой геотермическим градиентом (от 5—10 до 200 град/км). Зона жидкой воды (а также льда в высоких широтах на глубине до 1 км) сменяется областью надкритического флюида при температурах 400—450°С выше 1100°С молекулы воды диссоциированы. Многие другие свойства воды также заметно изменяются с глубиной. Так, ионное произведение воды в нижней части земной коры оказывается повышенным на шесть порядков. Возрастает при этом и способность воды образовывать гомогенные системы с компонентами вмещающих пород, находящихся в твердом или частично расплавленном состоянии. Таким образом, можно сказать, что все природные жидкие и надкритические фазы представляют собой многокомпонентные смеси, в кото- [c.83]

    Рассмотрим газ в цилиндре с поршнем (рис. 15-3) и допустим, что давление внутри цилиндра Рд утр больше постоянного внешнего атмосферного давления Р. Когда газ расширяется и перемешает поршень на бесконечно малое расстояние ( в, сила, действующая на поршень снаружи, остается постоянной и равной произведению давления Р на площадь А поршня. Выполненная газом работа, как указано в подписи к рис. 15-3, равна произведению приращения объема газа на внешнее давление, против которого осуществляется расширение = Р(1У. Поскольку в рассматриваемом случае преодолеваемое давление остается постоянным, выполненная работа связана с приращением объема газа (ДК) соотношением = РДК Хотя приведенные здесь соотношения получены для газа, расширяющегося в цилиндре, они справедливы в отношении любого процесса расширения газа. Работа, подобная описанной выше, часто называется работой расширения или работой типа РУ. Существуют и другие виды работы. Мы совершаем работу против силы тяжести, поднимая груз в положение, где он имеет большую потенциальную энергию и откуда он может упасть в исходное положение. Электрическая работа осуществляется при перемещении заряженных ионов или других заряженных тел в электрическом потенциальном поле. Мы можем выполнить магнитную работу, отклоняя иглу компаса от направления, куда она указывает в спокойном состоянии. Все эти виды работы включаются в обобщение, известное под названием первого закона термодинамики. [c.14]

    Если исключить из рассмотрения электрическую и магнитную работы, работу против силы тяжести и все другие виды работы, кроме работы типа РУ, то можно считать, что н = РАУ, и тогда два последних члена этого равенства взаимно исключаются. В результате мы приходим к утверждению, что теплота реакции при постоянном давлении равна изменению энтальпии системы [c.20]

    Рц, Рв Со, Qв — давление и поток теплоносителя на входе и выходе Р р, тяж А> Р — действующие силы (трения, тяжести, Архимеда и равнодействующая все сил) [c.231]

    Для игнорирования плотности газа в уравнениях движения пренебрегают изменением давления внутри пузыря под действием силы тяжести и ускорения ожижающего агента. Таким образом, поверхность пузыря образуется линиями тока твердых частиц и должна быть поверхность с постоянным давлением газа. Следовательно, форма пузыря должна определяться задачей о линиях тока при безвихревом движении в указанных условиях. [c.96]

    Dp = dg/d > 1 — число дискретности d — диаметр сферической твердой частицы dg — эквивалентный диаметр твердых частиц А. В — эквивалентные диаметры твердых частиц (компонентов) А и В g — ускорение силы тяжести Я — высота слоя или высота столба жидкости h — коэффициент теплоотдачи р — давление Дрд — перепад давления в псевдоожиженном слое Т — абсолютная температура [c.496]

    Таким образом, для трех потоков получим 3-3 = 9 независимых безразмерных комплексов. Из составляюш 1х I —IV можно, конечно, образовать еще и другие безразмерныё комплексы, но общее число независимых безразл1ерных величин должно оставаться равным девяти. Можно также образовать безразмерные комплексы 1 и, Ш и (см. табл. 8-10 на стр. 118), соответствующие отношениям П1/П. Необходимо отметить,что в случае потока импульса к последней строке табл. 7-1 будут относиться многие безразмерные комплексы, так как в уравнение входит Е — обобщенная сила. В случае силы давления Е = АрдР получим критерий Эйлера Ей, в случае силы тяжести Е = — критерий Фаннинга Еа и т. д. Исходя из зависимости (7-4), можно дать физическое толкование каждой сложной безразмерной величины, причем, например, большое численное значение критерия Рейнольдса Ке обозначает большой перевес [c.80]

    Система семи размерных параметров (1.117) кроме уже знакомого нам симплекса л =1Лц11Л( позволяет образовать еще два независимых безразмерных комплекса критерий Этвеша, который характеризует отношение сил тяжести и гидростатического давления к силе поверхностного натяжения, [c.41]

    Модель дает неплохое совпадение с экспериментом. Тем не менее, как отмечено в работе [87], принятые авторами [77] условия отрыва не вьшолняются при низких и высоких скоростях образования капли. Авторы [87] предложили модель, в которой рассматривается также двухстадийный процесс образования каш1и. Однако объем капли в конце первой стадии определяется из баланса не только сил тяжести и поверхностного натяжения, но также силы сопротивления и силы динамического давления жидкости. Для определения времени отрыва используется найденная из эксперимента и представленная в виде корреляционного соотношения скорость центра капли в момент отрьша. Модель проверена в широком диапазоне изменения параметров и дает удовлетворительное совпадение с экспериментом. Существенным недостатком является то, что формулы, по которым проводятся вычисления, слишком громоздки. Подводя итог сказанному, отметим, что в настоящее время трудно рекомендовать надежный и удобный метод расчета отрывного объема капель в динамическом режиме, основываясь только на полуэмпирических моделях. Для проведения инженерных расчетов можно использовать эмпирические корреляции. Одна из таких корреляций рекомендована в работе [84]. [c.57]

    Попытаемся так видоизменить систему уравнений дисперсного потока, чтобы в ней были учтены эффекты, стабилизирующие течение. Предполагая, что при движении частиц в жидкостях интенсивность обмена импульсом за счет столкновений невелика, будем учитывать только эффект, связанный с псевдотурбулентной диффузией частиц. В качестве исходной системы уравнений будем использовать систему (2.3), (2.4), Jaпи aннyю для случая одномерного движения двух несжимаемых фаз поле сил тяжести с одинаковым давлением в фазах при отсутствии фазовых переходов. Эту систему представим в следующем виде  [c.137]

    Расчет корпуса колонны. Небольшие колонны, работающие под давлением, рассчитывают как обычные емкостные аппараты. Колонны больших размеров (высотой более 6—8 м), установленные под открытым небом, представляют собой ответственные сооружения. Их необходимо рассчитывать на совместное действие давления, сил- тяжести и ветровых налрузок. El районах, подверженных землетрясениям, колонны проверяют и на действие сейсмических сил. Все основные размеры колонны предварительно выбирают по аналогии с подобными конструкциями. [c.154]

    Мениск смачивающей жидкости контактирует при этом со смачивающей пленкой, равновесная толщина которой Ло определяется уравнением изотермы П(/г). Значение ко отвечает расклинивающему давлению, равному капиллярному давлению равновесного мениска По =. Ра . Между объемной частью мениска с постоянной (в пренебрежении силой тяжести) кривизной поверхности Ко = Рк1а (где о —поверхностное натяжение) и плоской смачивающей пленкой образуется переходная зона 2 (см. рис. 13.1), где действуют одновременно капиллярные силы, вызванные кривизной поверхности слоя жидкости, и поверхностные силы, связанные с дальнодействующпм полем подложки. В состоянии равновесия из условия постоянства давления во всех частях системы получим  [c.211]

    Результаты экспериментов не полностью согласуются с равенствами (XV, 4) видимо, в некоторых случаях истечение газа может происходить из конической зоны, а не из полусферической. На рис. ХУ-5 (а и 6) видно, что вклад различных секторов вблизи отверстия в общий поток твердых частиц различен наиболее велик вклад зон, расположенных вблизи горизонтальной оси. Следовательно, изобарические поверхности не являются круговыми, причем наибольший градиент давления наблюдается в наира-влепии максимальной скорости частиц (рис. ХУ-5, г). В результате снова возникает вопрос, происходит ли (и каким образом) диссипация энергии в результате взаимного трения твердых частиц в потоке через отверстие. За пре-. делами зоны истечения твердые частицы почти непрдвижны, и можно заключить, что механизм диссипации энергии за счет трения твердых частиц такой же, как и при гравитационном движении зернистого материала. Разница заключается в том, что в последнем случае перемещение твердого материала вызвано силой тяжести, а в случае псевдоожиженной плотной фазы — действием на твердые частицы газа, выходящего через отверстие. [c.579]


Смотреть страницы где упоминается термин Давление тяжести: [c.259]    [c.300]    [c.44]    [c.196]    [c.342]    [c.17]    [c.33]    [c.34]    [c.58]   
Основы техники псевдоожижения (1967) -- [ c.55 ]




ПОИСК







© 2025 chem21.info Реклама на сайте