Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрация реагента в непрерывной фазе

    Выражение для константы равновесия, относящееся к определенным условиям проведения реакции, дает сведения об отношении концентраций продуктов к концентрациям реагентов в состоянии, когда прямая и обратная реакции взаимо скомпенсированы. На константу равновесия не влияют изменения концентраций реагентов и продуктов. Однако если имеется возможность непрерывно выводить продукты из реакционной смеси, то тем самым реагирующая система может постоянно удерживаться в неравновесном, несбалансированном состоянии. В этих условиях возникает необходимость во все новых количествах реагентов и происходит непрерывное образование все новых количеств продуктов. Такой способ проведения реакции осуществим, если один из продуктов реакции может выделяться из реакционной системы в виде газа, конденсироваться или вымораживаться из газовой фазы в виде жидкости или твердого вещества, вымываться из газовой смеси потоком жидкости, в которой он обладает повышенной растворимостью, либо осаждаться из газа или раствора. [c.189]


    Опыты показали что смешение происходит внутри основной части каждого пузыря, но линии тока из пузыря ведут в непрерывную фазу. В последующей теории такая схема потока дополнена допущением, что газ р облаке циркуляции движется вдоль линии тока, пока он не достигнет кильватерной зоны под газовой пробкой. Здесь происходит полное смешение с газом в непрерывной фазе, расположенной на одном уровне с кильватерной зоной, благодаря быстрому движению пленки твердых частиц в этой области. С этим предположением согласуются опыты в которых не удалось обнаружить радиального перепада концентраций трасера, введенного в поршневой псевдоожиженный слой. Следовательно, газ, поступающий через дно газовой пробки, должен иметь концентрацию реагента Ср, равную концентрации, в непрерывной фазе вокруг пробки. Отсюда скорость обмена реагирующим веществом составит [c.201]

    Интенсивность обмена газом между пузырем и непрерывной фазой оказывает влияние на скорость превраи ения реагента, содержащегося в пузырях. Суммарная скорость межфазного обмена газом зависит от разностей концентраций, являющихся в свою очередь, очевидно, функцией интенсивности перемешивания в слое. Следовательно, в общем случае интенсивность перемешивания в псевдоожиженном слое определяет его рабочие характеристики. [c.254]

    Обозначим в нем концентрации реагента в непрерывной и дискретной (пузыри) фазах соответственно через Ср ш Сь и напишем уравнение материального баланса по реагенту в дискретной фазе  [c.345]

    Материальный баланс непрерывной фазы (по реагенту) при полном перемешивании газа в ней можно составить (площадь поперечного сечения принимается равной единице), рассматривая полную высоту слоя Н. Комбинируя слагаемые с входной и выходной концентрациями, получим [c.346]

    Таким образом, в реакторе с псевдоожиженным слоем могут быть выделены четыре режима, рассмотренные в разделе III. Режим 1 (равновесная непрерывная фаза) должен теперь интерпретироваться как режим, при котором концентрация исходного реагента в непрерывной фазе равна нулю. [c.403]

    Объем жидкой фазы постоянен и равен V. В реактор непрерывно подается раствор, содержащий реагенты с концентрацией o . Объемная скорость подачи раствора и. С той же скоростью из реактора отбирают раствор, содержащий реагенты с концентрациями j. Раствор интенсивно перемешивают так, что концентрация любого i-го реагента в любом месте реактора в момент времени t равна . Такие реакторы называют реакторами идеального смешения. Требуется определить скорость реакции и концентрации реагентов как функцию времени. Для односторонней реакции первого порядка уравнение (197.1) запишется в форме [c.551]


    Обозначения, принятые для последующего анализа, приведены на рис. 36. Газ входит в слой с концентрацией реагирующих компонентов Со на высоте у концентрация их в пузыре составляет сь, причем она является функцией координаты у. В непрерывной фазе концентрация реагентов равна Ср, причем Ср не [c.119]

    В данном разделе будет приведена математическая модель неизотермического химического реактора, предложенная в работе [169]. Рассматривается случай, когда твердые частицы непрерывно вводятся в реактор с псевдоожиженным слоем и выводятся из него. Предполагается, что твердые частицы имеют одинаковый размер, форму и физические характеристики. Используется допущение о том, что твердые частицы достаточно малы и сопротивлением тепло- и массопереносу внутри частиц можно пренебречь, а также, что псевдоожиженный слой можно разбить на две фазы газовые пузыри и плотную фазу слоя. Считается, что можно пренебречь изменением физических характеристик газа в результате изменения концентрации реагента и температуры газа и той частью объема псевдоожиженного слоя, которая занята расположенными вне газовых пузырей частями областей циркуляции газа. Предполагается, что весь газ сверх количества, необходимого Для минимального псевдоожижения, проходит через слой в виде пузырей, т. е. [c.235]

    По этим причинам предпочтительней метод с подпиткой, т. е. с непрерывным прибавлением реагентов с контролируемой скоростью. В этом методе текущую концентрацию мономера можно поддерживать на одном уровне, так что общая растворяющая способность непрерывной фазы остается постоянной в разумных пределах, и привитой сополимер-стабилизатор полностью сохраняет эффективность. На практике высокой локальной концентрации мономера в процессе его прибавления избегают разбавлением вводимой смеси реагентов охлажденным конденсатом органического разбавителя, который отгоняется из реакционной смеси. [c.229]

    В работе [106] модель, использованная в [184], модифицирована для случая неоднородного псевдоожиженного слоя. Модель являлась развитием двухфазной теории [123] течения газа через псевдоожиженный слой. Каталитические частицы рассматривались в качестве отдельной фазы. Предполагалось, что температура частицы и концентрация реагента внутри нее зависят от времени пребывания частицы в системе. В отличие от [184] в работе [106] рассматривался реактор непрерывного действия по катализатору с непрерывным вводом и выводом частиц твердой фазы. Исследовано два предельных случая, в одном из которых газ в плотной фазе слоя считался идеально перемешенным, в другом рассматривался режим идеального вытеснения в газе плотной фазы. Во всех случаях газ в разбавленной фазе слоя (фаза пузырей) считался движущимся в режиме идеаль- [c.157]

    Другой особенностью химии растворов силикатов является то обстоятельство, что результат взаимодействия реагентов зависит не только от их химической природы, но и от целого ряда нехимических факторов порядка смешения реагентов, их начальной концентрации, скорости перемешивания при смешении и т. п. Общая причина этой группы явлений — гелеобразование на границе раздела взаимодействующих или смешиваемых фаз. Это приводит к осложнениям при гомогенизации реакционной системы и к возрастанию роли диффузионных процессов, предшествующих химическому взаимодействию реагентов. Поэтому различные технологические приемы, используемые при обеспечении взаимодействия реагентов, могут играть решающую роль в создании систем с заданными свойствами. Такими технологическими приемами, помимо перемешивания, могут быть предварительное растворение твердых реагентов в том же самом растворителе (например, в воде) их диспергирование проведение гетерогенной реакции при непрерывном обновлении поверхности (например, в шаровой мельнице) растворение различных исходных реагентов в двух несмешиваю-щихся растворителях с последующим эмульгированием и т. п. Описание результатов реакции и использования тех или иных технологий проведения этих реакций оказывается громоздким, сводится, в конечном итоге, к бесконечному множеству примеров. Ниже будут изложены только основные закономерности и главные итоги взаимодействия растворов силикатов с различными реагентами. [c.55]

    Лэтем с соавт. учитывавшие такое разбавление, предполагали, что газ в зоне гидродинамического следа имеет тот же состав, что и в пузыре. Из предыдущего рассмотрения ясно, что такое предположение неправильно при бесконечно большой скорости реакции. Этот вопрос будет рассмотрен кратко, без подробного обсуждения упомянутой выше работы Однако интересно отметить, что ползгченное решение предсказывает появление минимума концентрации в непрерывной фазе. Этот минимум возникает, когда реагент поступает в непрерывную фазу в верхней части слоя и реагирует, опускаясь вместе с ней. Концентрация в непрерывной фазе уменьшается до тех пор, пока контакт с пузырями, богатыми реагентом, не вызовет вновь возрастания концентрации вблизи распределительной решетки. [c.317]


    Для выявления закономерностей перемешивания при протекании химических процессов в реакторе с псевдоожиженным слоем необходимо дополнительно рассмотреть некоторые вопрогсы. Несомненно, нужно выяснить, действительно ли одинаковы концентрации реагента в гидродинамическом следе и пузыре если при этом первая из них равна концентрации в непрерывной фазе, то можно пренебречь обратным перемешиванием за счет гидродинамического следа. В то же время если постулировать одинаковые концентрации в следе и в пузыре, то можно преувеличить роль химической реакции в системе, где определяющей стадией является обмен газом. Выше уже было показано, что деформация концентрационного профиля сама по себе еще не доказывает наличия обратного перемешивания. [c.319]

    Предполагается, что на выходе из реактора происходит полное смешение газа из пузырей и из непрерывной фазы, так что концентрация на выходе становится равной с , а доля непревраш,ен-ного реагента с = j . [c.212]

    Кунии и Левеншниль пришли к заключению, что в большинстве практических случаев концентрация пренебрежимо мала , и исключили из рассмотрения непрерывную фазу, постулируя лишь, что реагент в ней расходуется полностью. Это привело к модификации выражедия (VII,114) для определения степени превращения. [c.317]

    Следует также уделить большое внимание роли облака циркуляции. Как уже было отмечено, если концентрации газа в облаке и пузыре равны, то наличие обратного перемешивания вытекает из соображений материального баланса. Модель Кунии и Левеншпиля может быть полезной, когда концентрация реагента в зоне облако — гидродинамический след принимается промежуточной между концентрациями в пузыре и непрерывной фазе. [c.319]

    VIII-8), что в его экспериментальном диапазоне зависимость между j i и к, по существу, не зависит от изменения высоты осевшего слоя (к аналогичным выводам пришли также Оркатт с соавт. и Ланкастер ). Это означает, что эффективности катализатора в верхней и нижней частях реактора сопоставимы. Данное заключение примечательно, так как, согласно измерениям, дискретная фаза диспергирована более тонко в основании, чем в верхней части псевдоожиженного слоя со свободно барбо-тирующими пузырями Эти наблюдения качественно объяснимы, если предположить, что уменьшение поверхности пузыря и скорости переноса по высоте слоя сопровождается одновременным понижением скорости реакции за счет падения концентрации реагента (т. е. перемешивание в непрерывной фазе неполное). Следовательно, если, например, скорость реакции была бы лимитирующим фактором в основании слоя, то это положеняе должно было бы еще сохраниться на выходе из него, где скорости реакции и массопередачи были бы меньше и в результате не наблюдалось бы никакого влияния высоты слоя на его характеристику. Иная ситуация может возникнуть при больших расходах газа, когда возможно уменьшение скорости межфазного обмена газом из-за образования очень больших пузырей или при высоких скоростях реакции. [c.367]

    Активность катализатора не является непрерывной функцией концентраций реагентов и но сильное изменение или может привести к замене одного лимитирующего этана процесса другим соответственно изменится и вид кинетического уравнения. Так, в реакциях окисления органических примесей к воздуху при незначительных концентрациях их, т. е. при громадном избытке кислорода, общая скорость процесса и не зависит от концентрации Од, а при недостатке кислорода и пропорциональна Со - Кроме того, значительное изменение может привести к появлению нового химического соединения реагента с катализатором, дающего отдельную кристаллическую фазу, как правило, каталитически неактивную. Например, нри окислении 80 2 в 80зна окиснованадиевом катализаторе сильное повышение концентрации 80 з приводит к образованию кристаллов сульфата вападила 0804, причем энергия активации реакцрш окисления 802 возрастает более, чем в 2 раза. [c.86]

    Периодическое осаждение, даже при получении однокомпонентных катализаторов и интенсивном перемешивании, дает продукт неоднородный по составу. Непрерывное осаждение позволяет получить более однородный катализатор, поскольку в этом случае все время сохраняются постоянными концентрация реагентов и pH раствора [3]. При получении многокомпонентных и многофазных контактных масс получить микрооднородность еще сложнее. Вследствие различной растворимости осажденных соединений состав твердой фазы в начале и конце осаждения может оказаться различным. Это бывает, например, при соосаждении смесей гидроокисей металлов из растворов солей. Осаждение не происходит одновременно, а определяется pH среды [33]  [c.102]

    Другим предельным случаем, противоположным рассмотренному выше, является движение ожижающего агента в непрерывной фазе с идеальным вытеснением. Принимается, что в пределах любого поперечного сечения слоя концентрация реагента в газе постоянна, но в вертикальном направлении перемешивания ожижающего агента не происходит. Очевидно, что такое предположение чрезмерно упрощает вопрос, как, впрочем, и предположение о полно перемешргвании. В реальных системах наблюдается некоторое перемешивание в непрерывной фазе, вызываемое движением подии.мающяхся пузырей. Два упомянутых случая охватывают весь диапазон возможных степеней перемешивания в непрерывной фазе, и анализ этих случаев наиболее прост. Более сложная теория с учетом турбулентной диффузии в непрерывной фазе предложена Мэем [70] и Ван-Димтером [118]. [c.123]

    Проведенные исследования на лабораторной модели показали, что синтез полиарилатов можно с успехом осуш ествить непрерывным методом. В табл. 1 й 2 приводятся данные, полученные по периодической и непрерывной схемам. Синтезы проводились при объемных соотношениях органической и водной фаз, равных 1 1 (табл. 1) и 1 3 (табл. 2), и концентрациях реагентов в первом случае 0,15 молъ/л, во втором 0,3 и 0,1 молъ1л. [c.184]

    Вариантом объемного метода газового анализа, особенно пригодным для нцертных газов, является метод остаточного газа , при котором контролируемый компонент поглощается реагентом, а неопределяемые компоненты образуют остаточную газовую фазу. Объем пли расход последней является мерой определяемой концентрации. Расход остаточной газовой фазы измеряется в случае стабилизации всех влияющих факторов, при этом метод анализа из циклического превращается в непрерывный. [c.605]

    В процессе необходимо обеспечить гидродинамический режим идеального перемешивания (полного смешения), что обусловливает мгновенное выравнивание концентрации и температуры во всем реакционном объеме. По условиям кинетики проведения процесса время перемешивания должно быть равно Тпер = 90 с. Следовательно, при непрерывном ведении полимеризации необходима раздельная подача реагентов в аппарат. С этой целью лучше выбрать каскад реакторов с интенсивным перемешиванием взаимодействующих фаз. [c.197]

    Непрерывное смещение реагентов, позволяющее применять концентрированную серную кислоту, способствует увеличению выхода фтора. Повышенная норма серной кислоты, увеличивая степень разложения фосфата в смесителе и камере, тоже увеличивает степень выделения фтора. Одним из условий наиболее полного выделения фтора является поддержание достаточно высокого (не меньше 20 мм вод. ст.) разрежения в смесителе и в камере с помощью отсасывающего вентилятора. Причиной неполного выделения фтора является резкое уменьшение давления пара SIF4 с понижением концентрации H2SIF6 в жидкой фазе по мере вызревания суперфосфата. Затвердевание суперфосфата в камере также затрудняет выделение газообразного четырехфтористого кремния. [c.69]

    Процессы в реакторах типа 2, 3, 8 п ь реакционной зоне реактора 12 на рис. 2.1. Схема процесса представлена на рис. 2.40, б. Рассматриваем одну фазу, интенсивно перемещиваемую. Реактор проточный, и процесс протекает непрерывно. В реактор в единицу времени входит поток реагентов объема и с ним каждого компонента в количестве Уо /о- Температура во входном потоке То- Принимаем, что объем реакционной смеси не меняется, и из реактора выходит поток Уо с температурой Т и каждого компонента - УоС/. Здесь С,-, Т - концентрации компонентов и температура как в реакторе, так и в выходящем потоке. Источник веществ - химическое превращение, т. е. Е/У,, ст == = И (С, Т)Хр. Процесс протекает стационарно dNi/dt = О и dq/dt = 0. Уравнение (2.127) примет вид [c.106]

    Ввиду целесообразности проведения процесса непрерывным способом он был проверен сотрудниками ГИИИ ЛКИ совместно с ВНИИНМ в колоннах различных масштабов. Было очевидно, что при таких малых Др и межфазном поверхностном натяжении вряд лн можно будет организовать противоточное движение реагентов. Поэтому процесс был осуществлен в прямоточной колонне с подачей реагентов снизу вверх. В лабораторных условиях определили необходимую продолжительность контакта реагентов, которая оказалась равной 40—70 мин при 70— 80 С. Температура в этом случае не требовала жесткого регулирования и могла колебаться в пределах 5°С. Полученные данные были проверены на пилотной установке. Было изучено также влияние направления движения реагентов (вверх нли вниз), повышения давления и концентрации щелочи. Выяснилось, что качество продукта и скорость реакции, т. е. глубина взаимодействия, в значительной мере зависят от постоянства концентрации щелочи в водной фазе. Поскольку в прямотоке обеспечить такое постоянство можно только ири большом ее избытке (что неэкономично), на производственной установке организовали дробную подачу щелочи в двух или нескольких точках по высоте реакционной зоны, что способствовало эффективному проведению процесса. [c.172]

    Для обеспечения непрерывного производства следует воспользоваться проточной системой с пропусканием обеих фаз в противотоке, как это схематически показано на рис. 1-9,6. Такой реактор, в принципе, позволил бы проводить процесс в статических условиях, если бы массообмен между обеими фазами был достаточно активен. Для практического осуществления таких процессов без одновременной активации смешения в послереакционной зоне еще не удалось найти удовлетворительного технологического решения. Для поддержания градиентов концентрации независимыми от перемешивания прибегают к использованию батареи реакторов, в которых концентрация вспомогательных растворов постепенно изменяется. Такое устройство приводит, однако, к снижению селектив-, ности процесса. Это легко понять, если учесть, что концентрация изобутилена, введенного в первый реактор, сразу же оказывается приведенной к более низкой рабочей концентрации, чем во фракции С4, в то время как концентрация остальных, менее реакционноспособных олефинов остается практически такой же, как и в исходном сырье. Такое изменение концентрации, которое воспроизводится на каждой ступени, снижается при увеличении числа аппаратов в каждой батарее и обратилось бы в нуль при бесконечно большом числе аппаратов. Избирательность атаки изменяется, таким образом, одновременно с числом ступеней реактора. Зависимость между степенями превращения олефинов в двухступенчатой батарее, действующей по принципу противотока, показана на рис. 1-9, в [8]. Ниже приведена сводная таблица (табл. 1-2) ди-оксановых производных и диенов, которые получаются из каждого рассмотренного олефина, с выходами, полученными на каждой стадии с чистыми реагентами. [c.40]


Смотреть страницы где упоминается термин Концентрация реагента в непрерывной фазе: [c.223]    [c.331]    [c.120]    [c.190]    [c.331]    [c.223]    [c.377]    [c.156]    [c.253]   
Псевдоожижение твёрдых частиц (1965) -- [ c.119 , c.124 , c.127 ]




ПОИСК







© 2025 chem21.info Реклама на сайте