Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хрупкое состояние

    Для ряда полимеров была определена зависимость ударной вязкости от температуры, и было показано, что во многих случаях вблизи низкотемпературного -перехода ударная вязкость полимера в хрупком состоянии возрастает (ПТФЭ, ПЭ, ПОМ). Это относится, например, к ПТФЭ при 210 Кик ПЭ при 150 К. Для ряда образцов полисульфона с различным содержанием антипластификатора также получена хорошая корреляция между величиной пика потерь при низкотемпературном у-переходе и ударной вязкостью. [c.410]


    В хрупком состоянии критический коэффициент интенсивности напряжений Кс связывает разрушающую нагрузку и критическую длину трещины с помощью соотношения К = Кс. Причем Кс получают подстановкой в формулу для К значений разрушающих нагрузок и критических длин трещин. Можно попытаться сделать то же самое и для квазихрупкого состояния - в формулу для К подставить экспериментально найденные на образце критические значения и получить предельную величину К для данной критической длины трещины. Конечно, понятие коэффициента интенсивности напряжений в квазихрупком состоянии отсутствует. [c.230]

    Рассмотрим теперь образец с большей толщиной. Большая толщина образца приводит к стеснению и даже полному запрещению деформации вдоль фронта трещины (в направлении толщины). В этом случае возникает объемное напряженное состояние, при котором величина максимального касательного напряжения невелика (см. рис.3.31). Это, в свою очередь, затрудняет протекание-пластической деформации, отодвигая по напряжениям область значительных пластических деформаций. Возможно, что сопротивление материала отрыву будет достигнуто напряжением в некоторой области у фронта трещины ранее, чем разовьется заметное пластическое течение. Произойдет хрупкий скачок трещины или даже полное разрушение в хрупком состоянии. Если же сопротивление отрыву достаточно велико, по сравнению с сопротивлением пластической деформации, то пластические сдвиги будут накапливаться в направлении действия Ттах по площадкам, [c.207]

    Можно дать оценку величины напряжения, отделяющего область плоской деформации от плоского напряженного состояния. Область плоской деформации по напряжениям сверху ограничена условием длина пластической зоны в направлении растяжения с ростом напряжения становится равной толщине образца. Область плоского напряженного состояния по напряжениям снизу ограничена условием длина пластической зоны в направлении трещины с ростом напряжения становится больше четырех толщин. Следует заметить, что переход от плоской деформации к плоскому напряженному состоянию в толстых образцах будет происходить при более высоких напряжениях, чем в более тонких. Например, при толщине образца 0,43 мм переход от плоской деформации к плоскому напряженному состоянию происходит при ст/стт = 0,4, а для толщины 5 мм при 0,9. Отсюда следует, что более хрупкие состояния сопровождаются пониженными разрушающими напряжениями. [c.210]


    Основные положения. В основе известных расчета на прочность используется линейная механика разрушения. При небольших сравнительно с пределом текучести, разрушающих напряжениях деталь находится в хрупком состоянии. Тогда справедливы асимптотические оценки напряженного состояния в окрестности вершины трещины и расчет на прочность можно вести по известному критерию Ирвина (К < Кс) линейной механики разрушения. С повышением уровня разрушающих напряжений зона пластических деформаций, окружающая вершину трещины, увеличивается в размерах. Если номинальное разрушающее напряжение больше предела текучести, то разрушение можно назвать квазихрупким. При этом асимптотические оценки напряжений у вершины трещины перестают быть справедливыми, понятие коэффициента интенсивности отсутствует и для расчета детали на квазихрупкое состояние требуются другие методы (даваемые нелинейной механики разрушения). На температурной зависимости разрушающего напряжения области хрупкого и квазихрупкого состояний отделяются так называемой второй критической температурой [10], т. е. той температурой, при которой номинальное разрушающее напряжение образца с трещиной равно пределу текучести при данной температуре. Поскольку разрушающее напряжение зависит от длины трещины, то при изменении длины трещины можем получать области хрупких и квазихрупких состояний при одной и той же температуре детали. Следовательно, желателен единый метод расчета для хрупкого и квазихрупкого состояния, поскольку расчет должен предусматривать варьирование длины трещины путем введения соответ- [c.229]

    Для расчета на прочность необходимо иметь связь разрушающих нагрузок с длиной трещины с помощью всем известных формул, а эту связь доставляет предельный коэффициент К. Отличие от хрупкого состояния заключается в том, что предельная величина К будет зависеть от длины трещины (или, что то же самое, от разрушающих напряжений). Эту зависимость назовем пределом трещиностойкости. Таким образом, мы получаем единое расчетное уравнение, справедливое для хрупких и квазихрупких состояний  [c.230]

    Большое влияние на механические свойства молибдена оказывает содержание в нем кислорода, азота и углерода. Наиболее сильное влияние па повышение температуры перехода молибдена из хрупкого состояния в пластичное оказывает кислород, тысячные доли процента которого приводят к тому, что молибден становится хрупким при комнатной температуре. [c.292]

    При производстве твердых (сухих) резольных олигомеров по окончании процесса сушки готовый продукт немедленно сливают в вагоны-холодильники, обеспечивающие интенсивное охлаждение в тонком слое (до 35 мм). Вагон-холодильник устанавливается под сливным штуцером реактора и во время слива он передвигается таким образом, чтобы смола равномерно распределялась между охлаждающими плитами. Охлажденный до хрупкого состояния олигомер выбивается из вагона-холодильника путем раздвижения плит в специальный бункер, откуда поступает на измельчение и упаковку. [c.57]

    В России в вязкие битумы с пенетрацией менее 1300.1мм вводят дивинилстирольные и другие термоэластопласты, например марки ДСТ-30 в виде 30-60%-ного раствора в маловязких нефтепродуктах" , а в менее вязкие битумы - ДСТ в твердом виде. Введение 2-5 % ДСТ в битум позволяет снизить температуру перехода битума в хрупкое состояние до -25 - 60°С в зависимости от содержания полимера и структуры битума, при одновременном повышении температуры размягчения до 50-60°С и повышении эластичности на 75-95% [28]. [c.53]

    Хрупкое состояние (вблизи О К) [c.288]

    Из этого уравнения и формулы (11.6) может быть рассчитана температурная зависимость характеристической энергии ао", которая оказывается падающей с возрастанием температуры, тогда как механические потери в полимерах с увеличением температуры растут. Это противоречие объясняется тем, что в хрупком состоянии полимера, кроме очень низких температур, механизм разрушения термофлуктуационный, а не атермический. [c.293]

    Рассмотрим атермический процесс разрушения в хрупком состоянии полимера, когда деформационные (релаксационные) потери первого вида практически не наблюдаются. В этом состоянии наблюдаются потери в виде рассеяния упругой энергии при разрыве химических связей в вершине микротрещины (потери третьего вида) и динамические потери — переход упругой энергии в кинетическую энергию раздвижения стенок трещины, которая затем рассеивается в теплоту (потерн второго вида). Потерн третьего вида, как уже известно, не зависят от скорости роста трещины и поэтому не дают вклада в кинетику разрушения. Вследствие этого кинетику разрушения атермического процесса разрушения, наблюдаемого при напряжениях о стк, определяют потери второго вида, зависящие от скорости роста трещины. [c.308]


    Примеси к металлам могут быть полезными и вредными. Первые улучшают механические свойства металлов это —легирующие добавки. К их числу относятся такие металлы, как N1, Сг, Мо, V, Мп и др. Вредные примеси ухудшают качество металлов. Так, примесь фосфора вызывает хладноломкость металла (переход некоторых металлов и сплавов из пластичного в хрупкое состояние при понижении температуры), а примесь серы —красноломкость (приобретение хрупкости при температуре красного каления). [c.306]

    Ударная вязкость стали характеризует ее склонность к хрупкому разрушению. Путем испытания на удар при различных температурах находят порог хладноломкости, т. е. ту температуру, при которой сталь от вязкого разрушения переходит к хрупкому. Состояние хрупкого разрушения для некоторых углеродистых сталей может наступить уже при 0°С. В наибольшей степени хладноломкости стали способствует наличие в ней фосфора. Порог хладноломкости несколько понижается с уменьшением содер канпя углерода. [c.21]

    Выше температуры текучести находится область вязкотекучего состояния, между и — область высокоэластического состояния, между Те и Ту р — область вынужденной эластичности и ниже Гхр полимер находится в хрупком состоянии. [c.217]

    Сталь мартеновского производства имеет наиболее плавную кривую перехода из вязкого в хрупкое состояние. Хрупкое состояние для этой стали [c.31]

    Данные испытаний покрытия из пленки ПИЛ в суглинистом грунте при различных температурах (табл. 16) показывают довольно близкое совпадение времени появления сквозных трещин со временем достижения материалом хрупкого состояния Тх — Тн. [c.118]

    Определим из (11.49) значение температурного коэффициента энергии активации в квазихрупком состоянии полимера, по-прежнему [61] считая, что Л = 10- з с, vo = 3 10- з с , о = 50МН/м Г = = 300 К, Я= 1,2 нм, но уже ш= 1,4-10 2 м (одна полимерная цепь), и что коэффициент концентраций напряжения для начальных мик-ротрещин полимерных стекол Ро=Ю, а типичная ширина образца-полоски 1== 1 см. Расчет дает значение 9 = 100 Дж/(моль-К), что близко к значению ПО Дж/(моль-К), приведенному в [9]. Увеличение д для квазихрупкого состояния в четыре раза по сравнению со значением = 25 Дж/(моль-К) для хрупкого состояния может быть объяснено увеличением коэффициента объемного теплового расширения полимера в три раза при переходе из стеклообразного в высокоэластическое состояние. Так как при переходе через 7 хр в местах концентрации напряжения наблюдается высокоэластическая деформация, то тепловое расширение в этих микрообъемах возрастает в три раза. Следовательно, с увеличением объема при тепловом расширении возрастает подрастянутость химических связей полимерных цепей. [c.320]

    Образование трещин в сварных соединениях ферритных сталей не имеет ничего общего с замедленным разрушением, характерным дая сварных соединений закаливающихся сталей. Показатели трещиностойкости ферритных сталей формируются непосредственно в процессе сварочного нагрева и в дальнейшем остаются неизменными. Это упрощает исследования свариваемости сталей ферритного класса, так как в данном случае испытания образцов не обязательно проводить сразу после их сварки. Технологические свойства ферритных сгалей ири сварке могут быть оценены по степени влияния сварочного нагрева на значение температуры перехода околошовного металла в хрупкое состояние. Количественная оценка склонности сварных соединений к растрескиванию может быть произведена с использованием способов механики разрушения - по уровню [c.246]

    По современным представлениям [41-44], базирующимся в значительной мере на работах А. Ф. Иоффе, Н. П. Давиденкова и Я. Б. Фридмана, переход металла в хрупкое состояние наблюдается, когда разрушающее напряжение (сопротивление отрыву) становится равным пределу текучести. На микроскопическом уровне хрупкое разрушение происходит путем скола по плоскостям преимущественной ориентации решетки металла [45]. Важная роль при этом принадлежит механизмам ограничения пластического деформирования. Эти механизмы могут иметь различную природ , причем домиктфовакие любого из них определяется совок> пно стью большого числа факторов (температурой, скоростью деформирования, химическим воздействием и т. д). Общепризнанно, что на степень стеснения пластических деформаций оказывают влияние наличие в металле дефектов, конструктивных концентраторов напряжений, повышение плотности дислокаций, мелкодисперсные выделения [46]. [c.25]

    При температуре ниже любой noли [ep становится твердым, иногда хрупким. По мере понижения температуры возрастает хрупкость полимера, и он. легко разрушается под действием ударной нагрузки. Температура перехода высокомолекулярных полимеров в хрупкое состояние мало изменяется при возрастании среднею молекулярною веса данного полимера. Температурой хрупкости часто характеризуют морозостойкость полимера.. Значение этоГ величины меняется в зависимости от 1гримененного метода ее определения. С возрастанием скорости нагружения образца хрупкость полимера проявляется при все более высоких температурах, быстрое ох.г1аждение способствует бо.пее длительному сохранению упругости. [c.41]

    Изменение прочности при растяжении и удлинения связа1ю с процессами сшивки в волокне и его переходом от пластического в хрупкое состояние. При этом возможно образование дефектов. Переход в хрупкое состояние может быть оценен по изменению модуля Юнга. После пиролиза при постоянной длине его значение выше, чем при постоянной нагрузке. Соответственно в первом случае ускоряется переход в хрупкое состояние, в большей степени ограничивается релаксация. Это вызывает разрушение отдельных микрофибрилл. Растягивающая нагрузка на волокно при стабилизации должна быть ограничена. При ее больших значениях увеличиваются усадочные напряжения, образуются разрывы, приводящие к замедлению реакции формирования циклов и падению прочности [9-87]. [c.579]

    В работе предлагается изучить поведение монослоя на двух подкладках на одномолярной соляной кислоте и на пятимолярном растворе хлорида натрия. Графики зависимости поверхностного давления от площади, построенные по данным для этих двух подкладок, должны существенно между собой различаться. В первом случае монослой газообразный и при сжатии переходит в жидкий, во втором случае моно1слой после сжатия находится либо в, твердом хрупком состоянии, либо представляет собой вязкую жидкость. При содержании в подкладке 5 моль1л хлорида натрия диссоциация ПАВ сильно подавляется, вследствие чего оно стремится образовать в пленке-мицеллы. На кислых же растворах монослой стабилизируется в растянутом состоянии благодаря водородным связям. [c.68]

    Термофлуктуационный механизм осложняется тем, что релаксационные процессы проявляются в полимерах тем отчетливее, чем выше температура. Так, по мере перехода к высоким температурам в микрообъемах перенапряжения проявляется вынужденная эластическая деформация. Вначале этот релаксационный процесс приводит к высокоэластическим деформациям в местах концентрации напряжений, главным образом у вершины микротрещин (термо-флуктуационно-релаксационный ме.ханизм), а затем при более высоких температурах — к образованию трещин серебра , стенки которых связаны между собой микротяжами (релаксационный локальный механизм разрушения). Выше температуры стеклования в высокоэластическом состоянии господствующими являются релаксационные процессы и механизмы разрушения приобретают резко отличительные черты (в табл. 11.2 — вязкоупругий механизм разрушения). Здесь в местах концентраций развивается локальное вязкое течение, которое приводит к образованию так называемых надрывов , являющихся аналогами трещин в хрупком состоянии. На схеме прочностных состояний (рис. 11.4) указаны области действия различных механизмов разрушения некристаллических полимеров, а также область пластического состояния между температурой пластичности и температурой текучести Т . Разрушение в [c.289]

    Теперь рассмотрим применение термофлуктуационной теории к квазнхрупкому разрушению. Как и в хрупком состоянии, кинетика роста трещин определяется здесь термофлуктуационным механизмом, но в условиях проявления релаксационных свойств. Так, при [c.318]

    При вытяжке полимеров наблюдается процесс молекулярной ориентации. Последняя может быть заморожена последующим охлаждением вплоть до хрупкого состояния полимера. При одноосной вытяжке, имеющей наибольшее практическое значение, молекулярная ориентация характеризуется функцией распределения ориентаций сегментов полимерных цепей относительно оси вытяжки. Мерой степени ориентации служит среднее значение квадрата косинуса <соз2 0>, где 0 — угол между сегментом и осью вытяжки. При <со52 0> = /з сегменты распределены по всем направлениям равномерно (неориентированный материал), при <со520> = 1 все сегменты ориентированы вдоль оси вытяжки (предельно ориентированный материал). [c.326]

    Так как Уц слабо зависит от молекулярной ориентации, то следует ожидать, что основной эффект изменения а с ориентацией проявится в изменении и, 3 и коэффициента Л = Л(а, Г), который с увеличением ориентации немного возрастает вследствие увеличения числа цепей на единичную площадь поперечного сечения и уменьшения (й 3. В предельно ориентированном состоянии, если 7о в соответствии с экспериментальными данными сохраняет то же значение, что и в неориентированном состоянии, флуктуационный объем со уменьшается в шесть раз. Это объясняется тем, что в ориентированном состоянии на пути трещ,ины рвется каждая цепь, поэтому Я=Я,о, что в три раза меньше, а Хл —Я,о, что в два раза меньше, чем у неориентированного полимера. Разрывная длина химической связи Я,м не меняется. Если еще учесть, что с увеличением степени ориентации хрупкое состояние полимера при той же температуре приближается к нехрупкому состоянию, характеризующемуся коэффициентом концентрации напряжения в вершине трещины, в несколько раз меньшим, то прочность предельно ориентированного полимера по сравнению с неориентированным полимером в хрупком состоянии должна быть больше в 10—20 раз, [c.328]

    Теория разрушения материалов, в которых энергия разрушения идет только на образование новой поверхности, носит название теории Гриффита. Известно (см. гл. 10), что наименьшие возможные деформации, приводящие к разрушению, наблюдаются у полимера тогда, когда он переходит из стеклообразного в хрупкое состояние. В этом состоянии перемещения структурных элементов оказываются минимальными, а следовательно, минимально и рассеяние энергии в виде теплоты. Поэтому теорию Гриффита часто. чазывают теорией хрупкого разрушения. [c.197]

    В сравнительно редких случаях отмечали появление трещин на поверхности покрытия со стороны клеевого слоя (обращенной к поверхности трубы). Однако, как правило, они не прогрессировали во времени и максимальная пх глубина не превышала 30—40 мкм. По-видимому, в данном случае почвенная влага с растворенными в ней веществами выполняет роль поверхностно-активной среды, облегчая разрушение материала только с наружной поверхности. Кроме того, отдельные составляющие клеевого слоя, мигрируя в поверхностный слой основы покрытия, могут оказывать в некотором роде пластифицирующее действие, затрудняя образование н рост трещин снизу покрытия. При рассмотрении в вдйк-роскоп в поляризованном свете поперечных срезов образцов наблюдалось внедрение составляющих клея в основу пленки (рис. 47). Не исключено также положительное влияние фактора прилипаемости на прочность покрытия в области, примыкающей к поверхности трубы. В некоторых случаях на поверхности наблюдали сеть мелких трещин, беспорядочно ориентированных во всех направлениях, глубиной, не превышающей 20— 30 мкм. Через определенное время испытанпя в покрытии появляются сквозные трещины (рис. 48), максимальная ширина раскрытия которых достигала 100—150 мкм. Появление сквозных трещин сопровождается резким увеличением расхода катодного тока, что приблизительно совпадает по времени с достижением материалом хрупкого состояния. [c.118]


Смотреть страницы где упоминается термин Хрупкое состояние: [c.235]    [c.116]    [c.529]    [c.89]    [c.51]    [c.235]    [c.204]    [c.282]    [c.288]    [c.318]    [c.319]    [c.628]    [c.156]    [c.166]    [c.787]    [c.32]   
Прочность и механика разрушения полимеров (1984) -- [ c.46 , c.48 , c.124 ]

Полистирол физико-химические основы получения и переработки (1975) -- [ c.222 , c.225 ]




ПОИСК





Смотрите так же термины и статьи:

Выводы из результатов исследования механики разрушения хрупких материалов в стеклообразном твердом состоянии при статическом нагружении

Долговечность в хрупком состоянии

Переход в хрупкое состояние

Предисловие 5 3.4. Хрупкое состояние

Хрупкое и нехрупкое состояния полимеров ф Предельные состояния полимера Классификация механизмов разрушения полимеров

Хрупкое состояние стекла

Хрупкое состояние стекла Цемент бокситовый III



© 2025 chem21.info Реклама на сайте