Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ограниченный про механизм

    При жидкофазном нитровании парафинов энергия, необходимая для ионного разрыва химических связей, сообщается растворителем, который благодаря своему полярному характеру сольватирует ионы. Как отмечает Бахман с соавторами [2] и Уотерс [62], большинство газовых реакций протекает по радикальным механизмам. Бахман с соавторами 2] в недавно опубликованных статьях привел много экспериментальных данных в пользу свободно радикального механизма реакций, идущих при парофазном нитровании пропана и бутана при 420—425°. Они показали, что прибавление ограниченных количеств кислорода или галоида, которые, как известно, увеличивают концентрации свободных радикалов в паровой фазе, также повышает степень нитрования тетраэтилсвинец, образующий при нагревании этильные радикалы, также благоприятствует нитрованию, Существенно также, что факторы, понижающие концентрацию своб.дных алкильных радикалов в паровой фазе, например присутствие окиси азота или чрезмерные количества кислорода или галоидов, снижают и степень нитрования. [c.81]


    Проверяют, правильно ли принята в проекте внутренняя планировка производственных зданий, предусмотрена ли изоляция пожаро- и взрывоопасных, а также наиболее вредных технологических процессов от менее опасных, имеются ли там-бур-шлюзы, как размещены электротехнические помещения, распределительные устройства, трансформаторные и преобразовательные подстанции (ТП, ПП), а также установки КИПиА (по отношению к взрывопожароопасным помещениям и наружным установкам) выполнены ли предъявляемые к ним требования (герметичность смежных стен, число и направление выходов, уклон полов, вводы и выводы электросетей и пр.). Далее необходимо проверить правильность и рациональность компоновочных решений, касающихся расположения технологического оборудования, размещения производственных зданий по отношению к наружным установкам и производственно-вспомогательным помещениям проверить, чтобы оборудование, содержащее жидкие продукты, а также линии выброса были максимально удалены от предохранительных клапанов и воздушек, от горячих поверхностей трубопроводов, печей, электроподогревателей, реакторов и другого подобного оборудования. Кроме того, необходимо проверить обеспечены ли подъезды для транспортных средств и механизмов при загрузке и выгрузке сыпучих материалов, катализаторов из технологического оборудования, а также для проведения ремонтных работ наличие грузоподъемных механизмов для проведения трудоемких ремонтных работ имеются ли специальные устройства, исключающие загорание продуктов от горячих поверхностей трубопроводов и печей, а также от другого подобного технологического оборудования какие приняты решения для аварийного опорожнения аппаратов и емкостей как расположено оборудование в помещениях, на наружных установках обеспечена ли прямолинейность и требуемая нормами ширина проходов какова организация рабочих мест для создания безопасных условий труда обеспечено ли оборудование рабочими площадками разработаны ли мероприятия по ограничению количества горючих материалов и веществ, одновременно находящихся в производственных и складских помещениях, и предусмотрены ли меры защиты, принимаемые при работе аппаратов в режимах, опасных в [c.49]

    В последние годы курс РТВ все теснее и теснее сближается с курсом ТРИЗ. Многие механизмы теории могут быть успешно применены для тренировки воображения. И наоборот принципы и методы из курса РТВ вполне пригодны для работы с реальными техническими задачами и идеями. Задача на фантазирование отличается от реальной технической задачи меньшими ограничениями, но в обоих случаях хорошие результаты могут быть достигнуты только при высокой культуре мышления. [c.131]


    Слово анализ в заглавии книги характеризует наш метод. Это значит, что мы хотим разделить рассматриваемый предмет на составные части и исследовать взаимоотношения этих частей. Вслед за анализом возникают многочисленные задачи синтеза, служащие для расчета химических реакторов. Основная же наша цель — понять структуру предмета. Поскольку мы стремимся изучить поведение химических реакторов (а они создаются для проведения химических реакций), нам следует начать с установления общих принципов описания химических реакций. Здесь, на границе нашей области, лежит соседняя область чистой химической кинетики. Предметом химической кинетики является исследование механизма химических реакций на молекулярном уровне. Для наших целей достаточно взять только результаты кинетических исследований. Наш подход к собственно химической реакции будет чисто феноменологическим. При таком подходе основная роль отводится стехиометрии и термостатике, так как все возможные изменения состояния системы обусловлены ограничениями, налагаемыми стехиометрией и термодина- [c.7]

    Обобщая вышеизложенные доводы, коррозионный процесс, ограниченный механизмом аэрации металла кислородом воздуха, в стационарных условиях можно представить следующим образом. [c.39]

    Кинетические уравнения, приведенные в настоящей главе, были выведены на основе адсорбционной теории Лэнгмюра. Эта теория, как известно, имеет определенные ограничения, однако получаемые при ее помощи уравнения часто оказываются довольно точными, что дает возможность установить механизм процесса. Для практических же целей, особенно при недостатке данных, можно пользоваться более простыми уравнениями . [c.224]

    Бурное развитие техники (особенно в последние десятилетия) привело, с одной стороны, к резкому возрастанию требований к качеству горюче-смазочных материалов, а с другой — к возникновению проблемы их сырьевых в производственных ресурсов. Усложнение техники и условий ее эксплуатации, необходимость повышения надежности и долговечности дорогостоящей техники и оборудования, а также ограниченные возможности нефтеперерабатывающей и химической промышленности по созданию и производству высококачественных сортов горюче-смазочных материалов остро поставили задачу разработки способов и средств наиболее рационального и экономного применения топлив, масел, смазок и специальных жидкостей в технике и оборудовании. Нерациональное использование горючего и смазочных материалов стало в ряде случаев причиной огромных материальных потерь для человечества. Так, в Англии из-за недооценки и неправильного отношения к проблемам смазки двигателей и механизмов потери превысили более 2 млрд. долларов в год [c.5]

    Две очень важные стороны разложения пока еще не ясны. Первая — это точный механизм реакции 6. Маловероятно, что N2O и Н2О образуются непосредственно из двух молекул Н — N = О при охлаждении в газовой фазе . Кроме того, предложенная схема неудовлетворительно объясняет ограничение выхода 5U% N0O, что наблюдается при избытке N0. Такие же трудности встречаются в объяснении изомеризации СНз — N0 до СН2 = = NOH и его последовательного дегидрирования до H N и Н2О. Возможно, что обе эти реакции являются гетерогенными .  [c.364]

    Возможность переноса электронов между частицами в растворе связана главным образом с малой массой электронов и, следовательно, возможностью преодоления энергетического барьера по туннельному механизму, аналогично тому, как это предполагается для выделения а-частиц пз ядра. Кроме того, малая масса приводит к чрезвычайно высокой подвижности электрона по сравнению с большинством других молекулярных частиц. Однако все эти преимущества значительно уменьшаются благодаря ограничениям, вносимым принципом Франка — Кондона. Так, в случае передачи электрона от Ре к Се " в водном растворе скорость теплового движения электрона около 5-10 см/сек и расстояние 10 Л могло бы быть преодолено за время порядка сек. Скорости большинства частиц, [c.504]

    Отмечены случаи разрушения поршневых компрессоров для коксового газа в результате перегрузок механизмов, вызванных отложениями смол в цилиндрах и поршнях, разрушения аппаратов и трубопроводов в результате ограниченной проходимости газов и жидкостей и др. Большая часть трудоемких газоопасных работ в химических и нефтехимических производствах связана с очисткой аппаратуры от химических отложений и осадков. Так, на одном из заводов синтетического каучука на очистку аппаратуры от отложений ежегодно затрачивают около 10 ООО чел-ч. Причем очистка является газоопасной работой, так как связана с пребыванием людей внутри закрытых сосудов, а это не исключает несчастные случаи. [c.295]

    Массопередача между газом и поверхностью твердых гранул часто определяет механизм гетерогенной реакции, особенно в промышленных условиях, когда ограничения потери напора, вызванные экономическими соображениями, заставляют выбирать такую скорость потока, при которой ни скорость адсорбции, ни скорость реакции на поверхности катализатора не являются определяющими. В процессах с псевдоожиженным слоем скорость потока ограничивается из-за необходимости свести к минимуму унос твердых частиц. [c.283]


    Такой механизм удовлетворительно объясняет тот факт, что при низких температурах и низких или уморенных давлениях и в условиях ограниченной конверсии углеводорода молярное отношение ацетальдегида к метанолу равно единице. С другой стороны, для разложения па приведенной схеме требуется такое расположение атомов, которое представляется неправдоподобным. [c.334]

    Изучение кинетики показывает, что реакция Дильса-Альдера обычно характеризуется очень низкими значениями / -факторов в выражении скорости (10 —10 ). Это было принято как доказательство в пользу механизма с образованием непарных электронов (радикальный), на самом же деле более вероятным является утверждение, что это говорит за потерю степеней свободы в весьма ограниченном переходном состоянии (ср. [30]). [c.181]

    При литиевой полимеризации (в стерильных условиях и при умеренных температурах) почти отсутствуют реакции передачи и ограничения полимерных цепей, и рост макромолекул протекает по механизму живых цепей. Средняя молекулярная масса полимеров увеличивается с увеличением глубины превращения мономера и уменьшается с увеличением концентрации катализатора. Литиевые полиизопрен и полибутадиен характеризуются линейным строением макромолекул и узким ММР [5]. В табл. 1 [c.56]

    Записывают химические и математические зависимости, характеризующие каждый реальный химический механизм, удовлетворяющий ограничениям пункта 3. [c.24]

    Повысить Л г можно при увеличении индикаторного к. п. д. г г действительного цикла ГМК за счет повышения степени сжатия е и обогащения горючей смеси. Следует отметить, что эксплуатируемые агрегаты имеют ограниченный резерв дальнейшего увеличения степени сжатия из-за условий прочности подвижных деталей кривошипно-шатунного механизма. Значительное снижение а нецелесообразно, так как при этом ухудшается процесс смесеобразования и увеличивается неполнота сгорания газа. [c.228]

    Здесь v > — вектор v — линейная функция, переводящая произвольный вектор с в . Результат действия линейного отображения lv> или просто v. Из (3.192) видна самосопряженность К относительно скалярного произведения <я Ь> и ее отрицательная определенность в инвариантном подпространстве 5, являющемся линейной оболочкой векторов V . Все собственные значения К — отрицательные действительные числа, поэтому ТДР является устойчивой по первому приближению точкой типа узел , и вблизи нее невозможны затухающие периодические колебания. Такие колебания, однако, возможны, пока система находится вдали от ТДР. При этом концентрации некоторых веществ могут многократно, но ограниченное число раз, проходить через локальные экстремумы, общее число которых определяется как типом кинетики, так и механизмом сложного процесса. Для кинетики Аррениуса и линейного механизма общее число колебаний не превышает — 1 раз [85]. [c.242]

    Ограничения со стороны высоких давлений ( сверху ) обусловлены тем, что с ростом давления частота тройных соударений растет много быстрее, чем бимолекулярных. Между тем в механизме (см. табл. 4) учитываются [c.295]

    Рассмотрим ограничения, накладываемые на выполнение формулы аддитивности, более подробно. Выполнение условия равновесия (4.5) на границе раздела фаз у большинства исследователей не вызьшает сомнения, поскольку процессы, протекающие на поверхности раздела фаз при физической абсорбции и экстракции — сольватация, десольватация, изомеризация и т. п., имеют скорости, значительно превышающие скорость массообмена. Однако в ряде работ по массообмену в аппаратах с плоской границей раздела фаз и с механическим перемешиванием в каждой из фаз авторы обнаружили отклонение от формулы аддитивности, обусловленное, как они предположили, поверхностным сопротивлением. В работе [221] приведен критический обзор основньгх исследований, в которых, по мнению авторов, было обнаружено поверхностное сопротивление в системах жидкость - жидкость. В этих работах частные коэффициенты массоотдачи определялись косвенным методом с погрешностью, большей чем отклонение от формулы аддитивности. Кроме того, в некоторых работах обнаружены методические ошибки. Для проверки формулы аддитивности требуются более точные методы определения частных коэффициентов массоотдачи (см. раздел 4.4). Поверхностное сопротивление массотеплообмена мало изучено. Одним из возможных механизмов является экранирование поверхности поверхностно-активными веществами (ПАВ) [222-224]. К обсуждению роли поверхностного сопротивления мы будем возвращаться в последующем изложении. [c.171]

    Если при анализе механизма дробления материала в молотковой дробилке к ограничениям, положенным в основу уравнения [c.50]

    Описано много примеров термических или фотохимических перегруппировок, при которых водородный атом мигрирует от одного конца системы я-связей к другому [403], хотя реакция имеет ряд геометрических ограничений. Механизм процесса пе-рициклический. В переходном состоянии водород контактирует одновременно с обоими концами цепи. Это означает, что для [1,5]- и более длинных перегруппировок молекула должна быть способна принять цисоидную конформацию. Кроме того, для [c.191]

    Ряд макромолекулярных кристаллов может существовать в различных полиморфных состояниях (разд. 2.4). При любой заданной температуре стабильна лишь одна полиморфная кристаллическая структура. Метастабильные полиморфные кристаллические структуры при отжиге в соответствующих условиях путем фазовых переходов в твердом состоянии превращаются в стабильные полиморфные структуры. Протекающие при различных температурах обратимые переходы между полиморфными структурами влияют на изменения, которые происходят при отжиге и выражаются в увеличении подвижности. Хотя эта возросшая подвижность может привести к уменьшению числа дефектов, часто при этом наблюдается процесс разрушения кристаллических зерен или образования муль тип летных двойников, вызванный наличием напряжений, которые возникают в процессе перехода из-за геометрических ограничений. Механизм зарождения и роста новой фазы в кристалле был рассмотрен Делингером [28]. Основная движущая сила перехода в новую фазу - более низкая свободная энтальпия этой фазы. Однако образование зародыша новой фазы и, возможно, также дальнейший его рост связаны с появлением значительной положительной энергии деформации (свободной энтальпии), которая распределяется между существовавшими кристаллами, новой фазой и меж фазными областями. Если существует вторая метастабильная <ристаллическая структура с промежуточной свободной энтальпией, обладающая близкими к исходной метастабцльной структуре геометрическими соотшениями, т.е. если она обладает более низкой [c.457]

    Регулирование концентраций ферментов на этом высщем уровне иерархии метаболического контроля имеет очевидные преимущества и ограничения. Механизм активации и репрессии генов позволяет эффективно изменять концентрации ферментов весьма специфичным образом, поэтому он обеспечивает чрезвычайно щирокие возможности контроля. Однако в эукариотических клетках, с которыми мы будем почти исключительно иметь дело в этой книге, активация генов — процесс очень медленный. Обычно время, необходимое для того, чтобы индуцирующий или репрессирующий сигнал мог повлиять на концентрацию фермента, измеряется по меньшей мере часами. Изменения же во внешней среде могут совершаться в течение секунд или минут, и поэтому выживание часто зависит от способности к столь же быстрой биохимической адаптации. [c.16]

    Предположим, что фермент MOHieT существовать в двух состояниях в состоянии Е, в котором он индуцирует напряжение в субстрате, облегчая превращение его в продукт, и в состоянии Е, в котором он индуцирует напря-нгение в продукте, превращая его обратно в субстрат. Такого рода система схематически приведена на рис. 7. Если бы существовал механизм с соответствующей движущей силой, по которому формы Е и Е претерпевали бы взаимное циклическое превращение, фермент мог бы катализировать реакции в обоих направлениях. Для системы, приведенной на рис. 7, реакция включала бы разрыв субстрата и сталкивание продуктов. Такого рода механизм не имел бы ограничения механизмов, рассмотренных выше, которое заключается в том, что фермент должен воздействовать как на субстрат, так и на продукты реакции, переводя их в состояние, похожее на переходное состояние, одинаковое для обоих направлений по осциллирующему механизму субстрат может быть переведен в переходное состояние, которое соответствует продукту реакции, и продукты — в переходное состояние, которое соответствует субстрату. Серьезное теоретическое возражение [c.248]

    ЗД — электродвигатель для привода механизма срыва 3,5 квт, 40% ПВ, 910 об мин, МТКМ-112-6, 380 в ЯВ—командо-аппарат для ограничения механизма в крайних положениях и блокировки КА-416-2 9К — универсальный переключатель УП5312-С45 9А — автоматический выключатель АП 60-ЗМТ 9В, 9Н контакторы направления КТ-5213 220 в 9РВ — реле времени РЭ-180Е, 220 в- 9РН — реле нулевое (напряжения) РЭ-5100, 220 в 9РМ — реле токовое РЭ-5500 9ТМ — тормозной электромагнит МО-1005 [c.96]

    Появление сольватированных электронов переносит зону электрохимической реакции восстановления с границы раздела электрод — электролит в раствор, т. е. превращает ее из поверхностной, гетерогенной, в объемную, гомогенную, реакцию, с катодно генерируемым восстанавливающим агентом. В связи с этой основной особенностью нового механизма восстановления роль транспортных ограничений становится несущественной реакция теперь не локализована в определенном месте, а распределена в объеме подвижность электронов выше, чем большинства других частиц кроме того, появление электронов в растворителе приводит к возникновению градиента плотности, а следовательно, к конвективному перемешиванию объема раствора, примыкающего к катоду. Эта особенность оказывается наиболее существенной в случае электровосстановления труднорастворимых органических соединений, которые при обычных условиях из-за крайне медленной доставки восстанавливаются с ничтожными выходами. В водных средах для ускорения подобных процессов применяются медиаторы потенциала — ионные редокси-пары, которые переносят мектроны от катода к восстанавливаемым частицам или от окисляющихся частнц к аноду, а затем сами восстанавливаются или окисляются на соответствующих электродах. Эффективность восстановления сольватированными электронами должна быть существенно выше, чем при применении медиаторов по уже указанным ранее причинам, а также потому, что ионам медиатора приходится проходить двойной путь — до реакции с частицей и после иее. Действительно, найдено, что токи генерации сольватиро-вапных электронов больше чем на три порядка превышают токи диффузии органических соединений к катоду. [c.444]

    Известно, что реакция гидрогенолиза серусодержащих соединений с близкой реакционной способностью протекает по механизму реакции первого порядка в ограниченном интервале степеней превращения [38]. В связи с тем, что нефтяные остатки включают широкий спектр компонентов с различной реакционной способностью, при анализе экспериментальных данных по удалению серы наблюдается увеличение кажущегося порядка реакции. Как видно из табл. 2.3, кажущийся порядок реакции может варьироваться от первого до и-го. По данным [56, 38,48] наиболее достоверной качественной интерпретацией процесса, сложность кинетики которого определяется различием в скоростях превращения различных классов серусодержащих соединений, является модель с представлением реакции удаления серы в виде превращения ее из двух условных групп компонентов (легко- и трудноудапяемой) [см. уравнения (2.1), (2.2), (2.3) табл. 2.2]. [c.71]

    Тепловые и диффузионные теории распространения пламени имеют ограниченную применимость, определяемую теми допущениями, которые положены в основу этих теорий. Надежные расчетные значения и могут быть получены только на основе детального механизма реакций горения, точных значений констант скорости этих химических реакций, точных значений коэффициентов диффузии и теплопроводности. Все эти требования на современном уровне знаний не могут быть удовлетворены. По этой причине в последние годы больщее внимание уделяется теоретическим расчетам, направленным не на вычисление и , а на выяснение отдельных особенностей механизма горения, на определение констант скорости отдельных элементарных реакций в процессе горения и т. д. [c.120]

    Решение диффузионных и тепловых задач для капли часто проводят, рассматривая отдельно случаи, когда сопротивление переносу сосредоточено в объеме одной из фаз внутри или вне капли. Уравнение (4.16) при этом записывают либо для полубесконечной среды (внешняя задача), либо для ограниченного сферического объема (внутренняя задача). Знание механизма переноса в каждом из этих частных случаев оказывается весьма полезным при решении общей задачи о соизмеримых фазовых сопротивлениях. Ниже нами будут рассмотрены характерньк особенности каждой из этих задач. [c.176]

    В результате изучения состава сланцевого масла Кеди и Силиг получили ограниченные сведения о структуре керогена и о механизме реакции превращения. Постоянство состава углеводородов низко кипящей части сланцевого масла наводит на мысль о том, что кероген состоит преимущественно из гомологов комплексной структуры, которые при разложении выделяют углеводороды с таким же распределением структурных типов. В первых пяти десятипроцентных фракциях содержание изоолефинов вместе с циклоолефинами и изопарафинов с циклопарафинами уменьшается, а содержание азота увеличивается, поэтому можно предположить, что разложение керогена при перегонке и выход изосоединений вместе с циклическими соединениями в основном зависят от денитрования азотистых соединений и что для соединений более высокого молекулярного веса это происходит менее полно. Неожиданное увеличение изопарафиновых и нафтеновых углеводородов и уменьшение изоолефиновых с циклоолефиновыми и полициклическими ароматическими углеводородами в высококипящей части сланцевого масла указывают на то, что азотистые соединения, образовавшиеся первоначально из керогена, при перегонке разлагаются в следующей последовательности вначале азотистые соединения, затем изопарафины с циклопарафинами, потом изоолефины с циклоолефинами и, [c.66]

    Анализ полученных продуктов показывает, что вопреки мерам предосторожности побочные реакции все же имеют место, однако принимается, что их влияние на измеряемую энергию активации незначительно. К недостаткам этого метода следует отнести и то обстоятельство, что из-за большой скорости потока определяемое значение температуры газа не вполне достоверно. Наконец, давление реагирующих веществ может меняться лишь в ограниченном интервале, что затрудняет проверку, действительно ли реакция соответствует простой мономолекулярной реакции. Однако, несмотря на все недостатки, метод является весьма эффективным, и Э1]ергии диссоциации связи в лучших случаях могут быть измерены с точностью до 2—3 ккал. В других случаях предполагаемые механизмы реакций недостаточно- хорошо доказаны и результаты вызывают сомнение. Хорошей проверкой результатов определения энергии диссоциации спязи, полученных кинотпческнм нутом, яв гяются данные по взаимодействию электронов. Этот метод [18, 46, 47] состоит в наблюдении потенциалов появления (.4 ) в масс-стгоктрометре для следующих типов реакций  [c.15]

    Механизм свободных радикалов предсказывает изменение порядка реакции от 1/3 при высоких давлениях до 1 /2 при низких давлениях, при этом следует принимать во внимание изменение реакции инициирования цепи от мономолекулярной до бимолекулярной при низких давлениях согласно теории активации молекул столкновением. Такое предсказанное изменение находится в качественном соответствии с наблюдаемым уменьшением значений констант первого порядка при уменьшении давления. По экспериментальным данным реакция при высоких давлениях имеет приближенно первый порядок, но следует иметь в виду, что отличить реакцию первого порядка от реакции половинного порядка по одному только изменению начального давления в ограниченном интервале и наблюдению смещения констант первого порядка довольно трудно. Кухлер и Тиле [25] предполон или, что даже при высоких давлениях инициирование цепи является бимолекулярной реакцией, для которой теоретически предсказывается первый порядок при указанном давлепии. Это, конечно, не может согласоваться с их процессом экстраполирования констант скорости до бесконечного давлеиия, так как этот процесс означает, что реакция мономолекулярна, по крайней мере, при высоких давлениях. [c.25]

    Реакции (VII) и (VIII), введенные в реакционный механизм для получения желательного уравнения скорости, вполне вероятны, однако предполагаемое отсутствие реакций НОа в газовой фазе реакций СНО3, на поверхности, требует еще доказательств. Тем не менее из очень ограниченного числа возможных схем сделанный нами выбор представляется наиболее правдоподобным. Совершенно ясно, что требуется дальнейшее экспериментальное изучение системы метан—кислород. Желательно получить как можно больше данных о влиянии на процесс диаметра сосуда, давления, состава смеси, добавок инертных газов и температуры необходимо, чтобы при этом обращалось внимание на пблучение хорошо вое-. производимых результатов, путем предотвращения случайных реакций на поверхности. [c.249]

    Этилсульфокислота [25], хлорсульфоновая [7, 25, 37] и фторсульфо-новая кислоты [7, 67] катализируют реакции того же типа, как и парафины в присутствии серной кислоты, а именно обмен водорода, рацемизацию и ограниченную изомеризацию. Механизм этих реакций, по-видимому, <1налогичен. Однако различие в каталитической активности весьма значительно, а порядок активностей виден из следующего ряда  [c.39]

    Мономолекулярный механизм ограничения растущих цепей (путем передачи на мономер, растворитель и т. д.) приводит к расширению ММР, при этом образуются линейные полимеры с наиболее вероятным распределением, М 1Мп = 2. [c.54]

    Еще раз следует подчеркнуть, что важной особенностью предлагаемого механизма является стабилизация предшественника карбена, динамически связанного в форме тригалометилидного аниона на границе раздела фаз. Кинетика таких реакций и реакций алкилирования слабых кислот не исследована. Их изучение осложняется гетерогенностью системы, конкурентными реакциями, сложными равновесиями, а также общими ограничениями, связанными с получением линейных зависимостей для констант скоростей второго порядка (см. [10]). Однако, несмотря на все эти трудности, известные факты, по-вцдимому, согласуются с рассмотренным выше механизмом. [c.63]

    До недавнего времени с этой целью кинетические методы использовали в весьма ограниченном масштабе. Объясняется это, вероятно, тем, что только в последние десять — пятнадцать лет в полной мере проявились широкие возможности использования методов для изучения окисления и управления окислением органических соединений. Другая причина, видимо, в том, что при применении бензинов, прямогонных реактивных и дизельных топлив основной целью было предотвращение в них осадко- и смолообразования, т. е. образования продуктов глубокого окисления, в то время как кинетические методы наиболее информативны при изучении начальных стадий окислительного процесса. При использовании реактивных топлив, получаемых гидроге-ннзационными процессами, самое главное — предотвратить образование первичных продуктов окисления топлив — активных радикалов и гидропероксидов. Для этого необходимо знать механизм и закономерности окисления на начальных стадиях следовательно кинетические методы становятся незаменимыми. [c.24]

    В блоке 1 определяется вид системы уравнений (3.2). Конечность вектора компонентов А обусловливает принципиальное ограничение на возможное чис.ло связей между ними и здесь вводится концепция максимального механизма Г и формулируется теорема и его единственности. Блок 2, описывающий состояние системы в равновесии (точка детального равновесия — ТДР), важен как элемент айализа, позволяющий сформулировать условие необходимости адекватности моделей (3.3) и (3.2). В блоке 3 выделяются классы и типы кинетик, вводится концепция неравновесной свободной энергии являющейся функцией Ляпунова для диссипативных систем, и формулируется условие достаточности 5-адекватности моделей [c.109]

    Индивидуальные особенности конкретного процесса в конкретных начальных условиях связаны именно с его разгоном (периодом индукции). Развитый процесс (период выделения энергии) более консервативен и остается практически одним и тем же для системы заданного вида. Так, для смеси Нз—Оз во всем диапазоне параметров Т, Р, а (в ограничениях рис. 31) период выделения энергии Тд с б-нредставительностью равной 0,65, адекватно представляется механизмом Г (/ = 2—4, 6, 9, 11—13, 15, 24) и может быть аппроксимирован выражением [c.351]


Смотреть страницы где упоминается термин Ограниченный про механизм: [c.29]    [c.79]    [c.12]    [c.127]    [c.435]    [c.305]    [c.134]    [c.232]    [c.233]    [c.236]    [c.60]   
Химия протеолиза Изд.2 (1991) -- [ c.170 ]




ПОИСК







© 2024 chem21.info Реклама на сайте