Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоиды дисперсионные

    Существует два основных способа приготовления коллоидов дисперсионный и конденсационный (при котором частицы молекулярных размеров укрупняются до тех пор, пока они ие достигнут величины коллоидного порядка). Последний метод обычно дает лучшие результаты .  [c.124]

    Электрич. и оптич. свойства коллоидов. Дисперсионный анализ 393 [c.393]


    Как известно, устойчивость гидрофильных коллоидов обычно выше предсказываемой теорией ДЛФО, учитывающей молекулярное протяжение и электростатическое отталкивание. Однако лишь в последнее время удалось установить прямую связь между устойчивостью гидрофильных коллоидов и толщиной граничных слоев воды, оцененной независимыми методами. Для дисперсий кремнезема и алмаза экспериментально прослеживается влияние на их устойчивость pH дисперсионной среды и температуры. Причиной этого влияния является изменение дальнодействия структурных сил отталкивания, стабилизирующих дисперсию. Стабилизация дисперсий при низких pH связана с увеличением числа поверхностных ОН-групп, способных к образованию водородных связей с молекулами воды, что ведет к росту сил структурного отталкивания. Повышение температуры вызывает ослабление сетки направленных водородных связей в воде, что уменьшает дальнодействие структурных сил и приводит к снижению устойчивости дисперсий. Наблюдающаяся обратимость температурной зависимости устойчивости свидетельствует об обратимости структурной перестройки граничных слоев. [c.168]

    Лиофобные коллоиды являются гетерогенными высокодисперсными коллоидными системами. К ним принадлежат большей частью системы из неорганических веществ в водной дисперсионной среде, которые и представляют наибольший интерес для нашего курса. Типично лиофобные коллоиды при выделении дисперсной фазы образуют осадки, порошкообразные по структуре и не содержащие значительных количеств дисперсионной среды. Впрочем, наряду с типично лиофобными коллоидами существуют и такие лиофобные в общем коллоиды, которые обладают уже некоторой, и иногда довольно значительной, лиофильностью. К ним принадлежат, например, гидрозоли кремнезема (точнее — кремневых кислот), гидроокиси алюминия и др. В таких коллоидах частицы дисперсной фазы связывают большие количества воды и могут в известных условиях удерживать значительную часть ее ири выделении из раствора, образуя при этом студнеобразные продукты. В определенных условиях такие золи способны даже застудневать (желатинироваться), не выделяя воды, т. е. полностью удерживая (и связывая) ее. [c.507]

    Гидрофильный коллоид стремится сделать воду непрерывной фазой (дисперсионной средой), между тем как в присутствии гидрофобного коллоида вода приобретает склонность превращаться в дисперсную фазу. [c.15]

    Выше была рассмотрена группа коллоидных систем, объединенных под общим названием лиофобных (гидрофобных) коллоидов, которые обладают сильно развитой физической поверхностью раздела и большим избытком свободной поверхностной энергии. Благодаря этому образуются ионные и молекулярные адсорбционные слои, которые и сообщают агрегативную устойчивость коллоидным частицам, тогда как стремление свободной поверхностной энергии лиофобных (гидрофобных) коллоидов к самопроизвольному уменьшению в силу второго начала термодинамики делает их термодинамически неустойчивыми. Весьма характерным свойством этих коллоидных систем является, как известно, слабое взаимодействие между веществами дисперсной фазы и молекулами дисперсионной среды. [c.326]


    Вязкость гидрофобных коллоидов весьма мало отличается от вязкости дисперсионной среды, причем для этих коллоидов существует пропорциональная зависимость между вязкостью и концентрацией коллоида, что математически выражается уравнением Эйнштейна (IX, 2) или (IX, 3). Как показали исследования, уравнение Эйнштейна оказывается совершенно непригодным для высокомолекулярных соединений, так как с увеличением концентрации вязкость их растворов непропорционально увеличивается. Причем в области небольших концентраций вязкость растворов МВС растет сначала медленно, а затем очень быстро. [c.335]

    Оболочка из полярных групп на поверхности мицелл сообщает им гидрофильные свойства, обеспечивает малую поверхностную энергию и создает сродство мицелл к дисперсионной среде. Указанные особенности состояния растворов МПАВ при концентрациях выше ККМ позволяют отнести их к классу лиофильных коллоидов они являют собой пример термодинамически равновесных и обратимых ультра-микрогетерогенных систем. В таких системах коллоидно растворенное (мицеллярное) ПАВ находится в термодинамическом равновесии с истинно (молекулярно) растворенной частью, т. е. существует равновесие мицеллы молекулы (ионы), которое может смещаться в ту или иную сторону при изменении условий. Сами же мицеллы — термодинамически стабильные обратимые образования, которые возникают в области ККМ и распадаются при разбавлении раствора. [c.39]

    Способы получения коллоидов делятся на дисперсионные и конденсационные. [c.74]

    Поскольку из сказанного ясно, что всякая коллоидная система представляет собою дисперсию одного тела (дисперсная фаза) в другом (дисперсионная среда), то-вообще более правильно говорить не о коллоидах, а о коллоидных системах. [c.13]

    Различают лиофильные и лиофобные коллоидные системы если дисперсионной средой служит вода, они называются гидрофильными и гидрофобными. Частицы гидрофильных коллоидов адсорбируют полярные молекулы воды, а при коагуляции образуют содержащие воду студенистые осадки, называемые гелями. Примерами неорганических гидрофильных коллоидов могут служить кремниевая и оловянная кислоты, а также гидроксиды -А1(ОН)з, Ре ОН)з, Сг(ОН)з и некоторые другие. [c.204]

    Более детальное обсуждение первых двух факторов приведено в главе IV. Здесь же мы остановимся на действии третьего фактора-— механической прочности стабилизирующей пленки, препятствующей уменьшению ее толщины и коалесценции капель. Вязкость в таком слое постепенно нарастает от нормальной вязкости дисперсионной среды до максимальных значений непосредственно вблизи поверхности капель. Такие слои могут быть образованы либа молекулярными коллоидами — высокомолекулярными соединениями типа желатины и каучука, либо полуколлоидами типа мыл. Адсорбируясь в поверхностном слое, эти вещества образуют лИогель, обладающий значительной прочностью. [c.161]

    П. П. Веймарн и В. Оствальд предложили рассматривать свойства дисперсных систем только с позиции их степени дисперсности, не учитывая гетерогенности. Более общие представления о свойствах коллоидных растворов были развиты Н. П. Песковым, который подразделял коллоиды на два класса к первым он отнес коллоиды, которые самопроизвольно диспергируют в растворителе, образуя коллоидные растворы. Если вызвать коагуляцию такой системы, то в коагуляте окажется много растворителя. После удаления электролита (коагулята) коагулянт, как правило, сохраняет способность вновь диспергировать в растворителе. Второй класс коллоидов, по Н. П. Пескову, — это системы, у которых коагуляция необратима, коагулят (осадок), как правило, не содержит дисперсной среды. При этом только вторая группа коллоидных растворов представляет собой типичные коллоиды, инертные по отношению к дисперсионной среде. Как это ни парадоксально, но вещества, получившие впервые в истории науки название коллоиды (гуммиарабик, белки, крахмал), оказались не настоящими коллоидами. Водные растворы этих веществ в отличие от типичных коллоидов представляют собой гомогенные термодинамически равновесные системы, устойчивые и обратимые, т. е. представляют собой истинные растворы макромолекул высокомолекулярных соединений (ВМС). Различие двух типов коллоидов связано в значительной мере с гибкостью и асимметричным строением макромолекул. Последние взаимодействуют с растворителем (дисперсионной средой) подобно низкомолеку- [c.382]

    Изучение свойств растворов высокомолекулярных соединений сыграло огромную роль в развитии коллоидной химии. Первые исследования диффузии, осмоса, оптических свойств коллоидов были проведены с растворами желатины, агара, целлюлозы, т. е. с растворами ВМС. При этом выяснилось, что растворы ВМС более устойчивы по сравнению с золями. В течение длительного времени это объяснялось высоким сродством растворенных веществ к растворителю (дисперсионной среде) и связанной с этим высокой сольватацией. Это нашло отражение в исторически сложившемся названии таких растворов — лиофильные золи или обратимые коллоиды в отличие от лиофобных золей — обычных (необратимых) коллоидных систем. Позднее была найдена истинная причина термодинамической устойчивости лиофильных золей — отсутствие поверхности раздела фаз и поверхностной энергии — их гомогенность. Было показано также, что, хотя свойства растворов высокомолекулярных соединений в значительной степени определяются их сродством к растворителю, доля растворителя, вошедшего в сольватные оболочки, не очень велика. Поэтому правильным следует считать термин растворы ВМС или молекулярные коллоиды , а не лиофильные золи . [c.435]


    Коллоидные системы, характеризующиеся слабым взаимодействием дисперсной фазы и дисперсионной среды (лиофобные коллоиды), отличаются принципиальной неустойчивостью и склонностью к уменьшению дисперсности со временем. Скорость процесса укрупнения частиц колеблется в очень широких пределах. Известны, например, золи золота, сохраняющиеся без видимых изменений десятки лет, и такие же золи, разрушающиеся в течение нескольких секунд при введении определенных веществ. Между термодинамической неравновесностью золей и скоростью их разрушения нет определенной зависимости. Характер временных изменений в системе можно установить только, изучая механизм укрупнения частиц в золях. [c.104]

    Специфика коллоидных систем и растворов высокомолекулярных соединений проявляется в том, что масса отдельной частицы или отдельной микромолекулы намного больше массы молекулы дисперсионной среды (в случае золя) или растворителя (в случае раствора высокомолекулярного соединения). С этим связано различие многих молекулярнокинетических характеристик, на что обратил внимание Грэм, установивший различие коллоидов и кристаллоидов по величине коэффициента диффузии. [c.135]

    Коллоидные частицы и мицеллы. Коллоидное состояние вещества получило свое название от греческого слова колла (клей). Коллоиды относятся к числу гетерогенных дисперсных систем, характеризующихся высокой степенью раздробленности одного компонента в другом. Линейные размеры частиц дисперсной фазы коллоидных систем лежат в пределах от 1 до 100 нм. Такая дисперсность называется коллоидной. Как дисперсионная среда, так и дисперсная фаза коллоидных систем могут находиться в различных агрегатных состояниях. Коллоидные системы, дисперсионная среда которых жидкость, называются коллоидными растворами или золями. [c.171]

    Коллоидные растворы классифицируют по способности сухого остатка, полученного при осторожном выпаривании, растворяться в чистой дисперсионной среде. Системы, сухой остаток которых не способен самопроизвольно диспергироваться в дисперсионной среде, называются необратимыми (например, лиозоли металлов, гидрозоли иодида серебра и др.). Обратимыми коллоидными системами называются системы, у которых сухой остаток при соприкосновении со средой обычно сначала набухает, а затем самопроизвольно растворяется и образует прежнюю дисперсию (например, раствор желатины в воде или каучука в бензоле). Обратимость или необратимость коллоидной системы определяется отношением дисперсной фазы к дисперсионной среде. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. По этому признаку дисперсные системы Делят на две основные группы лиофильные (обратимые) системы (истинно лиофильные и поверхност-но-лиофильные) и лиофобные (необратимые) системы. Если же дисперсионной средой системы является вода, эти два класса можно назвать соответственно гидрофильными и гидрофобными системами. Отсюда следует, что лиофобные коллоидные растворы являются типичными коллоидными системами, а лиофильные системы представляют собой не что иное, как растворы высокомолекулярных соединений. Существуют и промежуточные системы, которые трудно отнести к какому-либо одному из названных классов, например, золь 8102 и золи гидроксидов некоторых металлов. Лиофильные системы устойчивы, т. е. стабильны во времени, лиофобные системы неустойчивы и постепенно [c.17]

    Термодинамическая устойчивость тонких прослоек дисперсионной среды хотя и является более сильным стабилизующим фактором, чем кинетическое действие адсорбционных слоев, однако в ряде случаев она недостаточна для стабилизации дисперсных систем, особенно в водной дисперсионной среде. Как правило, термодинамический фактор достаточен лишь для разбавленных дисперсных систем, так как с ростом концентрации растет число возможных соударений частичек дисперсной фазы. Концентрированные дисперсные системы можно стабилизовать лишь образованием на их частичках гелеобразно структурированных адсорбционных слоев лиофильных коллоидов и полуколлоидов. [c.89]

    Гидрофобные коллоиды в состоянии образовывать золи лишь низкой весовой и частичной концентрации. Этим и объясняется низкая вязкость таких систем (вязкость золей гидрофобных коллоидов близка вязкости дисперсионной среды). Осмотическое давление [c.270]

    Явление солюбилизации говорит о проницаемости у мицеллы гидрофильною коллоида для дисперсионной среды. Аналогичные явления у мицелл гидрофобных коллоидов неизвестны — их компактные ядра совершенно непроницаемы для жидкости. [c.275]

    Так как по своим размерам коллоидные частицы лежат между частицами взвесей и молекулами, к получению вещества в коллоидном состоянии можно подойти с двух сторон либо путем дробления более крупных частиц, либо, наоборот, путем образования агрегатов из отдельных молекул. Методы получения коллоидов по первому пути носят название дисперсионных, по второму — к о н д е н с а ц и о н н ы х. Простейшим по идее дисперсионным методом является механическое дробление исходного вещества. Таким путем при помощи специальных [c.608]

    При размельчении крупных частиц необходимо затратить некоторое количество энергии. Основным принципом получения коллоидов дисперсионными методами является дробление твердых веществ с помощью специальных иельниц, электричества, ультразвука и др.  [c.150]

    Лиофильность и лиофобность коллоидов. Лиофиль-ностью называется способность частиц коллоида очень сильно и в большом количестве связывать молекулы дисперсионной среды, образуя сольватные оболочки. В противоположном случае, т. е. когда частицы не могут так сильно взаимодействовать с этими молекулами, говорят о лиофобиости коллоида. В частном случае водных коллоидных растворов в том же смысле пользуются терминами гидрофильность и гидрофобность . Разные коллоидные системы могут обладать различной степенью лиофильности. [c.507]

    Лиофильными принято называть такие коллоиды, частицы которых в большом количестве связывают молекулы дисперсионной среды, например некоторые мыла в водной среде. Сюда относили раньше и растворы высокомолекулярных органических соединений (белки, целлюлоза и ее эфиры, каучук, многие искусственно получаемые соединения). Однако, как показало изучение внутреннего строения и свойств таких систем, производившееся в недавнее время, и, в частности, работы В. А. Каргина, Добри и Флори, эти системы представляют собой истинные растворы, т. е. молекулярно-дисперсные, а не коллоидные системы. Они являются гомогенными системами. Характерные отличия их свойств от свойств других групп истинных растворов обусловливаются в основном сильным различием в величине частиц растворителя и растворенного вещества и строением этих частиц, представляющих собой очень длинные и гибкие молекулы (цепное строение). Переход их в раствор облегчается высокой степенью сольватации. Благодаря большому размеру молекул растворы этих веществ по многим свойствам являются близкими коллоидным растворам и образуют самостоятельную группу растворов — растворы высокомолекулярных соединений. Более детально свойства этих растворов будут рассмотрены в гл. XVII ( 244). [c.508]

    Оптические свойства. Частицы дисперсной фазы коллоидной системы рассеивают падающий на них свет. Причиной рассеяния света является оптическая неоднородность коллоидных систем, т. е. разные оптические свойства дисперсной фазы и дисперсионной срсды. Пз этих сво11ств прежде всего следует указать показатель преломления, значение которого для дисперсной фазы и дисперсионной срсды различны. Вследствие этого луч света, проходя через дисперснониуга среду и попадая на частицу дисперсной фазы, обязательно изменяет свое направление, причем тем резче, чем больше показатель преломления дисперсной фазы отличается от показа-те. 1я преломления дисперсионной среды. Рассеяние света коллоид-И1.1МИ системами может быть различным в зависимости от соотно- [c.196]

    Лиофобные эмульсии термодинамически неустойчивы и требуют специальной стабилизации. Ее можно достичь тремя путями 1) созданием двойного электрического слоя, что бывает, например, в разбавленных эмульсиях 2) образованием на поверхности частиц дисперсной фазы сольватного слоя, препятствующего коалесценции 3) образованием на поверхности частиц со стороны дисперсионной среды стабилизируюпдей адсорбционной пленки, препятствующей коалесценции механически. Такие пленки могут быть образованы либо молекулярными коллоидами типа высокомолекулярных соединений (желатина, каучук), либо полуколлоидами типа мыл. Эти вещества, адсорбируясь, образуют лиогель, обладающий значительной механической прочностью. Прочность таких пленок зависит от концентрации эмульгатора. Существует оптимум структурно-механических свойств, выше и ниже которого система становится неустойчивой. Наличие такого оптимума прочности связано с подвижностью адсорбционного слоя, необходимой для покрытия случайных разрывов в пленке. В этом типе стабилизирующего действия эмульгатора хотя и [c.79]

    Эта важная особенность высокомолекулярных соединений объясняется весьма большой способностью их молекул взаимодействовать с дисперсионной средой, что, собственно, и явилось причиной употребления термина лиофильность . Именно с лиофильностью связаны и свойства большой сольватируемости и растворимости высокомолекулярных соединений по сравнению, например, с рассмотренными ранее гидрофобными коллоидами. Эта особенность и обусловливает довольно резкие различия двух типов систем. Лиофобные золи могут существовать без видимых изменений только в очень незначительных концентрациях. Поэтому они обладают вязкостью, [c.175]

    Эта важная особенность высокомолекулярных соединений объясняется весьма большой способностью молекул взаимодействовать с дисперсионной средой, что, собственно, и явилось причиной для употребления термина лиофильность. Именно с лнофильностью связаны и свойства большой сольватируемости и растворимости высокомолекулярных соединений по сравнению, например, с рассмотренными ранее гидрофобными коллоидами. Эта особенность и обусловливает довольно редкие различия между лиофобными золями и растворами ВМС. Если лиофобные золи могут существовать без видимых изменений только в очень незначител15ных концентрациях и поэтому обладают вязкостью, мало отличной от вязкости чистой дисперсионной среды, и проявляют свои диффузионные и осмотические свойства в ничтожной степени, то растворы высокомолекулярных соединений могут длительно существовать в достаточно ощутимых молярных концентрациях, следовательно, обладают заметным осмотическим давлением и повышенной вязкостью. [c.329]

    К почвенным коллоидам относятся высокодисперсные системы, в которых дисперсионной средой служит почвенный раствор, а дисперсной фазой — частицы почвы размерами от 0,2 до 0,001 мкм. В развитии учения о почвенных коллоидах, а также в выяснении их роли в создании почвенного плодородия большое значение имели работы академика К. К. Гедройца в первые десятилетия XX в. Они были посвящены разработке вопроса о поглотительЕюй способности почв. Под этим понятием Гедройц понимал способность почвы поглощать (задерживать) находящиеся в почвенном растворе соединения. Дело в том, что коллоиды почвы, имея огромную поверхность, обладают способностью адсорбировать из окружающей среды не только нопы электролитов, но и значительные количества газов, паров и жидкостей. [c.399]

    Молекулярные коллоиды — гомогенные однофазные лиофильные системы, устойчивые и обратимые, образующиеся самопроизвольно их частицы состоят из отдельных сольватных макромолекул. Эти дисперсные системы образуются из природных или синтетических высокомолекулярных веществ, которые имеют большую молекулярную массу (от десяти тысяч до нескольких мНоТлиопов). Молекулы этих веществ имеют размеры коллоидных частиц, поэтому их истинные растворы рассматриваются как коллоидные системы. Образование молекулярных коллоидных систем происходит в процессе набухания, при котором молекулы дисперсионной среды проникают в твердый полимер, раздвигая макромолекулы. При неограниченном набухании полимер переходит в растворимое состояние с образованием гомогенной системы. [c.73]

    В отличие от частицы суспензоида макромолекула способна изменять свою форму в весьма широких пределах. Несмотря на гомогенность молекулярных коллоидов они проявляют сходство с су-спензоидами по некоторым свойствам (например, светорассеяние и др.). Общность суспензоидов и молекулярных коллоидов не исчерпывается размерами частиц. Растворы высокомолекулярных соединений легко превращаются в гетерогенные системы при незначительном изменении состава дисперсионной среды. Например, белок, растворенный в воде, при добавлении спирта переходит в лиофобный золь. [c.73]

    По внутренней структуре частиц выделяют в отдельную группу мицеллярные коллоиды, их называют еще полуколлоидами. Они образуются из органических длинноцепочных молекул, обладающих дифильными свойствами т. е. неполярный радикал лучше взаимодействует с органическими (неполярными) жидкостями, а полярная часть молекулы (карбоксильная и другие группы) лучше взаимодействует с полярными молекулами воды. Мицеллы образуются за счет межмолекулярных дисперсионных сил, проявляющихся при контакте неполярных частей молекул. Образование таких коллоидов характерно для водных золей моющих веществ (например, мыла С17Нз5СООМа) и некоторых органических красителей с большими молекулами. Эта группа включает в себя синтетические поверхностно-активные вещества. [c.74]

    Фрейндлих высказал мнение, что обратимость и необратимость коллоидной системы определяется взаимодействием дисперсной фазы с дисперсионной средой. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. Исходя из этого, такие коллоидные системы Фрейндлих предложил также называть лиофиль-ными коллоидными системами (от греч. слова лиос — жидкость, фило — люблю). Дисперсная фаза необратимых коллоидов неспособна взаимодействовать с дисперсионной средой, а следовательно, и растворяться в ней. Поэтому эти системы Фрейндлих назвал лиофобными (от греч. слова фобе — ненавижу). В том случае, когда дисперсионной средой системы является вода, эти два класса можно называть соответственно гидрофильными и гидрофобными системами (от греч. слова гидра —вода). [c.26]

    Стабилизатор может иметь как ионную, так и молекулярную, часто высокомолекулярную, природу, Ионная стабилизация золей лиофобных коллоидов связана с присутствием малых концентраций электролитов, создающих ионные пограничные С1юи между дисперсной фазой и дисперсионной средой. [c.294]

    ЗАЩИТНЫЕ КОЛЛОИДЫ — вещества, которые добавляют к лисфсб-ным золям и дисперсиям для придания им агрегативной устойчивости, особенно устойчивости против коагулирующего действия электролитов. 3. к. являются высокомолекулярными веществами, растворимыми в дисперсионной среде, как, например, белковые вещества, танниды, гликозиды, полисахариды. Защитное действие 3. к. играет важную роль в физиологических процессах и в технологии многих производств. [c.100]

    Сходство растворов ВМС с коллоидными растворами обусловлено гигантскими размерами макромолекул, масса кюторых соизмерима с массой мицелл коллоидов. Те свойства растворов, которые определяются размерами частиц, близки у этих систем. Как и коллоидные растворы, растворы ВМС отличаются медленной диффузией, низким осмотическим давлением л, соизмеримой с коллоидными растворами интенсивностью броуновского движения. Макромолекулы в растворе не способны проходить через полупроницаемые мембраны, задерживаются ультрафильтрами. По оптическим свойствам растворы высокомолекулярных соединений также близки к коллоидным. Они обладают повышенной мутностью, в них наблюдается, хотя и менее четко, эффект Тиндаля. Меньшая интенсивность дифракционного рассеивания света в растворах ВМС обусловлена близостью показателей преломления дисперсионной среды (растворителя) и дисперсной фазы (растворенного полимера). [c.436]

    Гидрогели. Большинство лиофильных и некоторые лиофобные золй в опредёленных условиях приобретают способность желатинироваться, т. е. превращаться в студнеобразные массы, получившие название студней или гелей. Процесс желатинирования является одним из видов коагуляции (ч. I, гл. VI, 16). От обычной коагуляции он отличается тем, что здесь не образуется осадка, а вся масса коллоида, связывая молекулы дисперсионной среды, переходит в своеобразное полужидкое-полутвердое состояние. [c.21]


Смотреть страницы где упоминается термин Коллоиды дисперсионные: [c.136]    [c.286]    [c.222]    [c.312]    [c.10]    [c.96]    [c.8]    [c.342]    [c.299]    [c.269]   
Коагуляция и устойчивость дисперсных систем (1973) -- [ c.10 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.608 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсионные

Дисперсионные методы получения коллоидов

Коллоиды

Коллоиды дисперсионные методы получени



© 2025 chem21.info Реклама на сайте