Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колоночный вариант распределительной хроматографии

    КОЛОНОЧНЫЙ ВАРИАНТ РАСПРЕДЕЛИТЕЛЬНОЙ ХРОМАТОГРАФИИ [c.149]

    В зависимости от природы твердого носителя и свойств жидкой неподвижной фазы, а также способа получения хроматограмм известно три варианта распределительной хроматографии колоночная, бумажная и тонкослойная. [c.154]

    Основы колоночной распределительной хроматографии и ее практическое применение рассмотрены в обзорах [168, 169]. Для отделения мышьяка используются оба варианта распределительная хроматография с неподвижной водной фазой — для отделения мышьяка при определении в нем примесей [935] и распределительная хроматография с обращенными фазами — для отделения Аз(П1) от Ое и 1п с применением триизооктиламина в качестве неподвижной фазы [983] и для отделения Аз от Сг, Мп, N1, Со, Си и 2п с использованием трибутилфосфата в качестве неподвижной фазы [458]. [c.134]


    Кроме колоночной хроматографии, широко реализуемой в разнообразных вариантах, получила распространение и плоскостная хроматография, особенно ее разновидность — бумажная хроматография. Она выполняется на специальной хроматографической бумаге, обладающей изотропностью по всем направлениям, равномерной плотностью и толщиной. На такую бумагу можно нанести осадитель или вещество с ионообменными свойствами, и тогда ее можно использовать для осадительной или ионообменной хроматографии. Хроматографическая бумага весьма гигроскопична, в ее порах и капиллярах при нормальных условиях удерживается более 20% влаги. Процесс разделения на такой бумаге напоминает распределительную хроматографию, в которой неподвижной фазой является вода. Процесс проводят в замкнутом сосуде с растворителем. На бумагу наносят разделяемую смесь и один край листа опускают в растворитель. Под действием капиллярных сил растворитель движется вдоль листа и захватывает разделяемые вещества, скорость переноса которых зависит от их коэффициентов [c.182]

    Методика распределительной хроматографии в колоночном варианте не отличается от рассмотренной в гл. II жидкостно-адсорбционной хроматографии. Здесь важен правильный выбор пары несмешивающихся фаз и твердого носителя неподвижной фазы. В их качестве могут применяться вещества различной молекулярной природы гидрофильные, удерживающие воду, и гидрофобные, удерживающие органические, несмешивающиеся с водой вещества. К носителям в колоночном варианте предъявляются следующие основные требования они должны прочно удерживать на своей поверхности неподвижную жидкую фазу, обладать достаточно развитой поверхностью, быть химически инертными, не адсорбировать анализируемые вещества и, наконец, не растворяться в применяющихся растворителях. [c.216]

    В общем случае распределительная хроматография на колонках с гидрофильными носителями обладает существенным недостатком, связанным с тем, что процесс распределения вещества зависит от состава и кислотности водной фазы. В то же время изменение состава водной фазы, находящейся на носителе, трудно осуществимо. Поэтому в колоночном варианте предпочитают применять гидрофобные носители. [c.217]

    Внутри каждого вида хроматографии по мере их развития возникали и продолжают возникать различные варианты или разновидности. Так, адсорбционная и распределительная хроматографии могут осуществляться на колонках, фильтровальной бумаге, тонком слое сорбента, нанесенном на стеклянную пластинку колонки могут иметь различную форму и конструкцию. В зависимости от этих факторов различные варианты приобретают соответствующие названия колоночная, бумажная, тонкослойная и т. д. Схематически классификацию хроматографии можно изобразить так  [c.13]


    Распределительная хроматография, еще недавно используемая только в практике органиков и биохимиков, в последние годы все шире стала применяться для разделения неорганических веществ, и успехи в этой области весьма значительны. Наряду с колоночным вариантом (с гидрофильными и гидрофобными носителями) и бумажным ва- [c.4]

    Метод хроматографического экстрагирования для разделения смеси ацетилированных аминокислот впервые с успехом был применен А. Мартином и Р. Синджем в 1941 г. и назван ими распределительной хроматографией [97]. Вначале распределительная хроматография была предложена ими в обычном колоночном варианте, а затем в виде так называемой бумажной хроматографии. [c.149]

    Распределительная хроматография на бумаге. Теория колоночной хроматографии была перенесена и в бумажную распределительную хроматографию. Бумага удерживает в порах воду (22%)—неподвижный растворитель, сорбируя ее из воздуха. Нанесенные на бумагу хроматографируемые вещества переходят в подвижную фазу и, перемещаясь с различными скоростями по капиллярам бумаги, разделяются. Однако определить значение Кр так, как это определялось в колоночном варианте, здесь невозможно, поэтому для количественной оценки способности разделения веществ на бумаге введен коэффициент представляющий собой отношение величины смещения зоны вещества (х) к смещению фронта растворителя (х ) (рис. 22), т. е. [c.79]

    Этот метод основан на различиях в коэффициентах распределения разделяемых элементов между двумя несмешивающимися жидкостями. В наиболее распространенном варианте колоночная распределительная хроматография является по существу способом осуществления экстракции, а не способом разделения веществ в готовом экстракте. Одна из фаз неподвижно закрепляется на каком-либо инертном носителе, а вторая перемещается вдоль колонки. [c.60]

    Среди современных методов анализа ионов одним из наиболее простых и эффективных является хроматография. В ней разделение осуществляется в результате неодинакового распределения ионов между двумя фазами—подвижной и неподвижной. Так как преимущественно используют водные растворы, то в основном наибольшее значение имеет жидкостная хроматография в виде ее таких вариантов, как колоночная ионообменная, тонкослойная распределительная и бумажная распределительная хроматография. [c.63]

    Тонкослойная хроматография является вариантом жидкостной хроматографии, протекающей в тонком слое сорбента, причем толщина слоя существенно меньше его ширины (не менее чем в 5 раз). В тонкослойной хроматографии используются те же варианты, что и в колоночной жидкостной хроматографии. По составу фаз, участвующих в процессе хроматографического разделения, можно выделить следующие основные виды тонкослойной хроматографии [2] жидкость—[твердое тело], жидкость — [жидкость — твердое тело] и жидкость—[гель]. Разделение может быть реализовано при использовании различных принципов удерживания, поэтому тонкослойная хроматография бывает адсорбционной, распределительной, ионообменной, молекулярно-ситовой и аффинной. [c.5]

    Период, наступивший в аналитической химии органических соединений с начала 60-х годов, без преувеличения может быть назван эпохой хроматографии. Один из вариантов этого метода — колоночная жидкостная хроматография — был создан русским ботаником М. С. Цветом в начале века [31]. На протяжении последующих 40 лет хроматография не находила широкого практического применения. Однако в этот период были выполнены работы, имевшие принципиальное значение и заложившие основы тонкослойной [9] и распределительной хроматографии [288]. Лишь после 1950 г. приходит время признания хроматографии, созревания ее как эффективного метода разделения сложных смесей соединений и их анализа. В 1952 г. были выполнены первые работы по газожидкостной хроматографии [216], а вскоре освоен выпуск газовых хроматографов, и в течение последующих 20 лет газохроматографический анализ стал основным методом исследования смесей летучих термически устойчивых соединений. Но большинство органических веществ не обладает необходимой для газовой хроматографии летучестью и термостойкостью, и хроматографировать их можно только в более мягких условиях, характерных для жидкостной колоночной хроматографии. Скорость же и эффективности разделения, а также чувствительность анализа по этому методу долго оставались неудовлетворительными. И лишь в 1965— 1975 гг. были в принципе решены основные научные и технологические проблемы, сдерживавшие развитие метода. Последовавший затем прогресс был столь поразителен, что современная инструментальная разновидность метода получила самостоятельное наименование — высокоэффективная жидкостная хроматография.  [c.7]

    Распределительная хроматография — жидкостная в случае разделения смесей растворенных веществ и газо-жидкостная при разделении газовых смесей — получила в настоящее время чрезвычайно широкое распространение. Наряду с колоночными вариантами этого вида хроматографии возник новый вид аналитического метода — хроматография на бумаге. Следует, сказать, что по чувствительности и возможностям идентификации разделяемых компонентов метод хроматографии на бумаге превосходит все известные приемы аналитической химии. Своеобразие гидродинамических условий — капиллярное передвижение жидкости в промежутках между структурными элементами адсорбирующего слоя, т. е. волокнами бумаги — создает наряду с перечисленными выше преимуществами и некоторые неудобства. К ним относится прежде всего зависимость процесса разделения от структуры и свойств бумажного листа (эти качества довольно трудно воспроизводимы), кроме того, разделение требует много времени. [c.5]


    Экстракционное разделение может быть осуществлено в хроматографическом (колоночном) варианте с нанесением одной из жидкостей на инертный пористый сорбент (распределительная хроматография). [c.274]

    Кроме колоночной хроматографии, широко используемой в разнообразных вариантах, получила распространение и плоскостная хроматография, особенно ее разновидность — бумажная хроматография. Она выполняется на специальной хроматографической бумаге, обладающей изотропностью по всем направлениям, равномерной плотностью и толщиной. На такую бумагу можно нанести осадитель или вещество с ионообменными свойствами, и тогда ее можно использовать для осадительной или ионообменной хроматографии. Хроматографическая бумага весьма гигроскопична, в ее порах и капиллярах при нормальных условиях удерживается более 20% влаги. Процесс разделения на такой бумаге напоминает распределительную хроматографию, в которой неподвижной фазой является вода. На бумагу наносят разделяемую смесь и один край листа опускают в растворитель. Под действием капиллярных сил растворитель движется вдоль листа и захватывает разделяемые вещества, скорость переноса которых зависит от их коэффициентов распределения между фазами. Чем больше коэффициент распределения, тем меньше скорость движения [см. уравнение (П1.164)]. Количественная оценка процесса ведется с помощью коэффициента Ri, равного отношению скорости движения вещества к скорости движения элюента (растворителя). Коэффициент разделения равен отношению этих коэффициентов для двух веществ и пропорционален обратному отношению коэффициентов распределения (П1.164)  [c.219]

    В принципе, механизм хроматографического разделения элементов на пластинке с тонким слоем сорбента не отличается от механизма хроматографии в колоночном варианте и в зависимости от выбора условий опыта может быть адсорбционным, распределительным, ионообменным новое здесь — в технике эксперимента. Именно эта особенность в технике проведения хроматографического процесса и послужила основой для использования термина тонкослойная хроматография в отличие от колоночной . [c.6]

    В 1941 г. Мартин и Синдж [14] предложили новый вариант колоночной хроматографии — распределительную хроматографию. В этом варианте колонка заполняется твердым носителем, несущим на себе жидкую водную фазу. Через колонку пропускают не смешивающийся с водой растворитель, и разделяемые вещества распределяются между двумя жидкими фазами. Если же на колонку наносят гидрофобный растворитель, а в качестве подвижной фазы используют гидрофильный растворитель, то такой метод называется распределительной хроматографией с обращенной фазой. [c.16]

    Принимая во внимание преимущества экстракции в динамических условиях (на колонке), экономичность использования экстрагента, возможность работы с неразбавленными экстрагентами, легкость автоматизации, мы разработали вариант разделения ионов ванадия (111) и (IV) колоночной распределительной хроматографией с обращенной фазой. [c.122]

    Распределительная жидкостно-жидкостная хроматография может осуществляться в трех вариантах колоночном, на бумаге и в тонком слое. Последний был рассмотрен в гл. IV. [c.216]

    В пособии изложены физико-химические основы и практические методы хроматографического анализа. Рассмотрена классификация и даны основы распределительного, адсорбционного, молекулярно-ситового, ионообменного, осадочного, адсорбционно-комплексообразовательного и окислительно-восстановительного методов хроматографии. Приведены различные варианты использования этих методов — колоночный, капиллярный, на бумаге, в тонких слоях. Показаны возможности применения хроматографических методов в анализе неорганических и органических соединений, а также для решения задач исследовательского характера. [c.2]

    В табл. 1 дана классификация хроматографических методов анализа, основанная на этих показателях. Как видно изданных, приведенных в таблице, при хроматографическом анализе наиболее часто используется колоночная техника работы. Один и тот же метод хроматографического анализа может применяться в различных вариантах, например, осадочную хроматограмму можно получить в колонке с сорбентом, на бумаге или в гелях. Определенный принцип разделения, например, распределение молекул между двумя фазами, лежит в основе различных методов хроматографического анализа. Необходимо также отметить, что в методах тонкослойной хроматографии возможен практически любой принцип разделения — сорбционный, распределительный, ионообменный и т. д. Однако чаще всего разделение в тонких слоях сорбента используется в адсорбционной, распределительной и ионообменной хроматографии жидкостей. [c.7]

    Распределительная колоночная хроматография нашла применение для разделения и количественного определения жирных кислот, продуктов окисления жиров и для многих других целей. Существует много вариантов этого метода, используемых для определения жирных кислот. [c.266]

    В настоящее время используют различные методы и варианты хроматографии. Так, в зависимости от механизма разделения разработаны методы молекулярной, распределительной, ионообменной и осадочной хроматографии по форме проведения процесса различают методы колоночной, капиллярной, тонкослойной и бумажной хроматографии. [c.63]

    Нормальнофазовое хроматографическое распределение лежит в основе многих вариантов тонкослойной хроматографии, рассматриваемых в гл. 9. В колоночной хроматографии при обычных давлениях из-за отмеченных выше преимуществ ХОФ нормальнофазовая распределительная хроматография] применяется крайне редко. Ввиду этого мы ограничимся одним недавним примером. [c.170]

    В настоящее время хроматографические методы в значительной степени вытеснили все другие методы фракционирования липидов в аналитическом и микропрепаративном масштабе. Для разделения сложных смесей липидов на отдельные классы соединений использовали адсорбционную и распределительную хроматографию на колонках с силикагелем, на целлюлозных фильтрах, импрегнированных силикагелем, и на бумаге из стекловолокна. Распределительная хроматография с обращенными фазами использовалась для разделения членов винилогомологического ряда на гидрофобизованной колонке или на гидрофобизованной бумаге. Газовую хроматографию использовали в виде распределительно-хроматографического варианта в первую очередь для разделения метиловых эфиров жирных кислот. Разделение смеси липидов по степени ненасыщенности можно осуществить путем хроматографического разделения на силикагеле комплексных ртутноацетатных соединений ненасыщенных липидов. Для выделения кислот и для фракционирования сильно полярных липидов была использована ионообменная колоночная и ионообменная бумажная хроматография. Методом хроматографии на колонках с мочевиной или на бумаге, пропитанной мочевиной, можно отделить жирные кислоты с прямой цепью от кислот с разветвленной цепью. Эффект разделения основан на образовании соединений включения неразветвлеиных жирных кислот с мочевиной. Разли шые хроматографические методы разделения липидов описаны в многочисленных обзорах [23, 86, 96, 100]. [c.144]

    Распределительная хроматография, которая для этой цели и с таким эффектом использовалась Мартином и Сйнджем, принципиально может рассматриваться как своеобразный вариант противоточной экстракции, при проведении которой экстрагируемое соединение распределяется между двумя жидкими фазами, одна из которых закреплена на твердом носителе (этой фазой в методике с обращенными фазами является менее полярная жидкость), в то время как другая движется в заданном направлении. Имеется ряд теоретических подходов к исследованию процессов, происходящих в колонке при распределительной хроматографии [1—4а] они основаны на концепциях дистилляционного процесса. Хроматографическая колонка условно разбивается на ряд секций, сравнимых с гипотетическими дистилляционными тарелками, и предполагается, что каждая тарелка эквивалентна одному экстракционному сосуду одноступенчатого процесса. По мере проведения процесса вещество распределяется между двумя фазами и подвижная фаза, содержащая это вещество, переносит его с одной тарелки на другую. Теория хроматографического процесса, основанная на этой концепции, очевидно, очень близка к теории противоточного распределения Крейга. Однако, если в прерывном процессе, осуществляемом на аппарате Крейга, может достигаться истинное равновесие, то в колоночной распределительной хроматографии достичь равновесия на каждой тарелке практически невозможно. Для того чтобы обойти это осложнение, Мартин дал другое определение тарелки в хроматографии. Следуя Мартину, можно определить хроматографическую тарелку как слой, в котором отношение усредненных концентраций распределяющегося вещества в неподвижной фазе и в элюате, вытекающем из этого слоя, соответствует отношению, достигаемому при равновесии в системе. Высота тарелки обозначается как высота, эквивалентная теоретической тарелке (ВЭТТ). [c.32]

    Что касается колоночной распределительной хроматографии — во всяком случае в ее наиболее распространенных вариантах,— то это, по существу, способ осуществления самой экстракции, а не способ разделения веществ в готовом экстракте. Колонка используется в этом случае в качестве своеобразного полупротивоточного экстрактора одна из фаз неподвижно закрепляется на каком-либо инертном носителе, вторая перемещается вдоль колонки. Химизм процесса остается экстракционным, а техника осуществления — хроматографическая (многократность актов экстракции). [c.218]

    В неорганическом качественном анализе используют преимущественно водные растворы исследуемых веществ, поэтому имеет значение только жидкостная хроматография. Когда неподвижная фаза образована твердым веществом, то соответствующий метод носит название твердо-жидкостной хроматографии (ТЖХ), при жидкой неподвижной фазе имеем жидко-жидкостную хроматографию (ЖЖХ). Неподвижная фаза в ТЛ<Х избирательно поглощает некоторые компоненты раствора. Но и в ЖЖХ необходимо применять твердое вещество, однако инертное, служащее только в качестве носителя неподвижной фазы. В обоих случаях можно называть твердое вещество насадкой. Если насадку (в ТЖХ) или насадку с фиксированной на ней неподвижной жидкой фазой (в ЖЖХ) помещают в стеклянную или металлическую трубку, через которую затем пропускают подвижну о фазу, то такой вариант ЖХ называют колоночной хроматографией. Если насадка открыта и представляет собой либо тонкий ело измельченного твердого вещества, либо лист специальной хро.матографической бумаги, то говорят соответственно о тонкослойной, либо бумажной хроматографии (тех и БХ). В неорганическом качественном анализ используют обычно колоночную ионообменную хроматографию и тонкослойную и бумажную распределительную хроматографию. Расс.мотрим кратко суть этих хроматографических методов. [c.280]

    При выборе адсорбента и растворителя для решения конкретной задачи методом ТСХ экспериментатор может исходить из своего предыдущего опыта в колоночной и бумажной хроматографии и их модификациях, например распределительной хроматографии. В качестве примера можно привести использование так называемого элюотропного ряда растворителей, найденного на основе опыта колоночной хроматографии. Это — ряд (табл. 5.1) растворителей, расположенных в порядке увеличения эффективности вытеснения ими адсорбированных соединений с данного адсорбента. Наиболее известен ряд Траппе [1] время от времени публикуются варианты этого ряда. Такими рядами можно руководствоваться при подборе растворителя или с.меси растворителей для хроматографирования. В действительности эти ряды несколько меняются в зависимости от типа адсорбента и разделяемых соединений. Кауфман и Мейкус [4] приводят следующий ряд растворителей (перечислены в порядке увеличения элюирующей способности) для разделения липидов ксилол, толуол, бензол, трихлорэтилен, дихлорэтилен, метилен-хлорид, хлороформ, изоамиловый эфир, изопропиловый эфир, д1 этиловый эфир, ацетон и диоксан. [c.121]

    Теоретически любые растворимые вещества можно разде--лить с помощью подходящего метода жидкостной хроматографии. Ионообменная хроматография и электрофорез применимы в тех случаях, когда соединения имеют ионный характер или содержат ионогенные группы. Область применения гель-хроматографии ограничена соединениями с относительно высокой молекулярной массой (10 —10 дальтон). Адсорбционная и распределительная хроматография используются для разделения веществ со средней молекулярной массой (10 —10 дальтон),. и поэтому эти методы представляют особый интерес для хими-ков-органиков. Небольшие количества веществ можно разделить с помощью различных методов плоскостной хроматографии. Преимуществом последних является возможность анализа одновременно нескольких образцов, а также низкая стоимость, оборудования. Методы плоскостной хроматографии отличаются очень простым аппаратурным оформлением, однако требуют от экспериментатора определенных навыков. Разработано несколько вариантов препаративной плоскостной хроматографии и количественного анализа хроматограмм, однако они в известной степени несовершенны. Современная колоночная хроматография обладает теми же достоинствами и недостатками, что и газовая хроматография, однако в отличие от последней ее можно рекомендовать не только для анализа, но и для препаративного выделения веществ, особенно если эти вещества недостаточно термостойки, разлагаются на свету или легко окисляются. [c.31]

    В пособии изложены основные принципы. хроматографического анализа в применении к исследованию многокомпонентных растворов неорганических ве-ш,еств, теоретическое обоснование каждого метода, рассмотрены возможности того или иного хроматографического метода (ионообменная, распределительная, осадочная, адсорбционно-комплексообразовательная, окислительно-восстановительная хроматография в колоночном, бумажном и тонкослойном вариантах) при решении различных задач, какие могут возникнуть в работе химика-аналитика как в чисто прикладном аспекте, так и в процессе научного эксперимента. Большое внимание в настоящем учебном руководстве уделено ионообменной хроматографии, ионообменни-кам и рассмотрению закономерностей статики и динамики ионообменных процессов, а также использованию ионитов, особенно органических, в аналитической химии. [c.2]

    Настоящее учебное пособие предназначено для студентов химических специальностей университетов. В методическом отношении оно отражает многолетний опыт преподавания автором спецкурса Хроматографический анализ растворов неорганических соединений в Одесском государственном университете им. И. И. Мечникова. В книге рассматриваются основные принципы хроматографии, их применение к исследованию многокомпонентных водных растворов неорганических веществ, теоретическое обоснование каждого метода, возможности использования того или иного хроматографического метода (ионообменная, распределительная, осадочная, адсорбционно-комплексообра-зовательная, окислительно-восстановительная в колоночном, бумажном и тонкослойном вариантах) при решении различных задач, которые могут возникнуть в работе химика-аналитика. [c.3]

    Что касается самого процесса ТСХ, то здесь можно усмотреть далеко идущую аналогию с жидкостной хроматографией на колонках. Неподвижную фазу образует н идкость, связанная со слоем фиксированного на подложке гранулированного сорбента, свойства и характеристики которого близки, а иногда даже идентичны таковым для материалов, используемых в качестве носителей неподвижной фазы в колоночной хроматографии. Здесь используются те же производные целлюлозы или силикагеля, к которым надо добавить только полоски ацетилцеллюлозы. Подвижную фазу образует жидкий элюент с аналогичными, рассмотренным ранее свойствами. Неизменной остается и сущность хроматографического процесса, базирующегося на равновесном распределении вещества между неподвижной и подвижной фазами. Как и в любом хроматографическом процессе (гель-фильтрация в тонком слое была рассмотрена в гл. 4), для целей хроматографического фракционирования это распределение должно быть сильно сдвинуто в пользу неподвижной фазы. Из всех вариантов хроматографпп для разделения компонентов белков и нуклеиновых кислот методом ТСХ (сами биополимеры очень редко выступают здесь в качестве объектов) практически пспользуют только два нормальнофазовую распределительную и ионообменную. [c.458]

    Различные варианты хроматографии классифицируют по нескольким признакам 1) по агрегатному состоянию подвижных фаз — жидкостная и газовая. В свою очередь газовая хроматография может быть разделена по агрегатному состоянию неподвижной фазы — на газотвердую и газожидкостную 2) по механизму разделения— ионообменная, адсорбционная, распределительная, осадочная 3) по способу проведения процесса или аппаратурного оформления— колоночная, капиллярная, плоскостная (бумажная и тонкослойная). [c.195]


Библиография для Колоночный вариант распределительной хроматографии: [c.253]    [c.114]   
Смотреть страницы где упоминается термин Колоночный вариант распределительной хроматографии: [c.170]    [c.40]    [c.40]    [c.317]    [c.317]    [c.347]    [c.65]   
Смотреть главы в:

Хроматография в неорганическом анализе -> Колоночный вариант распределительной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Варианта

Распределительная. хроматографи

Распределительный щит

Хроматография колоночная

Хроматография распределительная



© 2024 chem21.info Реклама на сайте