Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектральная аппаратура при энергии

    Частоты v,J переходов между электронными, колебательными и вращательными уровнями молекулы лежат преимущественно в оптической области электромагнитных волн (10 -10 Гц). Эту область принято подразделять на ряд отдельных участков инфракрасную (ИК), видимую (ВО) и ультрафиолетовую (УФ) области. Такое подразделение связано, с одной стороны, с особенностями спектральной аппаратуры, предназначенной для работы в том или ином частотном диапазоне, а с другой — с различием в энергиях квантовых переходов того или иного типа. В частности, вращательные переходы лежат в дальней ИК, колебательные (колебательно-вращательные)— в средней и ближней ИК, а электронные (электронно-колебательно-вращательные) — в ВО- и УФ-областях (см. ниже). [c.219]


    Импульсная искра может быть с успехом использована для определения содержания газов (кислорода, азота), растворенных в металлических сплавах. Энергия возбуждения атомов этих элементов очень высока, а концентрация их в сплавах очень мала (порядка Ю " —10" %), наиболее чувствительные их линии лежат в вакуумном УФ. Регистрация линий, лежащих в вакуумном УФ, требует специальной спектральной аппаратуры, которая имеется не во всех спектральных лабораториях. Поэтому проводить анализ часто приходится по менее чувствительным, но более длинноволновым линиям. Успешно справиться с этой задачей можно, лишь имея источник, в котором линии достаточно интенсивны. [c.73]

    Третью группу составляют широко распространенный эмиссионный спектральный анализ и атомно-абсорбционный анализ. При эмиссионном спектральном анализе анализируемое вещество вводят в высокотемпературное пламя или плазму, при этом вещество испаряется и разлагается до атомарного состояния. Атомы элементов возбуждаются и излучают энергию. Спектр излучения вещества в атомарном состоянии представляет собой набор линий (линейчатый спектр) и является специфическим для каждого элемента. Регистрируя интенсивность излучения по отдельным линиям, можно определить относительное содержание элементов. (В современном эмиссионном спектральном анализе иногда используются также спектры излучения стойких в условиях высоких температур химических соединений. Эту разновидность эмиссионного анализа в предлагаемой классификации скорее следует отнести к четвертой группе методов.) Благодаря большому совершенству спектральной аппаратуры, достигнутому за более чем столетнее существование эмиссионного спектрального анализа, этот метод получил в аналитической практике исключительно широкое распространение. Атомноабсорбционный метод спектрального анализа отличается от эмиссионного тем, что в этом случае регистрируется поглощение излучения плазмой или пламенем. Оба метода, входящие в третью группу, так же как и многие из ранее перечисленных, не позволяют определять степень окисления элементов. Кроме того, они в аппаратурном отношении сложны. [c.7]

    Связь ионов галоидов с водой весьма велика, но поддается изучению с применением кварцевых спектрографов. То же можно сказать о ионах нитратов, хлоратов, броматов, иодатов, сульфитов, персульфатов и т. д. Для этих ионов энергия связи с водой поддается в значительной части подсчету на основе электростатических концепций. Что же касается ионов щелочных и щелочноземельных металлов, то энергия их связи с водой настолько велика, что спектры поглощения этих ионов в водной среде оказываются за пределами доступности для кварцевой спектральной аппаратуры. [c.126]


    Помимо спектральной аппаратуры и источника возбуждения спектров, при сравнении интенсивностей линий используется еще один важный элемент — фотографическая пластинка, которая является приемником и регистратором световой энергии. Нам необходимо выяснить важ- [c.152]

    Среди неметаллов наибольший интерес при анализе нефтепродуктов представляют углерод, водород, кислород, азот, сера, фосфор и галогены. Эти элементы объединяют в самостоятельную группу некоторые их особенности, затрудняющие анализ. Следует отметить высокую энергию ионизации всех перечисленных элементов (10,36—17,42 эВ). Это ограничивает выбор источника излучения. Кроме того, резонансные линии этих элементов расположены в вакуумной ультрафиолетовой области спектра, не доступной для работы с обычными спектральными приборами. Для их регистрации требуется весьма сложная вакуумная аппаратура. Поэтому эти линии не являются последними в обычном для спектрального анализа смысле. При работе на обычных приборах приходится пользоваться более трудновозбудимыми слабыми линиями. Трудности возникают также из-за высокой летучести перечисленных элементов и большинства их соединений. Следует еще учитывать практическую невозможность обогащения пробы определяемыми элементами, так [c.243]

    При возбуждении ускоренными протонами, а-частицами и другими ионами [283, 275, 276] выход рентгеновского излучения главным образом определяется их энергиями и почти не зависит от спектральной серии. В этом варианте может быть получен низкий предел обнаружения, однако сложность, громоздкость и высокая стоимость аппаратуры ограничивают возможность широкого применения ионного возбуждения. [c.69]

    Под лазерной спектроскопией принято понимать совокупность аппаратуры и методов спектроскопического исследования, в которых используются специфические свойства лазерного излучения, в первую очередь высокая монохроматичность и огромная спектральная плотность, большая излучаемая мош,ность, а также большая энергия, выделяемая в малых объемах. [c.374]

    Современная аппаратура для изучения спектров отличается высокой точностью. Так, длины волн спектральных линий обычно определяют С точностью порядка 0,0001%, а часто и значительно более высокой. Спектры химических элементов исследованы очень подробно (определены длины волн огромного числа спектральных линий, их интенсивность, тонкая структура и другие характеристики) получены весьма обширные и надежные данные об уровнях энергии электронов в атомах. [c.14]

    Материал этой части главы разбит по разделам возбуждение, приготовление образцов, измерения и разнообразные методические приемы. Вначале рассмотрены главным образом вопросы выбора источников света, интенсивности света и выделения выбранных спектральных интервалов при помощи фильтров и монохроматоров. Кроме возбуждения действием света, существует множество других методов возбуждения, включая возбуждение рентгеновскими лучами, гамма-лучами, электронами и другими быстрыми частицами. Однако в большинстве исследований по люминесценции для возбуждения используют видимый и ультрафиолетовый свет. Поглощение света значительно более селективно, чем другие методы, а так как последние с большей полнотой рассмотрены в ряде уже опубликованных работ, то мы ограничимся здесь только первым методом. Приготовление образцов включает очистку веществ, приготовление твердых стекол, низкотемпературную методику и выращивание монокристаллов. В следующем разделе описана аппаратура для регистрации флуоресценции и фосфоресценции, для измерения времени жизни и квантового выхода. Прингсгейм [17] в своей монографии Флуоресценция и фосфоресценция дает хорошее представление о методах эксперимента, применявшихся примерно до 1949 г. Исчерпывающий обзор по спектроскопии и спектрофотометрии в видимой и ультрафиолетовой области дан Вестом [33]. Более специфичные вопросы, связанные с определением флуоресценции и фосфоресценции, источниками света, приемниками, флуориметрами, приборами для регистрации спектров флуоресценции и фосфоресценции и для измерения времени жизни и квантового выхода рассмотрены Вотерспуном и Остером [35]. Исчерпывающая библиография, собранная Липсетом [36], содержит ссылки на работы, в которых рассматриваются вопросы методики исследования переноса энергии и сходных явлений. [c.81]

    Ответ. Множество спектральных линий, связанных с поглощением энергии, наблюдается в спектре солнечного света. Каталог таких линий был составлен в 1820 г. Фраунгофером, и они были объяснены поглощением различных атомов, как это показано иа рнс. 3 6, Фраунгоферовы линии можно воспроизвести и наблюдать в лабораторных условиях с помощью аппаратуры типа изображенной на рис. 3.7. [c.98]

    Отдельные устройства радиоволнового контроля могут работать на частотах f, выходящих за пределы этого диапазона, однако чаще всего для нераэрушающего контроля используют трехсантиметровый диапазон (/ 10 ГГц) и восьмимиллиметровый диапазон (fяs35 ГГц) [1, 13, 14], наиболее освоенные и обеспеченные хорошим набором элементов и измерительной аппаратурой. СВЧ-коле-бания—поляризованные когерентные гармонические колебания, что обусловливает возможность получения высокой чувствительности и достоверности контроля. При применении СВЧ-излучений размеры элементов устройств неразрушающего контроля и размеры объектов контроля соизмеримы с длиной волны излучения. Радиоволновой контроль отличается большой информативностью по числу параметров излучения, которые можно использовать для контроля, и по общему числу влияющих факторов, но, с другой стороны, проведение контроля и анализ сигналов сильно затрудняется, что усложняет построение аппаратуры и заставляет применять приближенные методы анализа сигналов. Физическими величинами, которые могут нести полезную информацию о параметрах объекта контроля, являются амплитуда, фаза, сдвиг колебаний во времени, спектральный состав, распределение энергии в пространстве, геометрические факторы, поворот плоскости поляризации, появление амплитудной или частотной модуляции при движении объекта или изменении условий контроля и т. д. В соответствии с этим по первичному информативному параметру различают следующие методы амплитудный, фазовый, амплитудно-фазовый, геометрический, временной, спектральный, поляризационный, голографический и др. [1]. [c.103]


    К. А. Тимирязев доказал, что кривая фотосинтеза соответствует спектральной кривой поглощения света хлорофиллом с максимумом в красных и синих лучах. Эти работы К. А. Тимирязева сопровождались тщательными исследованиями спектральных свойств хлорофилла, его производных - и сопутствующих пигментов, а также разработкой чрезвычайно точней оптической аппаратуры и приборов для газовых анализов. В результате этих исследований К. А. Тимирязев доказал, что хлорофилл является сенсибилизатором процесса фотосинтеза экспериментально доказал приложимость закона сохранения энергии к процессу фотосинтеза показал приспособительный характер процесса фотосинтеза и оптических свойств пигментов к условиям солнечного освещения наметил возможные пути участия хлорофилла в фотосинтезе как окислительно-восстановительном процессе. [c.33]

    Все эти элементы (за исключением 5Ь и В1) требуют для возбуждения даже самых низких уровней энергии порядка 10—15 V. Поэтому соответствующие резонансные линии этих элементов лежат в далёком ультрафиолете, работа в котором недоступна с помощью обычной аппаратуры. Для возбуждения же линий, лежащих в доступной области спектра и представляющих комбинацию между возбуждёнными уровнями (см. например, схему уровней М, рис. 10), необходимо затрачивать ещё большие энергии. Практически поэтому спектрально-аналитическое определение этих элементов очень мало чувствительно и требует использования специальных источников (см. 17). [c.30]

    Метод основан на способности большинства газов избирательно поглощать лучистую энергию и относится к методам абсорбщюнной спектроскопии. В отличие от сложной и дорогостоящей спектральной аппаратуры для аналитических целей, в которой с помощью диспергирующих устройств обеспечивается спектральное разложение лучистой энергии, в оптических абсорбционных газоанализаторах вьщеление необходимых интервалов спектра осущес гвляется без применения диспергирующих элементов, и поэтому методы, на которых основано действие оптических абсорбционньгх газоанализаторов, называют также бездисперсионными [10]. [c.702]

    Рентгеновские фильтры. Для повышения спектральной избирательности в рентгеноспектральном анализе широко используются селективные фильтры, которые представляют собой тонкие слои из различных химических элементов. Действие их основано на различии в ослаблении излучений с энер-, гией фотонов меньше и больше энергии К- или Ь/л-краев поглощения элемента фильтра (см. рис. 2, 3). Подобрав подходящий материал фильтра и его толщину, можно достаточно полно отделить излучение с длиной волны больше длины волны 9-края поглощения фильтра от излучения с длиной волны меньше длины волны -края поглощения фильтра. Селективные фильтры — важная составная часть бескристальной аппаратуры, повышающая ее разрешающую способность. Примером применения селективных фильтров может служить отделение аналитических линий определяемых элементов от флуоресценции элементов с близкими, но более высокими атомными номерами в бескристальном рентгенофлуоресцентном анализе, когда дискриминационной способности сцинтилляционных или пропорциональных счетчиков в сочетании с дифференциальным амплитудным дискриминатором оказывается недостаточно. [c.45]

    Авторы работы [44] рассмотрели возможность применения импульсного источника света к целям атомно-абсорбционно-го анализа. Они отмечают недостатки пламени как средства атомизации образцов (наличие химических помех, непрозрачность пламени в дальней УФ-области спектра, неоднородность пламени) и указывают на необходимость разработки непламенных средств атомизации. В качестве такого средства они рекомендуют изучать импульсную разрядную лампу [46], с помощью которой возможен интенсивный нагрев образца (энергия, отдаваемая в течение одного разряда, достигает величины 30 дж/см [47] ). Так как атомный пар, создаваемый с помощью импульсной лампы, существует короткое время ( 10 сек), необходимо пользоваться быстрорегистри-рующей спектральной аппаратурой. Возможны два таких варианта регистрации — фотографический, с использованием импульсного источника сплошного излучения (вариант применен ранее в [48—50]), и фотоэлектрический [51]. [c.230]

    Быстро развивается и показывает хорошие результаты рентгенофлуоресцентный метод, основанный на том, что падающее первичное излучение создает при взаимодействии с материалом покрытия характеристические электромагнитные волны [25], имеющие кванты определенных длин волн и интенсивности. Спектральный состав излучения зависит от того, какие элементы имеются в материалах контролируемого объекта, а интенсивность — от массы данного элемента. Подбирая фильтры, выделяющие необходимую спектральную линию, характерную для материала покрытия, анализируя интенсивность и энергию квантов вторичного излучения с помощью различных электронных дискриминаторов, можно определить толщину одного или нескольких не очень толстых покрытий. Используемые при рентгенофлуоресцентном методе эффекты более сложны в приборной реализации, поэтому аппаратура на базе этого метода пока не выпускается крупными сериями. Вместе с тем имеются примеры успешного внедрения таких приборов в практику неразрушающего контроля толщин покрытий при разных сочетаниях материалов хром, олово, цинк, алюминий, титан или серебро на стали, медь на алюминии, хром на цинке, кадмий на титане и др. Решающим фактором применимости рентгенофлуоресцентного метода является наличие достаточной интенсивности вторичного излучения в диапазоне, где его регистрация эффективна. Также его ценным качеством является возможность из гpeний толщины многослойных покрытий, причем, когда их толщины соизмеримы, можно проводить в ряде случаев раздельный контроль. Успешно производится измерение толщины серебра на фотобумаге и ферролаковом покрытии. [c.352]

    ЗсЧ последило годы резко возросло применение инфракрасного излучения в физике, химии, биологии и технике. Инфракрасный спектральный анализ позволяет осуществлять количественное определонне состава химических смесей и проводить автоматизацию ряда химических технологических процессов. Важнейшее значение приобрели методы инфракрасной спектроскопии при изучении строения молекул, кристаллов, полимеров, биологических объектов, минералов, а также при изучении энергии химических связей, механизма химических реакций, процессов поглошепия излучения в твердых телах, особенпо в полу-проводииках. Астрономические исследования в инфракрасной области спектра позволяют установить химический состав и строение атмосферы, физические условия, существующие на планетах, в частности, распределение температуры на их поверхности. Инфракрасная аппаратура устанавливается на метеорологических спутниках и космических ракетах. Кроме того, открываются новые области применения инфракрасного излучения в связи с созданием квантово-механических генераторов, работающих в инфракрасном участке спектра. [c.5]

    Здесь Т)/2 — максимальный измеримый период полураспада ядра по безнейтринной моде, Л о число ядер 2 -излучающего изотопа, е — эффективность регистрирующей аппаратуры, i — время наблюдения, Мь — спектральная плотность фона в области ожидаемой суммарной энергии электронов, АЕ — энергетическое разрешение детектора, — суммарная масса вещества источника, с — концентрация в нём распадающегося изотопа, /i — массовое число изотопа, А — число Авогадро. [c.39]

    Мы нанесли на график рис. 1.14, а результаты, приведенные в э ой работе, а также в некоторых других, пересчитанные нами относительно 7а +, принятого за 1. Разницей в энергии ионов пренебрегали, так как во всех случаях она-не выходила за пределы обычной для масс-спектральных исследований на стандартной аппаратуре. Из рис. 1.14, а след5 ет, что экспериментальные точки ложатся примерно по ходу кривой 7,. В работе Потти и др. [84] [c.35]

    Раньше существовало мнение, что образование химической связи оказывает влияние только на внешние электронные уровни, поскольку в связанном состоянии изменяются лишь положение и форма края поглощения или испускания, связанного с этим уровнем. Однако в действительности любые изменения во внешнеэлектронной конфигурации сопровождаются изменениями более глубоких атомных уровней, поскольку энергия ионизации электрона существенно зависит от экранирующего влияния всех остальных электронов, какими бы ни были их волновые функции. В частности, это было установлено Кошуа [21] в связи с расчетами энергии ионизации ионов с различной электронной конфигурацией, выполненными по методу самосогласованного поля Хартри — Фока [22, 23]. Энергия ионизации должна изменяться приблизительно на одну и ту же величину для каждого внутреннего уровня. Поэтому соответствующие смещения атомных спектральных линий очень малы и их трудно обнаружить. Спектрографическая аппаратура высокого разрешения позволила зафиксировать небольшие смещения наиболее интенсивных линий при изменении степени окисления, однако этот эффект заметен только в случае самых легких элементов. Вообще энергия внутренних уровней зависит от пространственного распределения электронного облака, которое окружает излучающий атом. Поэтому положение атомных линий связано и с гибридизацией валентных орбиталей, и с ковалентным характером связей, и с типом координации. Приведем несколько примеров. [c.125]

    В книге даны основы теории и практики определения состава материалов эмиссионным оптическим и рентгеновским спектральными методами. С учетом единства и особенностей этих методов, а также новизны и специфики рентгеноспектральной аппаратуры книга разделена на три части. Процесс выполнения анализа рассмотрен как ряд взаимосвязанных этапов возбуждение и поглощение характерных излучений, разложение их в спектр по длинал волн или по энергиям фотонов, регистрация спектра и его оценка с учетом вопросов отбора и подготовки пробы к анализу. Раздел о точности результатов органически связывает этот материал с вопросами, возникающими при оценке спектра, т. е. с особенностями способов и приемов анализа. [c.2]

    В бескристальном методе 13, 14] обеспечения спектральной избирательности выделение аналитической линии осуществляется путем использования свойства пропорциональности между энергией фотона и амплитудой импульса на выходе сцинтил-ляционных и пропорциональных счетчиков в сочетании с дифференциальным амплитудным дискриминатором, селективными и дифференциальными рентгеновскими фильтрами. Отказ от кристалла-анализатора, возможность приблизить анализируемый образец к источнику возбуждения рентгеновской флуоресценции и к окну детектора позволяют на 5—6 порядков повысить светосилу аппаратуры и вместо мощной рентгеновской установки использовать радиоизотопные источники сравнительно малой активности или специальные рентгеновские трубки малой мощности. [c.41]

    Как подчеркивается в 1б4б), это приводит к утечке низкочастотной энергии через побочные максимумы изучаемых спектров (рис. 60). Чтобы избежать таких искажений, необходимо выравни-5зать амплитуды спектральных составляющих, особенно в случае, если регистрирующая аппаратура не имеет фильтров высокой частоты для подавления эффекта Е ( о) (оУ. [c.249]


Смотреть страницы где упоминается термин Спектральная аппаратура при энергии: [c.297]    [c.65]    [c.65]    [c.38]   
Аналитическая лазерная спектроскопия (1982) -- [ c.481 , c.483 ]




ПОИСК







© 2024 chem21.info Реклама на сайте