Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление групповое

    Состав реактивных топлив зависит от способа их получения (та л. 2.5). Кинетика окисления реактивных топлив в зависимости от их группового углеводородного состава, наличия и структуры гетероорганических соединений, ингибиторов окисления, концентрации кислорода, температуры, контакта с каталитически активными металлами может иметь разный характер [46]. Главной отличительной чертой этого процесса является постоянство его скорости во времени, наличие автоускорения или замедления. [c.45]


    При окислении остатков ильской нефти показано, что с увеличением глубины окисления увеличивается содержание смолисто-асфальтеновых веществ и уменьшается содержание масел. Источником образования смолисто-асфальтеновых веществ являются ароматические углеводороды [116]. Изучены [117] изменения группового химического состава, происходящие при окислении гудрона из смеси поволжских нефтей. Авторы представляют механизм окисления известной схемой перехода легкие ароматические —> средние ароматические —>- тяжелые ароматические — -смолы— -асфальтены. Парафино-нафтеновая группа углеводородов при окислении почти не затрагивается, а наибольшая скорость окисления наблюдается для тяжелых ароматических углеводородов. [c.84]

    В качестве исходного сырья для получения окисленных, остаточных и осажденных битумов был использован 41 /о-й гудрон этой нефти. Компаундированные битумы получены смешением асфальта бензиновой деасфальтизации гудрона со смесью гудрона (15%) и мазута (85%)- На рис. 48 представлен групповой состав, а на рис. 49 — свойства полученных битумов [114, 119, 120.  [c.88]

    В табл. 17 сравнивается групповой состав гудронов различных нефтей. Как видно, содержание парафино-нафтеновых в гудроне котур-тепинской нефти несколько превышает содержание ароматических, в то время как в гудронах других нефтей, пригодных для получения окисленных дорожных битумов, содержание ароматических углеводородов значительно превышает содержание парафино-нафтеновых. [c.104]

Таблица 18. Групповой состав окисленных битумов с равной пенетрацией при 25 С (примерно 80-0,1 мм) из разных нефтей Таблица 18. <a href="/info/28305">Групповой состав</a> <a href="/info/62718">окисленных битумов</a> с равной пенетрацией при 25 С (примерно 80-0,1 мм) из разных нефтей
    Глубина переокисления асфальта и состав масляного разбавителя взаимосвязаны. Поскольку увеличение степени переокисления асфальта приводит к увеличению содержания асфальтенов и уменьшению содержания ароматических углеводородов в окисленном компоненте, для получения битумов оптимального группового химического состава необходимо при глубоком переокислении асфальта использовать разбавитель со сравнительно высоким содержанием ароматических углеводородов, т. е. экстракта (рис. 68). Так, смешением экстракта (40%) с асфальтом (полученным при температуре деасфальтизации [c.106]


    Эти бензины подвержены окислению кислородом воздуха и имеют невысокую химическую стабильность. Групповой углеводородный состав бензинов термического риформинга представлен на рис. 1. Головные фракции содержат около 45% алифатических олефинов, а в более тяжелых фракциях появляются циклоолефины в количестве 10—15% [7]. [c.16]

    Реакция окисления под действием кислорода достаточно распространена в нефтепромысловой практике. Кислород воздуха во внутреннюю полость труб и оборудования может попадать в процессе подземного и капитального ремонта на скважинах, при профилактических и ремонтны.х работах на групповых замерных установках (ГЗУ), дожимных насосны.х [c.212]

    Выше, в табл. 5, были приведены данные по групповому составу гудрона смеси сернистых девонских нефтей после окисления его до температуры размягчения по КиШ 98 °С. Окисление в этих и последующих опытах велось при 250 °С и подаче воздуха 2 л/мин на 1 кг сырья. [c.33]

    Выход кокса при коксовании каждого компонента сырья в отдельности после окисления понизился, а дистиллята и газа коксования — повысился. Но суммарно на окисленное сырье выход кокса повышается, а дистиллята и газа снижается, так как изменяется групповой состав сырья. [c.34]

    Эти исследования показали, что пиролиз и окисление нефтяного сырья кислородом воздуха приводят не только к изменениям в групповом и элементарном составе тяжелых остатков. При этом происходят глубокие изменения в электронной структуре атомов, которые можно проследить на электрических свойствах коксов, получаемых из этих остатков. [c.218]

    Коррозионные свойства масел зависят от наличия в них коррозионноагрессивных компонентов (нафтеновых кислот) и от склонности масел образовывать коррозионные агенты в результате окисления (карбоновые и оксикарбоновые кислоты), что определяется групповым химическим составом масла. В табл. 6. 29 и 6. 30 приведены коррозионные свойства дистиллятов, а также некоторых опытных и товарных моторных масел. Масла из сернистых нефтей обладают, как правило, меньшей коррозионной агрессивностью (табл. 6. 31). [c.379]

    Обедненная кислородом атмосфера встречается в старых, давно разрабатываемых угольных шахтах. Автору известен такой случай с групповой гибелью людей, происшедший в 1976 г. в графстве Ланкашир (Великобритания), когда люди задохнулись при попытке попасть в заброшенную шахту, где в результате медленного окисления кислород перешел в диоксид углерода. В результате падения атмосферного давления обедненный кислородом воздух был "втянут" во входной туннель шахты, где и погибли люди. Похожие ситуации могут возникать в дренажных системах и в канализации, особенно при падении атмосферного давления. [c.442]

    Опытам на окисление предшествовали широкие исследования работы вихревой трубы при различных температурах воздуха на входе (до 400°С), обсуждение которых не входит в нашу задачу. В качестве реактора использовали теплоизолированную из стали 10 вихревую трубу 0 20,4x5 мм длиной рабочей зоны 208 мм, с диаметром сопла ТЗУ 2,6 мм, с диафрагмой 5,2 мм. Параметры потоков измеряли термопарами и образцовыми манометрами в расширительных камерах расход газа (0- 20 нм /ч) на входе в вихревой ректор и выходе нагретого потока измеряли расходомерами типа РЭД со вторичными приборами типа ЭПИД. Хроматографический анализ окисляемого газа проводили для каждого опыта, содержание пропана составляло от 52,5 до 60,8% масс. Продукты реакции в охлажденном и нагретом потоках определяли на групповое содержание альдегидов, кетонов, спиртов и кислот по известным методикам [61]. Схема установки приведена на рис. 1.8 (раздел 1). Условия первого опыта (табл. 2.12) не обеспечили начало реакции, что следует и из рекомендации работы [60], [c.127]

    Взаимосвязь структурных и других характеристик была исследована на большом массиве данных, полученных при изучении промышленных нефтяных коксов СССР (в том числе отобранных по высоте камер коксования), анизотропных коксов зарубежных фирм и коксов, полученных в лабораторных и пилотных условиях из специально модифицированного сырья. Модификация последнего осуществлялась окислением кислородом, регулированием химсостава добавками различных групповых компонентов, степенью отт она из сырья дистиллятных продуктов, добавкой активаторов коксования и др. Статистическая обработка данных по этим коксам показала хорошую корреляцию, например, механической прочности и действительной плотности после стандартного прокаливания  [c.26]

    Сульфидные концентраты и их производные, полученные по предложенной схеме, близки к концентратам, выделенным свежей серной кислотой по структурно-групповому составу и по химическим свойствам (окисление, комплексообразование и т.д.). [c.230]

    Каменноугольный пек с температурой размягчения 65 - 90°С широко используется в качестве связующего при изготовлении электродов для металлургии, поэтому часто называется электродным пеком. Электродный пек направляется потребителям в жидком или гранулированном виде. Для этой же цели расплавленный пек через специальное сито выливается в воду, где он отверждается. Гранулы собираются движущимся по дну ванны транспортером и грузятся в вагоны. Если среднетемпературный пек не отвечает требованиям ГОСТа по выходу летучих продуктов, плотности, групповому составу, его подвергают термической обработке или окислению при 350 - 450°С. [c.74]


    К первой группе относятся методы ускоренного окисления бензина в определенных условиях, а также методы оценки группового углеводородного состава с определением содержания наиболее химически нестабильных непредельных углеводородов. [c.257]

    Образование отложений в карбюраторе, впускном трубопроводе и на впускных клапанах в основном связано с содержанием смолистых веществ в бензине, образовавшихся в процессе получения и хранения бензина. Дополнительное количество смол образуется в бензине при его окислении во впускной системе под воздействием кислорода воздуха повышенной температуры и каталитического влияния металла. Таким образом, количество низкотемпературных отложений в двигателе зависит от концентрации фактических смол в бензине и от его химической стабильности. Следует отметить, что некоторая часть низкотемпературных отложений на деталях карбюратора все время смывается свежими порциями бензина. Моющая способность бензина в значительной степени определяется его групповым углеводородным составом. Следовательно, склонность бензина к низкотемпературным отложениям в определенной степени зависит и от его углеводородного состава. [c.273]

    В 70-х годах предложены уравнения регрессии, связывающие температуру размягчения битума с некоторыми параметрами окисления. Но применимость таких уравнений ограничена рамками экспериментов. В начале 80-х годов предложены зависимости, связывающие температуру размягчения битума с групповым химическим составом. Поскольку в этих работах использованы гудроны разных нефтей, результаты оказались более представительными, но их использование затруднено сложностью определения химического состава. Предложено также определять расход воздуха, необходимого для получения битума, по групповому химическому составу сырья, что связано с уже указанной трудностью. Во всех этих работах изучались изменения окисляемого материала. [c.149]

    Тэрстон и Ноулс [29] исследовали скорость окисления групповых компонентов нефтяного битума в процессе продувки воздухо.м при температуре 200°С. Активнее других с кислородом реагировали асфальтены, тогда как наиболее инертными были масла. [c.44]

    Химический состав масла ( hemi al onstitution of oil). Качество масла, в значительной степени, зависит от его группового химического состава, т.е. от соотношения парафинов, ароматических соединений и нафтенов. При оценке качества масла и присвоении категории качества, химический состав масла не определяется, так как многие свойства масла существенно улучшаются введением соответствующих присадок. Иногда, в описаниях масла производители указывают основной класс соединений, так как они характеризуют некоторые общие эксплуатационные свойства. Например, парафиновые масла отличаются высоким индексом вязкости, хорошей стойкостью к окислению, а нафтеновые масла - высокой липкостью, хорошими смазывающими свойствами и т.д. [c.41]

    Изучение во многих регионах нефтей, залегающих в разных стратиграфических комплексах, разделенных непроницаемыми региональными покрышками, показало, что они отличаются друг от друга по ряду параметров, характеризующих структуру парафино-нафтеновых УВ, и по их групповому и индивидуальному составу [1]. Кроме того, стало ясно, что недостаточно классифицировать нефти лишь по составу или по характеру их преобразованности (окисленные, фильтрованные), как это делалось ранее некоторыми геохимиками. Очень важно провести генетическую типизацию нефтей для того, чтобы установить, во-первых, разными ли или одними и теми же породами они были генерированы и, во-вторых, с материнскими породами какого именно стратиграфического комплекса связана генерация данной нефти. В связи с этим мы ввели понятие — генетический тип нефти, которое сейчас стало применятыся многими геохимиками. [c.4]

    Арланская нефть интересна не как массовая товарная йефть, а как представитель группы высокосернистых высоко-емолпстых нефтей. Для битумов, полученных из 52—55%-го Гудрона этой нефти путем вакуумной перегонки, окисления воздухом и деасфальтизации пропаном, а также компаундирования гудрона с асфальтом, полученным деасфальтизацией гудрона бензином, на рис. 46 показан групповой состав, на рнс. 47— свойства [47, 119]. [c.86]

    В табл. 20 показан групповой состав битумов, полученных по разны.м технологическим схемам из гудрона котур-тепинской нефти, а на рис. 70 — свойства этих битумов. Как видно, при равном выходе на нефть битумы, полученные по схемам с предварительным окислением, характеризуются более высоким отношением ароматические углеводороды парафино-нафтены, что обеспечивает им более высокую дуктильность. Это особенно заметно, когда окисляется только часть сырья, но более глубоко. В общем, рекомендуется гудрон первой ступени вакуумной перегонки (остаток выше 470°С, вы.ход на нефть 28% масс.— рис. 71) разделять на два потока, один из которых (15—45%) окислять до температуры размягчения 70—100 °С, после смешения окисленного и неокисленного потока их следует подвергать дополнительной вакуумной перегонке с получением остатка выше 510 °С — битума. [c.108]

    При изучении предварительного окисления исходили из желательности получения сырья коксования, характеризующегося возможно высокими коксуемостью и ароматизованностью. Аро-матпзованность оценивали как непосредственным определением группового состава, так к менее трудоемким определением дуктильности, исходя из известных наблюдений большему содержанию ароматических углеводородов соответствует и большая дуктильность [120, 123]. [c.118]

    Депарафинизация рафинатов адсорбционной очистки проходит при большей скорости фильтрования, большем отборе депарафи-нированиого масла и меньшем содержании масла в петролатуме. По аксплуатационным свойствам автомобильные масла адсорбционной очистки из восточных нефтей Не уступают маслам фенольной очистки того дее сырья и превосходят их по термоокисли-тельиой стабильности [19]. Маловязкие масла из восточных нефтей типа трансформаторных после адсорбционной очистки обладают лучшими низкотемпературными свойствами, чем масла из того же сырья фенольной очистки. Трансформаторное масло адсорбционной очистки из сернистой восточной нефти более богато ароматическими углеводородами и серосодержащими соединениями, чем масло фенольной очистки . выход его на 25% больше и оно более стабильно против окисления, что объясняется различиями в групповом составе этих масел. Характеристика трансформаторных масел различных способов очистки из восточных сернистых нефтей приведена ниже [13, 19]  [c.276]

    В тех случаях, когда удается определить относительные концентрационные характеристики распределения углеводородов, ГАС различных классов или фрагментов молекул ВМС, они оказываются сходными. Таковы распределения многих нафтенологов и бензологов ГАС по числу циклов в молекуле, нормальных и изопреноидных алифатических скелетов по числу атомов углерода и т. д. Изменения общих групповых и структурных характеристик, а также концентрационного распределения углеводородов и ГАС в зависимости от химического типа и условий залегания нефти так-же обладают заметными чертами сходства и в основном сводятся к преобладанию алициклических структур в молодых, слабо превращенных нефтях и параллельному обеднению углеводородов и гетероатомных соединений алициклическими, но обогащению алифатическими и ароматическими структурами в ходе катагенеза. Лишь асфальтеповые компоненты при катагенезе, по понятным причинам (см. гл. 7), обедняются насыщенными фрагментами в отличие от низкомолекулярных веществ. Гипергенные процессы вторичного окисления и осернения нефтей приводят к накоплению, по-видимому, тоже аналогичных типов структур и в низших ГАС, и в смолисто-асфальтовых фракциях. [c.206]

    В промышленности уже в течение многих лет применяется окисление прямогонных нефтяных остатков, главным образом с целью изменения реологических свойств получаемых из них битумов. В процессе продувки остатков воздухом кислород взаимодействует с компонентами сырья при температуре 200—350 °С. При этом химический состав и соответственно молекулярная структура и свойства остатков изменяются. Соотношение углерод водород для асфальтенов снижается при окислении с 11 1 до 10,5 1. Для смол и масел это соотношение уменьшается, но в меньшей степени (с 8 1 до 7,7 1). Пары воды, двуокись углерода и низкомолекулярные продукты окисления (эфиры, кислоты и альдегиды) удаляются из реакционного объема вместе с продувочными газами. Целевым продуктом является окисленный битум, который существенно отличается от исходного, неокисленного сырья. При окислении изменяется его групповой состав уменьшается содержание масел и значительно возрастает количество асфальтенов, продуктов поликонденсации. Количество силикагелевых смол в некоторых случаях уменьшается, а в других несколько возрастает. [c.32]

    Промышленные процессы производства СЖК включают два этапа окисление парафина воздухом в течение до 20 ч в реакторах типа колонн при 120—140 С в присутствии катализатора (обычно КМПО4, МпОг и т. п.) и выделение из реакционной смеси целевого продукта, которым являются сырые технические жирные кислоты, а после дистилляции — термооблагороженные жирные кислоты определенного группового состава. [c.684]

    Действие катализаторов весьма специфично. Многие из них могут ускорять только одну реакцию, т. е. являются индивидуально специф)ичными. Известны катализаторы, обладающие групповой специфичностью, а также пригодные для многих реакций. Так, например, натриевый катализатор полимеризации бутадиена индивидуально специфичен. Металлический никель ускоряет реакции гидрирования, но не окисления, тогда как УгОв — хороший катализатор реакций окисления, но не реакций гидрирования — эти контакты обладают групповой специфичностью. Примером универсальных контактов окислительно-восстановительного действия [c.23]

    Процесс окисления нефтей сопровождался изменением физикохимических свойств, группового и индивидуального углеводородного состава нефтей. При этом обычно увеличивается содержание вы-сококипящих фракций, по-видимому, вследствие остаточного накопления смол, а также благодаря новообразованию различных кисдо-родсодержаш их соединений [231. [c.234]

    Исследование углеводородов, входящих в состав масляных фракций различных нефтей, в настоящее время распространяется главным образом на определение группового химического состава, ввиду чрезвычайных трудностей выделения индивидуальных углеводородов и выяснения их струхчтуры, вследствие большого числа изомеров в масляных фракциях. Одпако без знания (хотя бы грубо ориентировочного) строения углеводородов нельзя подойти к объяснению явлений, связанных с окислением масел, играющих чрезвычайно большую роль в практике использования всех масел и особенно снецпаль-ных их сортов (нанример, трансформаторных масел). Так как в природных маслах преобладают циклические углеводороды нафтенового н ароматического рядов, то строением углеводородов этих рядов, как показали обширные исследования Н. И. Черножукова и С. Э. Крейн [6], и определяется прежде всего характер отшсляемости масел. [c.390]

    Таким образом, прм выборе сырья для получения высокоплавких битумов определенного качества, требуемой пластичности необходимо учитывать групповой химический состав сырья, регулируемый в свою очередь как п[ 1родой нефти, так и концентрацией остатков, направляемых на окисление. [c.54]

    Групповой химический состав, %, окисленных проб нефгеотходов  [c.96]

    Примечание. В знаменателе требования ГОСТа 22245-76. вить на получение битума, где для обеспечения оптимального группового состава в него до окисления необходимо ввести компонент с относительно высоким содержанием ароматики, смол, асфальтенов. Утяжеленные гудроны арланской нефти с ВУд0 120 с, смеси туймазинской и западносибирской нефтей с ВУдд 124 с, асфальт деасфальтизации западносибирской нефти по своему химическому составу и физико-мгха-ническим свойствам удовлетворяют этим требованиям. [c.98]

    Определенное количество этого вида сырья, по нашим предложениям, следует использовать для производства компаундированных дорожных битумов улучшенного качества как разбавитель строительного битума. Доля битума в компаунде составляет лишь 20-30 %, т.е. на 70-80 % битум дорожный состоит из неокисленных высокосмолистых компонентов. Качество такого битума очень высокое. Он превосходит окисленные битумы по таким показателям, как растяжимость при 25 °С и О °С, адгезия к минеральным наполнителям, устойчивость к окислительному старению. Его групповой химический состав близок к тому, который характерен для битумов, полученных по предыдущей технологии [c.35]

    Причиной такого различия в процессах модификации битумов являются различия в групповых углеводородных составах и коллоидной структуре окисленных и неокисленных бит мов (табл.). [c.38]

    Системы высококипящая фракция - ПП разной молекулярной массы высококипящая фракиг ия - ПЭ остаточный битум - ЛПразной молекулярной массы остаточный битум - ПЭ окисленный битум - ПП молекулярной массы 82000 последняя система, групповой состав которой изменялся добавками парафина и нафталина. [c.36]


Смотреть страницы где упоминается термин Окисление групповое: [c.86]    [c.155]    [c.90]    [c.26]    [c.124]    [c.292]    [c.288]    [c.62]    [c.48]    [c.97]    [c.98]    [c.14]   
Современная аналитическая химия (1977) -- [ c.368 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрические свойства масел, структурно-групповых фракций углеводородов и их смесей в исходном состояДиэлектрические свойства масел, структурно-групповых фракций углеводородов и их смесей в процессе окисления (старения)

Исследование физико-механических свойств и группового химического состава битума, полученного прямым окислением тяжелой нефти

КАО групповые



© 2025 chem21.info Реклама на сайте