Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Охлаждение при кристаллизации растворов

    Кривая 2 соответствует охлаждению системы, содержащей 20 % Pt. При 1567 К наблюдается уменьшение скорости охлаждения. Это объясняется тем, что происходит процесс, сопровождающийся выделением теплоты. Таким процессом является кристаллизация твердого раствора. При кристаллизации теплота выделяется, что и снижает скорость охлаждения системы. На этой же кривой при 1405 К наблюдается вновь увеличение скорости охлаждения. При этой же температуре закончилась кристаллизация твердого раствора, и дальнейшее охлаждение системы не сопровождается выделением теплоты. Происходит охлаждение твердого раствора. На оси ординат, соответствующей составу 20% Pt, откладываем температуру начала и конца кристаллизации 1567 и 1405 К. Аналогично находим точки начала и конца кристаллизации расплавов с концентрациями 40, 60 и 80 % Pt. Соединив все точки начала кристаллизации, получим кривую ликвидуса соединив точки конца кристаллизации, получим кривую солидуса. Обе кривые сходятся в точках кристаллизации чистых компонентов Pt и Аи. [c.236]


    Насыщенный раствор — это раствор, находящийся при данных условиях в термодинамическом равновесии с растворенным веществом. Раствор, содержащий меньшее количество растворенного вещества, чем это отвечает насыщенному раствору, называется ненасыщенным. При охлаждении насыщенного раствора образуется пересыщенный раствор, содержащий больше растворенного вещества, чем это отвечает насыщенному раствору. При некотором пределе перенасыщения или при внесении в пересыщенный раствор кристалла растворенного вещества илп другого вещества, могущего слул<ить центрами (зародышами) кристаллизации, начинается выпадение кристаллов растворенного вещества, которое продолжается до образования насыщенного раствора. [c.236]

    Здесь и в последующем изложении будут иметься в виду процессы кристаллизации парафина, происходящие при охлаждении его растворов лли расплавов. [c.62]

    Упаренный ксилит заливают в кристаллизаторы, где при охлаждении и перемешивании происходит его кристаллизация. При быстром охлаждении ксилит легко образует сильно пересыщенные растворы. При их кристаллизации получается мелкокристаллический неравномерный продукт, который трудно отделяется от маточника. Наилучшие результаты с точки зрения равномерности кристаллов и отделения маточного раствора получены при быстром охлаждении сгущенного раствора до состояния насыщения (ксилитом) с последующим введением затравки кристаллов ксилита (0,15% к массе раствора) и при дальнейшем медленном охлаждении до содержания кристаллов в утфеле 55—60%. Длительность кристаллизации зависит от многих причин конструкции кристаллизаторов, доброкачественности растворов и т. д. [c.163]

    Кристаллизацию веществ проводят в кристаллизаторах — низких цилиндрических стеклянных сосудах, маточный раствор из которых можно легко удалить декантацией (разд. 47.3.4). Дополнительное количество основного вещества, но более загрязненного другими продуктами реакции, можно выкристаллизовать упариванием и охлаждением маточного раствора. В этом случае хороший эффект дает повторная кристаллизация или фракционная кристаллизация (разд. 47.3.2). Если кристаллизующееся Е ещество имеет низкий температурный коэффициент растворимости, то кристаллизацию нужно проводить при пониженной температуре, например помещая кристаллизатор в холодильник или в охлаждающую смесь (разд. 46.1.2 препараты 5, 6, 28). Если вещество, получаемое упариванием, при этом разлагается, упаривание нужно проводить при пониженном давлении (препараты 49—51, 86, 94). Для этой цели применяют установку для перегонки (рис. Е.15) с простым вакуумным алонжем вакуум создают с помощью водоструйного насоса. Упаривание растворов веществ, разлагающихся при комнатной или немного повышенной температуре, целесообразно проводить в эксикаторе (разд. 47.3.8) с подходящим осушителем (табл. Е.З), который можно еще вакуумировать (препараты 4— [c.515]


    Основное количество твердых парафинов, церезины и защитные воски выделяют и обезмасливают путем разбавления исходного сырья растворителями, охлаждения полученного раствора с целью кристаллизации твердых углеводородов и последующего разделения образующейся суспензии. В значительно меньших масштабах производят твердые парафины кристаллизацией без растворителей— фильтрпрессованием охлажденного сырья с последующим потением полученного при этом гача. [c.109]

    Для политермической, или изогидрической, кристаллизации, требующей охлаждения насыщенного раствора соли, растворимость которой уменьшается с понижением температуры, применяют  [c.251]

    Образование зародышей может происходить путем самопроизвольной кристаллизации. При этом оба процесса (образование зародышей и рост кристаллов) протекают одновременно. Если скорость образования зародышей больше скорости их поста, получается большое количество мелких кристаллов. Если же скорость роста больше скорости образования зародышей, получается меньшее количество крупных кристаллов. Изменяя факторы, влияющие на скорость образования зародышей и скорость их роста, можно регулировать размеры кристаллов. Быстрое охлаждение, перемешивание раствора, высокая температура и низкий молекулярный вес кристаллов способствуют образованию зародышей и получению мелких кристаллов. Наоборот, медленное охлаждение, неподвижность раствора, низкая температура и высокий молекулярный вес способствуют процессу роста и получению крупных кристаллов. [c.513]

    Охлаждение осветленного раствора и кристаллизация из него КС1 в вакуум-кристаллизаторах. [c.460]

    Наиболее простой способ кристаллизации заключается в охлаждении ненасыщенного раствора и отделении на фильтре полученных кристаллов (рис. У-38). Количество тепла на 1 кг начального раствора (<3/7 ), отнятое в кристаллизаторе, соответствует отрезку АВ. То же тепло, но на 1 кг выкристаллизованной соли, представляет отрезок СО. [c.401]

    Применение правила фаз в других областях диаграммы будет рассмотрено в связи с анализом процесса охлаждения ненасыщенного раствора состава Р. При охлаждении до tx система будет жидкой. В точке I раствор окажется насыщенным веществом А. к. Отвод 8Q тепла вызовет появление бесконечно малого кристаллика этого вещества (теоретически при tl — (И точка на вертикали Р А, расположенная чуть ниже точки 51). По мере кристаллизации А раствор обогащается компонентом В и температура кристаллизации падает, т. е. фигуративная точка скользит вниз по кривой ае. При этом фигуративная точка кристаллической фазы перемещается вдоль прямой аз. При достижении 4 раствор станет насыщенным и веществом В.. Поэтому, начиная с этого момента, оставшаяся жидкость будет кристаллизоваться полностью без изменения состава. Кристаллизация обоих веществ [эвтектической смеси, а в случае раствора соли в воде — криогидрата) приведет к изменению состава отвердевшей части системы, так как в ней увеличится содержание вещества Б (и уменьшится содержание А). Указанное изменение передается прямой [c.260]

    Если одно из веществ, подвергаемых дробной кристаллизации, хорошо растворимо только в данном растворителе и только при нагревании, а для второго вещества растворимость мало зависит от температуры, то дробную кристаллизацию можно провести путем ступенчатого охлаждения раствора. Нагретый раствор такой смеси охлаждают до определенной температуры, выделяют из пего большую часть первого вещества, а после дальнейшего охлаждения маточного раствора получают фракцию, обогащенную вторым компонентом смеси, и т. д. [c.21]

    Рассмотрим процесс охлаждения расплава, заданного на диаграмме фигуративной точкой М (состав 45 % А н 55 % В). При медленном о.хлаждении расплава кристаллизация начинается при температуре, отвечающей фигуративной точке 3 на линии ликвидуса кристаллизуется твердый раствор, состав которого определяется точкой 4 на линии солидуса (твердый раствор по сравнению с жидким обогащен высокоплавким компонентом А, 93 %). Оставшийся расплав обогащается низкоплавким компонентом В, что соответствует перемещению точки 3 по линии ликвидуса вправо в положение 3. Выделяющаяся новая порция твердого раствора (точка 4 ) по сравнению с жидкой снова обогащается компонентом А, но по сравнению с предыдущей порцией твердого раствора она менее богата компонентом А (сравните составы твердых растворов в точках 4 и 4 ). Таким образом, состав твердого раствора в процессе кристаллизации меняется по линии солидуса тоже вправо (показано стрелками на диаграмме). Если диффузия в кристаллах настолько значительна, что при каждой температуре вся кристаллическая фаза приходит в равновесие с расплавом нового состава, то в какой-то момент состав твердого раствора сравняется с составом исходного расплава (при температуре ( — точка 4") и кристаллизация закончится. При дальнейшем понижении температуры будет происходить охлаждение твердого раствора, что будет соответствовать перемещению фигуративной точки в положение А/. [c.90]


    Аналогичным путем получим кривую охлаждения 2 раствора. Участок р-р соответствует равномерному охлаждению раствора. Точка О на кривой отвечает появлению первых кристаллов растворителя. При дальнейшем охлаждении температура раствора, однако, не сохраняется постоянной, и вместо площадки на графике будет иметься наклонная (одна степень, свободы) кривая р-р+Лк . Когда вся жидкость закристаллизуется (точка О ) получится смесь кристаллов растворителя и растворенного вещества и дальнейшее охлаждение этой смеси будет описываться кривой Лк+Вк - Таким образом, на кривой охлаждения для раствора имеются две точки излома О и О", отвечающие началу и концу кристаллизации раствора (теоретически кривая будет и.меть из-за образования эвтектики более сложный вид). [c.152]

    Если на график нанести ряд изотерм, охватывающий определенный температурный интервал, то можно производить расчеты процессов охлаждения, растворения, испарения и кристаллизации растворов, т. е. решать задачи, возникающие в связи с получе- [c.336]

    Растворимость большинства твердых веществ с понижением темпфатуры уменьшается, поэтому при охлаждении насыщенных растворов часть вещества выделяется в кристаллическом виде. Это объясняется тем, что одно и то же вещество при различных температурах обладает различной растворимостью. Процесс, сопровождающийся выделением вещества при охлаждении горячего насыщенного раствора, называется кристаллизацией. Если охлаждение горячего насыщенного раствора производить медленно, то кристаллизация может не произойти, хотя образовался раствор, где содержание растворенного вещества значительно выше, чем его требуется для получения насыщенного при данной температуре раствора. Такие растворы называются пересыщенными. Если в пересыщенный раствор внести кристаллик растворенного вещества ( затравка ), то на гранях внесенного кристалла (центр кристаллизации) начинается кристаллизация и часть растворенного вещества выделяется в форме кристаллов. Раствор из пересыщенного превращается в насыщенный. Зачастую кристаллизация из пересыщенного раствора начинается от легкого сотрясения раствора. Этот же эффект наблюдается, если в раствор внести стеклянную палочку и потереть о стенки сосуда. [c.99]

    При охлаждении ненасыщенного раствора состав системы не изменяется, и поэтому точка системы остается неподвижной. С уменьшением растворимости содержание воды в насыщенном растворе увеличивается, чему будет отвечать перемещение поля кристаллизации к точке системы. Как только раствор станет пересыщенным, начнется образование твердой фазы. В этот момент на водной диаграмме точка системы окажется под поверхностью кристаллизации (число и характер выпадающих солей будут зависеть от объема кристаллизации , в котором окажется исходная точка). [c.355]

    Последовательность выполнения работы. Подготовленный термометр Бекмана вставить в прибор и начать наблюдать за температурой. Для равномерного охлаждения жидкость медленно помешивают вставленной в прибор мешалкой. Помешивание прекратить, когда температура на 0,5° станет выше ожидаемой температуры кристаллизации. После этого внимательно следить за понижением температуры. Без помешивания жидкость легко переохлаждается, о чем свидетельствуют показания термометра. Для чистого растворителя переохлаждение допустимо на 0,5—Г. Возобновление перемешивания переохлажденной жидкости вызывает кристаллизацию. При кристаллизации выделяется теплота и температура начинает заметно повышаться. Не прекращая равномерного помешивания, следить за температурой, отмечая максимальную температуру подъема (из переохлажденного состояния), которая и будет истинной температурой кристаллизации данной жидкости. После этого пробирку вынуть из воздушной рубашки и, подогревая ее рукой, растворить образовавшиеся кристаллы. Затем пробирку вновь опустить в стеклянную рубашку, оставленную в охлаждающей смеси, и повторить переохлаждение с последующей кристаллизацией. Опыт следует повторить несколько раз, пока последние два определения температуры кристаллизации будут отличаться не более чем на 0,01°. Записав температуру кристаллизации растворителя, открыть боковой тубус (если его нет, приподнять пробку) и всыпать навеску исследуемого вещества. Навеска определяется по массе бюкса с исследуемым веществом и без него. После этого вынуть пробирку из рубашки, подогреть рукой раствор, вызывая расплавление кристаллов растворителя и растворение в нем навески. Вставить пробирку вновь в рубашку и провести процесс охлаждения, как и с растворителем. Надо помнить, что раствор переохлаждать более чем на 0,2° нельзя. Температуру кристаллизации раствора определять три-четыре раза из полученных данных рассчитать среднюю температуру кристаллизации, а также разность средних температур кристаллизации растворителя и раствора. Рассчитать молекулярную массу по уравнению (УП1.19). [c.180]

    Кристаллизация растворов проходит так же, как в металлических расплавах. Любой водный раствор нитрата калия, содержащий его в концентрации ниже 11,62 %, при охлаждении выделяет сначала кристаллы льда. Их выделение начинается при температуре, которая определяется кривой кристаллизации льда. Так, из раствора, содержащего 3,34 % КМОз, выделение кристаллов льда начинается при —1,0°С. При дальнейшем понижении температуры выделение кристаллов льда продолжается. По мере выделения льда раствор становится более концентрированным. Содержание соли в нем для каждой температуры определяется кривой кристаллизации льда. Для каждого интервала температур количество выделяющегося льда строго определенно. Дальнейшее охлаждение приведет систему в состояние, представляемое криогидратной точкой. При этой температуре (при дальнейшем отнятии теплоты) остающийся раствор замерзает полностью в виде криогидрата. [c.30]

    В отличие от чистого растворителя раствор не отвердевает целиком при постоянной температуре полная кристаллизация раствора происходит в некотором интервале температур. Поэтому температурой замерзания раствора считают ту температуру, при которой в процессе охлаждения начинают выделяться первые кристаллы чистого растворителя. Этой температуре также отвечает равенство давлений насыщенного пара над жидким раствором и над кристаллами растворителя. Следовательно, температурами замерзания растворов разных составов будут точки Л, А". Из рис. 72 можно заключить, что растворы должны замерзать при более низких температурах, чем чистый растворитель. Это явление еще в 1755 г. наблюдал М. В. Ломоносов. Оно подтверждается термодинамическим анализом (см. гл. XV, 6). [c.206]

    При охлаждении растворов, концентрация которых находится в пределах между К а F, в твердую фазу выделяется кристаллогидрат. Так как концентрация соли в кристаллогидрате больше, чем в растворе, то по мере кристаллизации раствор обедняется солью и фигуративная точка насыщенного раствора перемещается по кривой растворимости в нанравлении к эвтектической точке А. При охлаждении же растворов, содержание соли в которых находится в пределах от F до Р, кристаллизация кристаллогидрата сопровождается увеличением концентрации раствора, и его фигуративная точка перемещается к эвтектической точке Е. [c.140]

    Если концентрация соли в ненасыщенном растворе равна концентрации ее в твердом кристаллогидрате, то при охлаждении такого раствора до температуры насыщения (точка G) из него будет кристаллизоваться кристаллогидрат, причем концентрация раствора не будет изменяться до полного его исчезновения и затвердевания всей системы. В продолжение всего процесса кристаллизации точки системы, жидкой и твердой фаз в этом случае совпадают с точкой G и остаются неподвижными. Точка G максимума на кривой растворимости, соответствующая значению температуры и состава, при которых жидкая фаза находится в равновесии с кристаллами [c.140]

    При охлаждении концентрированного раствора соли (точка т , после того как он станет насыщенным, из него будет выделяться безводная соль, а состав раствора будет изменяться от до J. Когда система достигнет точки /Из, соответствующей температуре перехода, из раствора состава J начнется кристаллизация кристаллогидрата. Так как в нем меньше воды, чем в растворе У, то, при кристаллизации кристаллогидрата раствор становился бы менее концентрированным, если бы не происходило растворение ранее выделившейся безводной соли. Вследствие такого растворения состав раствора не изменяется. Таким образом, кристаллизация кристаллогидрата сопровождается растворением ранее выделившейся безводной соли. Происходит как бы ее гидратация, переход безводной соли в кристаллогидрат. Поэтому инконгруэнтную точку У и называют точкой перехода, или точкой превращения. Так как количество воды в системе меньше, чем в кристаллогидрате (точка т расположена правее Р), то этой воды не хватит для гидратации всей выделившейся соли и в полностью затвердевшей системе часть соли останется безводной. Пока не закончится процесс гидратации, происходящей при постоянной температуре точки перехода, фигуративная точка системы останется неподвижной в тз (отнятие теплоты от системы компенсируется теплотой, выделившейся при гидратации). [c.142]

    Итак, при охлаждении насыщенного раствора его фигуративная точка будет перемещаться из (М ) в (I") по линии РЬ РЬ"). На горизонтальной проекции это движение будет происходить по лучу кристаллизации от М к Ь. [c.150]

    Раствор в отличие от чистой жидкости не отвердевает целиком при постоянной температуре. Кристаллы начинают выделяться при какой-то одной температуре, но по мере понижения температуры число их растет до полного отверденИя раствора. Температурой начала кристаллизации раствора называют температуру, при которой в результате охлаждения раствора (в условиях, исключающих возможность образования пересыщенных растворов) происходит образование кристаллов. [c.174]

    При охлаждении расплава (раствора) кривая охлаждения имеет 5олее сложный вид (рис. 79, кривая 2). В простейшем случае охлаж-гения расплава двух веществ вначале происходит равномерное по--1ижение температуры, пока из раствора не начинают выделяться <ристаллы одного из веществ. Так как температура кристаллизации раствора ниже, чем чистого растворителя, то кристаллизация одного из веществ из раствора начинается выше температуры кристаллизации раствора. При выделении кристаллов одного из веществ состав жидкого расплава изменяется и температура его затвердевания непрерывно понижается по мере кристаллизации. Выделяющаяся при кристаллизации теплота несколько замедляет ход охлаждения и поэтому, начиная с точки Ь, крутизна линии кривой охлаждения уменьшается. Наконец, когда расплав делается насыщенным относительно обоих веществ (точка с), начинается кристаллизация обоих веществ одновременно. Это отвечает появлению на кривой охлаждения горизонтального участка (сс1). Когда кристаллизация заканчивается, наблюдается дальнейшее падение температуры. [c.136]

    Область применения. Процессы депарафинизации кристаллизацией охлаждением из растворов в жидких углеводородных растворителях-разбавителях применяют почти исключительйо для депарафинизации тяжелого остаточного сырья. Перед депа-рафпнизацией сырье проходит деасфальтизацию и очистку избирательными растворителями. Применяют предварительную очистку сырья и кислотно-контактным методом. [c.174]

    Раствор, в отличие от чистой жидкости, не отвердевает целиком при постоянной температуре. Кристалл.ы начинают выделяться при какой-то одной температуре по мере понижения температуры количество их растет, пока, наконец, весь раствор не отвердеет. Таким образом, отвердевание раствора происходит обычно не при одной температуре, а на протяжении некоторого интервала температур. мпJ J)aтypoй начала кристаллизации раствора называют температуру, при которой в результате охлаждения раствора (в условиях, исключающих возможность образования пересыщенных растворов) начинается образование кристаллов. [c.301]

    На промышленных установках скорость охлаждения суспензий обычно 60—120°С/ч в регенеративных и до ШО С/ч и выше в аммиачных кристаллизаторах. Скорость охлаждения сырьевого раствора до температуры начала кристаллизации не оказывает никакого влияния на показатели процесса поэтому она может, поддерживаться на любом, сколь угодно высоком уровне. Особенно важное значение имеет скорость охлаждения суспензии на начальной стадии кристаллообразования. При высркой скорости [c.145]

    В качестве растворителей часто применяют этиловый спирт, ацетон, бензол, хлороформ, диоксан, уксусную кислоту, петролейный эфир, воду и др. Если данные о растворимости очищаемого кристаллизацией вещества отсутствуют, то растворитель подбирают опытным путем. Хорошо подобранный растворитель при температуре, близкой к точке кипения, должен растворять по крайней мере в пять раз больше вещества, чем при комнатной температуре. Иногда, когда очищаемое вещество хорошо растворяется в растворителе при нагревании, но плохо кристаллизуется из него при охлаждении, кристаллизацию проводят из смеси различных растворителей, умело подобрав их соотношение. В общем случае необходимо учитывать следующие требования к растворителям 1) растворитель должен хорошо растворять вещество при нагревании и плохо — при охлаждении 2) растворитель не должен химически взаимодействовать с очища емым веществом 3) растворитель желательно применять в минимальном количестве, т. е. он должен обладать хорошей растворимостью (иначе растворенное вещество не будет полностью выделяться при охлаждении). [c.29]

    Красный фосфор не вполне однородный продукт, его свойства несколько зависят от условий получения. По-видимому, красный фосфор состоит главным образом из очень мелких кристаллов фиолетового фосфора, который можно получить в чистом виде кристаллизацией раствора фосфора в расплааленном свинце. При нагревании до 423 С красный фос( р возгоняется, при охлаждении его пара образуется белый фосфор. [c.412]

    Для перекристаллизации в 50 жл воды растворяют при нагревании до кипения около 23 г буры. Горячий раствор фильтруют, собирая фильтрат в конический стакан. При охлаждении насыщенного горячего раствора из него выкристаллизовывается десятиводный гидрат Ма2В40,-ЮНгО. Для ускорения кристаллизации раствор непрерывно перемешивают стеклянной палочкой, В этих условиях бура выделяется из раствора в виде чрезвычайно мелких кристаллов. Наоборот, при медленном охлаждении получаются большие кристаллы, которые почти всегда содержат включения маточного раствора и непригодны для установки нормальности кислоты. [c.330]

    После определения кривых охлаждения чистых веществ и эвтектического состава аналогичным образом получить кривые охлаждения смесей, содержащих 25 и 75% МаЫОз с общей массой 10 г. После полной кристаллизации раствора сделать еще 3—4 отсчета. Показания гальванометра для чистых веществ и смесей свести в таблицу по форме  [c.68]

    Экспериментально температуры плавления чистого, вещества и температуры начала и окончания кристаллизации раствора несложно определить визуально, наблюдая за состоянием вещества и отмечая температуру изменения фазового состояния системы. Но можно поступить и по-другому. Начнем охлаждать чистую жидкость и через некоторые промежутки, времени (30 с, 1 мин) будем отмечать температуру вещества. После того как жидкость превратится в кристаллы, построим график зависимости температуры от времени и получим так называемую кривую охлаждения (при повышении температуры аналогичным образом строится кривая нагревания). Так построена кривая 1 на рис. 74. Наклонный участок А отвечает равномерному охлаждению чистой жидкости А. При температуре ее кристаллизации, равной температуре плавления Тп.чА,. вещество начинает кристаллизовываться, и за счет выделения теплоты температура в системе сохраняется постоянной (число, степеней свободы равно нулю), что на графике отображается площадкой Ат+Ак . Система остается двухфазной, пока вся жидкость не превратится в кристаллы, после чего начинается равномерное охлаждение кристаллов — участок Лк . Таким, образом, определив графически температуру площадки , находим температуру плавления или температуру замерзания чистого вещества. [c.152]

    Кривая охлаждения раствора (расплава) имеет несколько иной вид, который зависит от природы системы. Рассмотрим простейший случай, когда из бинарного раствора кристаллизуются чистые компоненты. Для охлаждения такого раствора характерна завясимость, представленная кривой 2 на рис. 2.32. Понижение температуры системы от а до А, как и при охлаждении чистого вещества, происходит примерно равномерно. Затем из раствора начинают выделяться кристаллы одного из веществ. Так как температура отвердевания раствора ниже, чем чистого растворителя, то выделение кристаллов произойдет при температуре ниже температуры отвердевания чистого вещества. При этом состав жидкости будет изменяться, в<У1едствие чего температура ее отвердевания непрерывно пониж<1ется (участок Ьс). Таким образом, кристаллизация жидкой смеси, в отличие [c.306]

    Поскольку растворимость КС1 изменяется с изменением t значительнее, чем растворимость Na l, эвтоническая линия бо — бюо (нижними индексами отмечены значения t в °С) наклонена к оси КС1, таким образом, охлаждение двояконасыщепного раствора, изображающееся в начальной стадии горизонталью (например, процесс бюо —Яз)> будет сопровождаться кристаллизацией [c.336]

    Линия тройных эвтоник пересекает диагонали квадрата, таким образом обе эвтоники конгруентны. При охлаждении любого раствора с фигуративной точкой, лежащей на этой диагонали, например Р (Ь) на рис. 149, вслед за кристаллизацией того компонента, в поле которого лежит исходная точка, происходит осаждение соседней соли. Так как обе соли кристаллизуются в том же соотношении, в каком находятся в растворе, процесс в этой точке заканчивается (точка 5). Таким образом, в 5 раствор полностью обезвоживается, хотя система и не является безвариантной (/ = 4 —4 + 2 = 2 и при t = СОПЗ /уел = 1)- [c.358]

    Опыт 1. Определение концентрации раствора. Раствор налить в сухую пробирку и поместить в стакан микрохолодильника. При появлении первых кристаллов в пробирку быстро перенести термометр Бекмана. Подогревая рукой пробирку, расплавить кристаллы, после чего снова поместить пробирку с термометром в микрохолодильпик. Процесс охлаждения раствора проводить при помешивании. Помешивание прекратить, когда температура будет на 0,2° ниже температуры кристаллизации растворителя. Раствор охладить без перемешивания на 0,2—0,3°. Снова начать перемешивание до установления температуры кристаллизации раствора. Температуру замерзания раствора определять не менее трех раз, добиваясь уменьшения разброса результатов измерения. [c.185]

    Известно, что сплавы системы Ре — С кристаллизуются либо по стабильной, либо по метастабильной диаграмме состояния. При малых скоростях охлаждения кристаллизация происходит по стабильной диаграмме — образуется эвтектика, состоящая из графита и аустенита (твердого раствора углерода в у-железе). При больших скоростях охлаждения, когда кристаллизация идет по метастабильной диаграмме, эвтектика состоит из аустенита и цементита РезС. [c.195]


Смотреть страницы где упоминается термин Охлаждение при кристаллизации растворов: [c.137]    [c.188]    [c.221]    [c.192]    [c.224]    [c.277]    [c.241]    [c.263]    [c.32]   
Основные процессы и аппараты Изд10 (2004) -- [ c.639 , c.640 ]




ПОИСК





Смотрите так же термины и статьи:

Растворов кристаллизации



© 2024 chem21.info Реклама на сайте