Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы для пищевой промышленност

    Олово применяется для оловянирования изделий, используемых в пищевой промышленности (стр. 388), при пайках (благодаря способности смачивать другие металлы), для изготовления мягких и легкоплавких сплавов и бронз, [c.299]

    В машиностроении, учитывая коррозионную устойчивость алюминия, из него изготовляют детали аппаратов и тару для азотной кислоты. Корпуса автобусов, троллейбусов, цельнометаллических вагонов делаются из алюминия и его сплавов. В пищевой промышленности из алюминия изготовляют упаковку, посуду. Для туриста лучший чайник алюминиевый, в нем быстрее закипает вода. [c.186]


    В основе многих технологических процессов получения металлов и их сплавов, пластмасс, химических волокон, удобрений, лекарственных препаратов, неорганических веществ, пищевых продуктов лежат законы физической химии. Такие распространенные в различных отраслях пищевой промышленности процессы как выпаривание, сепарация, дистилляция, сушка, экстрагирование, кристаллизация и растворение могут быть поняты и осуществлены на основе законов физической химии. Все биохимические процессы, лежащие в основе многих пищевых производств, также подчиняются законам физической химии. На методах физической химии основан и техно- [c.9]

    Олово и свинец — пластичные легкоплавкие металлы, имеющие широкое применение. Олово — химически пассивный металл и создает хорошие покрытия металлических поверхностей (лужение). Особенно широко олово применяется в пищевой промышленности, так как оно очень инертно к органическим веществам. Олово со свинцом образует легкоплавкую эвтектику — третник , являющуюся припоем при низкотемпературной пайке различных металлов. Олово входит в состав антифрикционных сплавов — баббиты , которыми заливают вкладыши подшипников скольжения. Большое количество олова идет на производство бронзы различных марок и назначений. [c.428]

    Эти сплавы нетоксичны и могут применяться в пищевой промышленности, онн стоики в с хом воздухе до 320 X, оксидах азота, сернистых соединениях, соляной м се Шой кислотах. [c.170]

    Транспортные конструкции и сооружения. Специфические условия эксплуатации транспортных конструкций требуют использования металлов с высокой прочностью и коррозионной устойчивостью. Широкое применение алюминиевых сплавов связано также и с увеличением объема перевозок продуктов химической, нефтехимической и пищевой промышленности, вызывающих ускоренную коррозию цистерн и узлов транспортных средств, находящихся под нагрузкой. [c.129]

    Титан и его сплавы применяются в машиностроении, химической и пищевой промышленности. Титан имеет температуру плавления 1725°С, удельную массу 4,5, большое эрозионное сопротивление и высокую прочность при переменных нагрузках. По коррозионной устойчивости титан превосходит в большинстве случаев высоколегированные кислотоустойчивые стали. [c.150]

    Прм Титан вдвое легче стали, а титановые сплавы в три раза прочнее алюминиевых, в 5 раз прочнее магниевых сплавов и превосходят некоторые специальные стали, в то время как их плотности значительно меньще, чем последних. Поэтому титан используется как основа сплавов с А1, V, Мо, Мп, Сг, Si, Fe, Sn, Zr, Nb, Та и др. для авиационной и ракетной техники, морского судостроения. Титан является конструкционным материалом для изготовления оборудования для химической, текстильной, бумажной, пищевой промышленности, а также художественных изделий, является геттером. Фазы внедрения на основе титана и циркония (бориды, карбиды, нитриды) являются основой жаропрочных материалов, применяемых для футеровки ответственных деталей узлов и механизмов, работающих в жестких условиях в агрессивных средах. Карбиды титана в сочетании с карбидами кобальта и вольфрама применяются для получения [c.121]


    Наибольшее распространение теплообменники пластинчатого типа получили в пищевой промышленности вследствие относительной простоты разборки и легкости очистки и дезинфекции теплообменных поверхностей. Пластины могут изготавливаться из нержавеющей стали, титана, никеля или других металлов или сплавов, необходимых для конкретных химически активных теплоносителей. В качестве материала прокладок между соседними пластинами используются силикон или фторуглерод, резины и асбест. Герметичность многочисленных соединений пластин в разборных пластинчатых аппаратах представляет известную проблему, поэтому здесь вероятно некоторое взаимное проникновение теплоносителей. В герметичных сварных пластинчатых аппаратах исчезает возможность осмотра и очистки теплообменных поверхностей. Впрочем, турбулизация потоков внутри волнистых щелевых каналов более чем в два раза замедляет отложение зафязнений по сравнению с ТА кожухотрубчатого типа. Пластинчатые ТА используются, как правило, для теплообмена между теплоносителями, не изменяющими своего фазового состояния (чаще — для капельных жидкостей), но в некоторых случаях они находят применение и в качестве конденсаторов или даже испарителей, например при выпаривании небольших количеств высоковязких растворов. Существует до 60 конфигураций пластин, изготовление которых не является легкой механической операцией, особенно для пластин крупных размеров. Поэтому пластинчатые ТА обычно имеют относительно скромные габариты или собираются из наборов пластин, размеры которых не превышают одного метра. Комбинированием пластинчатых ТА сравнительно просто организуются системы противотока теплоносителей или теплообмен между тремя или более теплоносителями (рис. 6.2.5.9). Расчеты пластинчатых ТА проводятся по корреляционным соотношениям, получаемым в соответствующих опытах [1, 50, 51]. Подробные данные о конструкциях существующих пластинчатых аппаратов приводятся в [43, 44]. [c.355]

    Применение. С. используют преимущественно в виде сплавов для изготовления ювелирных и бытовых изделий, лабораторной посуды. Серебрение радиодеталей увеличивает их электропроводимость и коррозионную стойкость С. контакты применяют в электротехнике С. припои служат для пайки титана и его сплавов. С. используют в вакуумной технике, при произ водстве С.-цинковых и С.-кадмиевых аккумуляторов, в качестве катализатора, в пищевой промышленности, для изготовления цветного фарфора, в медицине. Ионы С. в малых концентра циях стерилизуют воду. Галогениды и нитрат С. применяются для производства кино- и фотоматериалов. [c.82]

    Алюминий применяют для работающих при низкой температуре сосудов — газгольдеров (например, для хранения жидкого метана), для дистилляторов жидкого воздуха, для сосудов производства перекиси водорода, уксусной кислоты, азотной кислоты и для многих других аппаратов химической и пищевой промышленности. Чистый алюминий является весьма коррозионно-устойчивым металлом, превосходящим многие другие сплавы. Поэтому алюминий используют для работы в особо агрессивных коррозионных условиях, например в контакте с азотной кислотой. Вследствие невысокой прочности алюминий часто используют также для внутренней облицовки емкостей из углеродистой стали. Плакированные алюминием стали не находят промышленного применения, однако металлизированные и диффузионно насыщенные алюминием стали используют для реакторов в нефтеперегонной промышленности, где требуется высокая устойчивость в среде сернистых соединений. [c.246]

    Сплавы для пищевой промышленности [c.375]

    Церезин, ГОСТ 2488—73,— смесь твердых углеводородов, получаемых переработкой и очисткой озокерита, парафинистой пробки, неочищенного церезина. Употребляют для получения смазок, восковых сплавов, изоляционных материалов. В пищевой промышленности не применяют. [c.388]

    СПЛАВЫ ДЛЯ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ [c.431]

Таблица ХХП. 13. Характеристики сплавов для пищевой промышленности Таблица ХХП. 13. <a href="/info/72041">Характеристики сплавов</a> для пищевой промышленности
    Сплав СКФ-15 для покрытия сыров, ТУ 38 101404—73, изготовляют смешением нефтяного парафина для пищевой промышленности и церезина с бутилкаучуком, содержащим не более 0,1% неозона Д, и с маслом медицинским вазелиновым. Применяют сплав для покрытия сыров. [c.432]

    Характеристики сплавов для пищевой промышленности приведены в табл. ХХП. 13. [c.432]

    Первыми и основными отраслями промышленности, широко использующими титановые сплавы, которые стимулировали необычайно быстрый рост производства титана, были авиация и техника освоения космоса, заинтересованные в высокой удельной прочности металла. В настоящее время примерно половина продукции титана расходуется именно в этих областях техники. Однако уже сейчас намечается и в ближайшие годы разовьется преобладающее его применение в более земных сферах. Такие области использования титана, как химическая промышленность, морское судостроение, цветная металлургия, пищевая промышленность ставят на первое место уже коррозионную стойкость титановых сплавов, которая оказалась не менее примечательной, чем его высокая удельная прочность. [c.239]


    Металлические нити. Этот вид волокна диаметром до 25 мк из раз- личных сортов стали и других сплавов и металлов вырабатывают клас- I сическим методом -— волочением через алмазные фильеры. Вытяжку производят в несколько приемов до нужного диаметра. Стальную проволоку после этого закаливают при температуре 700—750°С. Для за- калки стали с малым содержанием углерода требуются более мягкие г условия, для чего нити протягивают через расплав свинца. Обычные углеродистые стали обладают высокой прочностью, но неустойчивы по отношению к воде и разбавленным кислотам. Для повышения корро- зионной стойкости стальную проволоку гальванизируют обычно цинком или оловом. Оцинкованную проволоку используют для изготовления сеток от насекомых. Сита и фильтры из покрытой оловом стальной про- волоки применяют в пищевой промышленности. Проволока из нержа-веющей стали широко используется в химической, пищевой промышленности и других областях (там, где необходимы высокая устойчи- вость к истиранию и коррозии), а из высокопрочных сортов стали — в качестве шинного корда. В 1970 г. для изготовления шин было из- г расходовано 2 тыс. т стального корда. Предполагают, что к 1975 г. его потребление увеличится до 20—45 тыс. т.  [c.392]

    Глубокое знание химии совершенно необходимо специалистам всех отраслей народного хозяйства. Так, в металлургии и машиностроении необходимы, в первую очередь, знания свойств металлов и сплавов, способов зашиты от коррозии. В электротехнической и радиотехнической промышленности кроме металлов широко используют полупроводники, керамику, органические изолирующие материалы. В основе производства цемента, стекла, керамики лежат химические превращения соединений кремния. В настоящее время текстильная промышленность использует не только природные, но и синтетические волокна, а также красители и многие другие химические препараты, облагораживающие ткани. Вся пищевая промышленность по существу основана на химической переработке растительного и животного органического сырья. Эти примеры можно было бы продолжить. [c.423]

    Чрезвычайно ценная особенность оловянных покрытий — полная безвредность для человеческого организма. Это обусловило широкое применение олова для покрытия внутренних поверхностей оборудования пищевой промышленности и кухонной посуды. Кроме того,покрытие оловом меди, медных сплавов и черных металлов имеет большое применение в машиностроении (защита стали от азотирования, улучшение приработки поршневых колец, вкладышей, защита от коррозии деталей, работающих в тропическом климате) и электротехнике. [c.142]

    Количественный анализ — совокупность экспериментальных методов, позволяющих определять в образце анализируемого материала количественное содержание (концентрацию) отдельных составных частей или примесей, выраженное в виде границ доверительного интервала или числа с указанием стандартного отклонения [6]. Количественный химический анализ (вместе с качественным) служит для установления химического состава анализируемого объекта. Количественным анализом пользуются не только при химических исследованиях и в химической промышленности, но и в различных отраслях народного хозяйства для исследования состава руд, минералов, почвы, металлов и их сплавов, пищевых продуктов и т.д. Количественный анализ устанавливает также соответствие состава разных материалов требованиям ГОСТа. Эти определения можно выполнять химическими, физическими и другими методами. [c.5]

    Титан благодаря высокой термостойкости, легкости, механической прочности, стал важным конструкционным материалом в авиационной технике. Стойкость против действия морской воды позволяет применять его в кораблестроении. В связи с жаростойкостью самого металла и его сплавов он применяется как конструкционный материал в газотурбинных установках. Вследствие стойкости к химическим реагентам его применяют в химическом машиностроении, а также в изготовлении котлов и резервуаров для пищевой промышленности. Используют титан как легирующий материал для сталей, в результате чего они становятся эластичнее и тверже. [c.245]

    Никель и его сплавы. Никель электроположительнее железа (V = —0,25 в). Заметно склонен к переходу в пассивное состояние. В сильно окислительных средах никель, а также era сплавы с хромом пассивируются и становятся стойкими. Никель стоек в щелочах всех концентраций и температур, в морской воде, природных водах и в ряде органических веществ, что особенно важно для пищевой промышленности. Устойчив в атмосфере в атмосфере, загрязненной сернистым газом, сильно-корродирует. [c.55]

    Печи сопротивления косвенного действия применяют во всех отраслях промышленности. К этому типу печей относятся также электродные соляные ванны, используемые для термической обработки инструмента. Электропечи сопротивления используют для плавки цветных металлов и сплавов, а также для различных видов термической обработки черных и цветных металлов, керамики и стекол, сушки изделий, нагрева заготовок под ковку и штамповку, для различных видов нагрева продуктов в пищевой-промышленности и т. д. Основными материалами для нагревателей электропечей косвенного действия с рабочей температурой до 1 260°С являются хромоникелевые и хромоалюминиевые сплавы. Для печей с рабочей температурой [c.37]

    Важными потребителями марганца и его соединений являются также электротехническая, химическая, пищевая промышленности, его применяют при изготовлении стекла и в других областях народного хозяйства, в частности для производства безжелезных сплавов с медью, никелем, магнием, титаном и другими металлами. Для производства этих сплавов ферро-.сплавы марганца непригодны, поэтому используют марганец в виде металла или его двойной лигатуры той или иной степени чистоты. [c.394]

    Применение фосфора и его соединений. Белый фосфор используется для получения красного фосфора и фосфорной кислоты. Красный фосфор — компонент и раскислитель некоторых металлических сплавов. Основной потребитель красного фосфора — спичечное производство. Оксид фосфора (+5) применяется для получения фосфорных кислот и как высокоэффективный осушитель газов и жидкостей. Фосфорную кислоту используют в пищевой промышленности для изготовления спиртов. Но главное применение фосфатов — производстао минеральных удобрений. Туковая промышленность является одной из самых крупнотоннажных. Промышленность минеральных удобрений перерабатывает труднорастворимые средние соли фосфорной кислоты, встречающиеся в природе, в легкорастворимые кислые соли. Так, основу суперфосфата составляет однозамещенный фосфат кальция, который получают обработкой фосфоритов серной кислотой  [c.281]

    К мягким припоям, обеспечивающим плотность соединений, относятся оловянносвинцовые сплавы с небольщой примесью сурьмы для придания им лучших механических свойств. Маркируются они тремя буквами — ПОС, что означает припой оловянносвинцовый. За буквами следует число, указывающее содержание олова в процентах. Например, припой ПОС 30 содержит 307о олова. Наиболь-щее распространение получили припой ПОС 30 и ПОС 40. Припой ПОС 90, как наиболее химически стойкий в органических кислотах, применяется при пайке и лужении теплообменных аппаратов пищевой промышленности. [c.57]

    Стекло представляет собой переохлажденный аморфный сплав смеси силикатов и окислов металлов, обладающий механическими свойствами твердых тел. В состав стекла входят различные окислы Si02, являющийся его основой, а также В2О3, AI2O3, КагО, К2О, СаО, ВаО, МпО, MgO, РегОз и др. Эти окислы содержатся в стекле в различных количествах и соотношениях, определяя его термическую устойчивость (устойчивость к резкому нагреванию и охлаждению), химическую устойчивость (способность в минимальной степени реагировать с помещенными в тару растворами), прозрачность и др. Химическая устойчивость тарного стекла для аптечных учреждений имеет важное значение в отличие от стекла, применяемого в пищевой промышленности. От того, насколько химически устойчива аптечная стеклянная тара, определяется химическая и зависящая от нее физическая устойчивость (сохранность) лекарств, помещенных в эту тару. [c.77]

    Титан и его спчавы обладают очень высокой коррозионной стойкостью в морской воде, влажной морской и промышленной атмосфере. В этих средах скорость коррозии титановых сплавов не превышает 0,0001 мм/год. Несмотря на то, что титан относится к наиболее термодинамически неустойчивым металлам, его высокая коррозионная стойкость обусловлена защитными свойствами образующихся гидридных и оксидных пленок. Титановые сплавы устойчивы в окислительных средах даже в присутствии больших количеств хлор-ионов в большинстве органических сред. Исключение составляют серная, соляная,. муравьиная, щавелевая, винная, лимонная, смесь ледяной уксусной кислоты с уксусным ангидридом. Технические титановые сплавы, легированные алюминием (до 6%), марганцем (1...2%), оловом широко используются в химическом машиностроении, пищевой промышленности. [c.158]

    Бромид Н. применяют в медицине и фотографии, Гексафтороалюминат Н. применяют при электролитическом получении алюминия в качестве электролита, растворяющего оксид алю миния, в производстве алюминиевых сплавов (флюс), стекла, эмалей и для других целей. Гидрокарбонат Н. употребляют в хлебопечении, пищевой промышленности, медицине, в пенных огнетушителях. Гидроксид Н. используется в производстве искусственных волокон, мыла, алюминия, красок, в целлюлозно-бумажной промышленности, для отделки тканей, очистки нефти. Иодид Н. применяют в медицине, а карбонат Н.— в производстве стекла, алюминия, мыла, гидроксида и гидрокарбоната Н., моющих средств, различных солей и красок, для обессеривания чугуна, очистки нефти, мойки шерсти, стирки белья и т. п. Нитрит Н. используют в производстве красителей, иода, в пищевой промышленности и медицине. Перборат Н. входит в состав синтетических моющих средств, а ортофосфат Н. сам служит в качестве моющего средства. [c.34]

    Оксид Б. применяется, как флюс при пайке как обезвоживающий агент в стекловарении из него выплавляют карбид тетрабора. Ортоборная кислота и тетраборат натрия применяются в стекольной и керамической промышленности для пропитки древесины в пищевой промышленности как консервирующее средство в медицине. Ортоборная кислота, кроме того, является сырьем для производства других соединений Б. Тетраборат натрия применяется также при пайке и сварке металлов в текстильной, мыловаренной, кожевенной, резиновой промышленности. Пентабораты калия и натрия, метабораты кальция, свинца и бария употребляют в производстве стекловолокна, глазури, эмали, резины, пластмасс в текстильной промышленности в производстве отбеливателей добавок к стиральным порошкам как добавки с целью снижения горючести материалов. Фторид Б. используют как высокоактивный катализатор в органическом синтезе в ядерной технике. Из сплавов боридов металлов с некоторыми переходными металлами изготовляют ответственные детали ими борируют сталь и другие металлы, что повышает их твердость, износоустойчивость и коррозионную стойкость их применяют как катализаторы и как полупроводники. Карбид тетрабора — абразив. Из нитрида Б, в а-мо- [c.191]

    ЖЕЛАТИНА ж. Продукт частичного гидролиза коллагена применяется в пищевой промышленности, медицине, микробиологии, производстве фотоматериалов. ЖЕЛАТИНИРОВАНИЕ с. см. ГЕЛЕОБРАЗОВАНИЕ. ЖЕЛЕЗО с. 1. Fe (Ferrum), химический элемент с порядковым номером 26, включающий 12 известных изотопов с массовыми числами 49, 52-62 (атомная масса природной смеси 55,847) и имеющий типичные степени окисления + И, -I- П1, -1- VI. 2. Fe, простое вещество, серебристо-серый металл применяется как основа главнейших конструкционных материалов (чугуна и стали), как компонент специальных сплавов, как катализатор и др. [c.141]

    В качестве углеводородных загустителей ПИНС могут быть использованы самые разнообразные восковые составы и сплавы— для пищевой промышленности (№ 36, СКФ-15), для флег-матизаторов (СФ-3 и др.), а также воски, используемые в шинной, резинотехнической и других отраслях промышленности ОМСК-1, ОМСК-7, ЦСМ-1, паразон 5Н, ЗВ-1 и др. Технология получения и химический состав твердых углеводородов защитных восков приведены в работах [98]. Показана перспективность получения твердых углеводородов и защитных композиций на их основе из остаточных продуктов переработки западно-сибирских нефтей. Из смесей масла, петролатума, церезина, парафина с добавкой полиизобутилена и окисленного церезина (присадка МНИ-7) вырабатывают защитные смазки ВТВ-1 и ВТВ-2, используемые для защиты от коррозии электроаппаратуры и электрооборудования автомобилей семейства Жигули . Церезин или воск Совцернн с полимерными добавками служат основой для защитных восковых составов изоляционного типа, наносимых из растворителей ПСС-5, ПСС-6, ПЭВ-74. [c.145]

    Прочность, эластичность, стойкость к износу позволяютлсполь-зовать полиамиды для производства тканей, искусственной кожи, ковров, кордных тканей. Полиамиды являются одним из важнейших конструкционных материалов для автомобильной и авиационной промышленности, машино- и приборостроения, так как сочетают в себе высокую механическую прочность и малую плотность, хорошие электроизоляционные и антифрикционные свойства, коррозионную и химическую стойкость. Из полиамидов изготавливают различные детали электроизоляционного назначения, медицинские инструменты, шестерни, лопасти судовых гребных винтов, вентиляторов, пленочные материалы, пропиточные составы, клеи, отвердители и пластификаторы эпоксидных смол. Детали из полиамидов выдерживают нагрузки, близкие к нагрузкам, допустимым для цветных металлов и их сплавов. Трущиеся детали из полиамидов могут работать без смазки или с небольшой смазкой, что очень важно для текстильной и пищевой промышленности. [c.123]

    НИЮ и потому стоек в воде, нейтральных и многих слабокислых средах, в атмосфере. Широко применяется в технике, особенно в самолетомоторостроении, в химической и пищевой промышленности, транспорте. Сплавы алюминия обладают меньшей коррозионной стойкостью, но имеют более высокую прочность по сравнению с алюминием. Коррозионное поведение алюминия обусловливается химическими свойствами пассивной пленки АЬОз, которой защищена поверхность алюминия. Пленка Л Оз растворяется в сильных неокисляющих кислотах и щелочах (см. рис. 17) с выделением водорода. Алюминий стоек в сильных окислителях и в окисляющих кислотах, например в азотной кислоте, в растворах бихроматов и т. п. Он — один из лучших материалов, применяемых для изготовления цистерн и хранилищ концентрированной азотной кислоты. Хлориды разрушают пленку АЬОз. В контакте с электроположительными металлами (медью, железом, кремнием и др.), а также при наличии в алюминии примесей этих металлов скорость коррозии возрастает. Сравнительно высокая стойкость против коррозии чистого алюминия обусловливается высоким пepeнaпpяжeниeJй водорода на нем. Вероятно поэтому в нейтральных растворах коррозия алюминия протекает с кислородной деполяризацией, а лри содержании в металле названных примесей с низким перенапряжением водорода доля водородной деполяризации возрастает. Следовательно, коррозионная стойкость алюминия сильно зависит от чистоты металла. Контакт с цинком, кадмием безвреден для алюминия, контакт с магнием и магниевыми плaвa ми опасен. Алюминий стоек против газовой коррозии, однако выше 300° С приобретает свойство ползучести. [c.56]


Смотреть страницы где упоминается термин Сплавы для пищевой промышленност: [c.2]    [c.414]    [c.74]    [c.88]    [c.113]    [c.117]    [c.5]   
Товарные нефтепродукты (1978) -- [ c.431 , c.432 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия алюминия и его сплавов в материалах и продуктах химической и пищевой промышленности



© 2025 chem21.info Реклама на сайте