Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель как катализатор при окислении олефинов

    Катализаторы. Для окислительного дегидрирования олефиновых углеводородов предложено большое число катализаторов. Каталитически активными Б реакциях окисления олефинов в диеновые углеводороды оказались катализаторы на основе окислов, фосфатов, вольфраматов и молибдатов индия, олова, сурьмы, висмута, теллура, селена, мышьяка, титана и других металлов, а также на основе ферритов никеля, кобальта, марганца, магния, кальция цинка и некоторых других металлов. [c.682]


    Ионы металлов с валентным состоянием выше единицы, например ионы железа, кобальта, никеля, меди и марганца, являются активными катализаторами автоокисления [27]. Уже давно известно влияние этих ионов на окисление сульфитов натрия, между тем исследования их влияния на окисление альдегидов и ненасыщенных соединений проведены позднее и им способствовали параллельные исследования редоксных катализаторов в реакциях полимеризации. Катализаторы добавлялись к этим органическим реагентам в виде солей органических кислот типа ацетатов, стеаратов и нафтенатов. Так, ацетат кобальта в уксусной кислоте катализирует окисление бензальдегида и олефинов [31], а стеараты кобальта, железа, меди и марганца — реакцию окисления жидких алканов [8, 9]. [c.457]

    Катализаторы гидрокрекинга и гидроочистки. Процесс гидроочистки применяется для улучшения качества нефтяных дистиллятов путем их обработки водородом в присутствии катализатора. При этом они освобождаются от соединений серы, азота и кислорода, происходит гидрогенизация олефинов. диолефиновых и ароматических углеводородов. Гидроочистке подвергаются бензин, лигроин, топливо для реактивных двигателей, керосин, мазут, дизельное топливо, смазочные масла, сланцевые масла, угольные смолы, продукты, полученные из горючих сланцев и т. д. [46]. Используются алюмо-кобальт-молибденовый, алюмо-никель-молнбденовый или алюмо-никель-вольфрамовый катализаторы. Перед применением в процессе катализаторы обычно насыщают серой. Процесс гидроочистки проводят при температуре 300—400 °С, давлении 3—4 МПа, объемной скорости подачи сырья 1—5 ч"- и циркуляции водорода до 10 моль на 1 моль углеводорода. Во избежание повышенного коксоотложения на катализаторе сырье, поступающее на гидроочистку, необходимо предохранять от окисления. Катализаторы очень устойчивы к отравлению. Потерявший активность катализатор содержит сульфиды металлов и углистые отложения. Регенерацию проводят при температуре 300—400 °С паровоздушной смесью с начальной концентрацией кислорода 0,5—1% (об.). [c.405]

    Для глубокого окисления органических соединений применимы все благородные металлы, но окись этилена из этилена и кислорода может быть получена только на серебряном катализаторе. С другой стороны, металлический никель катализирует реакции гидрирования, но не окисления, тогда как пятиокись ванадия хороший катализатор реакций окисления, но не реакций гидрирования. Эти катализаторы обладают групповой специфичностью. Примером универсальных катализаторов могут служить платина, катализирующая разнообразные реакции, в том числе гидрирования и окисления, и ионы водорода, катализирующие реакции гидролиза, изомеризации, алкилирования, гидратации олефинов и т. д. [c.162]


    В присутствии окиси хрома [413, 414 и хроматов магния [416—418, 420—421], меди [416—418, 420], железа [416, 417], никеля 416] ускоряются главным образом реакции полного окисления парафинов, цикланов, олефинов. Окись хрома, нанесенная на окись алюминия, катализирует окислительную конденсацию олефинов Сз—С4 и парафинов С4— j с SO2 в тиофен [119]. Индивидуальная окись хрома [442] слабо, а окись хрома в составе железо-хромовых окисных катализаторов [442—456], промотированных добавками щелочных и щелочноземельных металлов [457—459], более активно ведут процесс конверсии СО в СОг в присутствии водяных паров. [c.581]

    Контактные яды обнаруживают некоторую специфичность как в отношении различных катализаторов, так и в отношении катализируемых реакций. Так, одно и то же вещество может отравлять один катализатор и быть инертным по отношению к другому, а в отдельных случаях может даже активировать другой катализатор. Например, кислород является ядом для многих металлов, но активирует платину. То же самое можно сказать и в отношении различных реакций. Вещество, служащее ядом для одной реакции, не обнаруживает подобных свойств по отношению к другой реакции на том же катализаторе, а иногда даже может оказаться активатором. Так, висмут — сильный яд для железных контактов при реакции гидрирования — является одним из лучших активаторов железа при окислении аммиака. Никель, отравленный тиофе-ном, не гидрирует ароматические углеводороды, но сохраняет свою активность в гидрировании олефинов. [c.89]

    Обобщение экспериментальных данных и рассмотрение механизма реакции приводит к выводу о глубокой аналогии в механизме действия гомогенных и гетерогенных каталитических систем димеризации олефинов. Активные центры (комплексные гидриды переходного металла) могут образовываться при взаимодействии соединения никеля с алюминийорганическим соединением или олефином. В частности, в случае окиси никеля на алюмосиликате источником активных центров, по-видимому, может быть взаимодействие никеля в аномально низкой степени окисления с олефином. Катализатор может образоваться в местах дефектов кристаллической решетки NiO при отрыве атома кислорода (под действием олефина как восстановителя)  [c.99]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]

    Рассмотренные опытные данные по каталитическим свойствам веществ в отношении окисления органических соединений указывают на существование определенной взаимосвязи между типом катализируемой реакции и положением в таблице Менделеева элементов, входящих в состав соответствующих оптимальных катализаторов. Так, наиболее активные металлические и окисные катализаторы глубокого окисления различных веществ обычно содержат элементы УИ1 групп — платину, палладий, кобальт, никель, а также элемены соседних побочных подгрупп УИ и I групп (медь, марганец). Неполное окисление различных соединений в органические кислоты или их ангидриды, а также ароматических веществ и спиртов в карбонильные соединения лучше всего катализируют окисные контакты на основе ванадия и молибдена — переходных элементов У и У1 групп. Мягкое окисление олефинов эффективно ускоряется катализаторами, содержащими элементы побочной погруппы I группы (Си, А ), а окислительное дегидрирование — сложными окис- [c.212]


    В составе катализаторов Циглера—Натта соединения переходных элементов (обыкновенно используются галогениды, оксигалогениды, ацетилацетонаты, алкоголяты, ацетаты, бензоаты, комплексные галогениды и др.) восстанавливаются сокатализаторами (гидридами, алкилатами, арилатами, алкилгалогенидами, реактивом Гриньяра, цинком металлическим или металлами, расположенными в ряду напряжений выше цинка) до низшей степени окисления (титан, цирконий, гафний — до 3- и 2-валентных) или до металла (например, никель, кобальт, платина) в зависимости от соотношения и природы компонентов, чем и определяется характер полимеризации. Так, например, добавки к AIR3 платины, кобальта, никеля [420] в виде коллоидов или ацетилацетоната вызывают тримеризацию - -олефинов добавка три- или тетраалкилтитаната либо цирконата также дает димер или тример этилена [20, 21, 280], но в основном катализаторы с добавками соединений титана, циркония, тория, урана к AIR3 вызывают глубокую полимеризацию. Обычно это гетерогенные системы, твердый осадок в которых может быть частично (иногда и полностью) диспергирован до коллоида. Катализаторы Циглера—Натта, содержащие соединения титана, являются одними из лучших [c.411]

    ЮТ рост ДЛИННЫХ полимерных молекул, а какие, вероятно, препятствуют ему. Пытаясь получить высшие олефины реакцией олефинов с гидридом алюминия или с алюминийалкилами, Циглер [90] нашел, что молекулярные веса продуктов изменялись и в целом были ниже, чем следовало ожидать. Открытие [91] того, что этилен в присутствии солей никеля можно почти количественно димеризо-вать в бутен-1, привело к исследованию влияния соединений других переходных металлов. Было установлено, что соединения металлов IV, V и VI групп с триэтилалюминием и диэтилхлоралюминнем дают высокий выход полиэтилена. Позднее Натта [92, 93] показал, что эти катализаторы дают пространственно различаюшиеся полимеры пропилена и других олефинов. Натта [92] предположил, что соединение переходного металла следует рассматривать как катализатор, а металлалкил — как сокатализатор. Он показал, что активность связана с низшим состоянием окисления катализатора, хотя са.м металл часто ведет к димеризации, а не к полимеризации,что и наблюдалось в случае Ni. Кроме того, для пространственного регулирования строения полимера, вероятно, необходимо наличие границы раздела жидкость — твердое тело. О механизме этих замечательных реакций сейчас известно достаточно много для его объяснения предлагались свободнорадикальные, катионные и анионные цепи со стадиями роста, стерически регулируемыми поверхностью или индивидуальными комплексными ионами. Мягкие условия полимеризации указывают на ионный механизм, однако ни одну из приведенных схем нельзя рассматривать как полностью удовлетворительную. [c.436]

    Ацетилацетонат меди является хорощим катализатором при по-, лучении соответствующих альдегидов или кислот жидкофазным окислением толуола или этилбензола кислородом или воздухом. Скорость реакции периодически повыщают добавлением неорганического адсорбента, например окиси алюминия или кизельгура Нагреванием при 160—300° С и пониженном давлении 1 моль ацетилацетоната меди с 2 моль нитрила, содержащего группировку [ = С(СМ)2]2, получаются полимерные продукты. Так, например, был получен черный нерастворимый и неплавкий полимер (содержание меди 17%) мозаичной структуры, в котором атом меди координирован с макроциклическим азотсодержащим лигандом Ч Олефины можно полимеризовать при наличии смещанного катализатора из ацетилацетоната меди и триэтилалюминия или диэтилалюминийхлорида . Полиэтилен ударопрочный получается полимеризацией этилена при низком давлении (до 45 ат) в растворителе при 80— 180° С в присутствии ацетилацетонатов, например меди, никеля, кобальта, платины или иридия, и треххлористого титана . [c.287]

    Интерес представляют также растворимые катализаторы биметаллического типа, содержащие одновременно соединения молибдена и никеля [59]. Можно признать спорным утверждение авторов патента о необходимости применения двухкомпонентного катализатора для эпоксидирования таких легкоокисляющихся олефинов, как 2-метил-1-гексен и циклогексен. Однако пример окисления диаллилформаля — вещества, в этом отношении достаточно капризного,— более убедителен  [c.15]

    При этом роль кисло ты Льюиса состоит, по-видимому, в стабилизации аномально низкой степени окисления никеля, между О и 2, согласно предельным структурам H(R) Ni -Al l4 и H(R)NiGl Al lg, и, скорее всего, близка к 1, согласно структуре II. Это допущение объясняет исключительно высокую активность катализатора Циглера в превращениях олефинов при мягких условиях реакции. [c.195]

    Для получения эпоксидов циклических олефинов предлагается проводить окисление воздухом в среде уксусной кислоты с использованием в качестве катализаторов боратов металлов Ва, 5г, 2п, Ре, Си, Ма, Се, НЬ. Наиболее эффективен борат лития, в присутствии которого при 100°С за 15 ч достигается степень конверсии циклододецена 55% селективность образования эпоксида 79%, сложного эфира—11,5%. При использовании смешанного катализатора — боратов бария и никеля — степень конверсии составляет 84,7%, а селективность — 65,6> и 16,1% соответственно (пат. 4469880 США, 1984 г.). Применение в качестве катализаторов оксидов цинка или тербия в тех же условиях обеспечивает селективность по оксиду циклододе  [c.189]


Смотреть страницы где упоминается термин Никель как катализатор при окислении олефинов: [c.639]    [c.9]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.656 , c.669 ]




ПОИСК





Смотрите так же термины и статьи:

Никель катализатор

Окисление олефинов



© 2025 chem21.info Реклама на сайте