Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соли, ионизация

Рис. 15. Цикл Борна—Габера для расчета теплоты сольватации или растворения поваренной соли в воде ДЯ/ — теплота образования О — энергия диссоциации АЯсубл — теплота возгонки 1 — потенциал ионизации Ел — сродство к электрону ДЯсольв — теплота сольватации ДЯ=ДЯсольв—А//раст, Рис. 15. <a href="/info/2386">Цикл Борна—Габера</a> для <a href="/info/34236">расчета теплоты</a> сольватации или <a href="/info/706731">растворения поваренной соли</a> в воде ДЯ/ — <a href="/info/2775">теплота образования</a> О — <a href="/info/3619">энергия диссоциации</a> АЯсубл — <a href="/info/3539">теплота возгонки</a> 1 — <a href="/info/2632">потенциал ионизации</a> Ел — сродство к электрону ДЯсольв — <a href="/info/145468">теплота сольватации</a> ДЯ=ДЯсольв—А//раст,

    Поэтому при вычислении pH здесь исходят из уравнения константы ионизации соответствующей слабой кислоты. Для расчета кривой титрования необходимо вывести три формулы а) расчет [Н+] (pH) до титрования, т. е. в растворе слабой кислоты б) расчет [Н+] (pH) в процессе титрования, когда в растворе присутствует слабая кислота и ее соль и, наконец, в) расчет [Н+] (pH) в точке эквивалентности, когда в растворе находится только соль слабой кислоты и сильного основания. Прежде всего рассчитаем [Н+] и pH в растворе слабой кислоты НАп. Кислота ионизирует в растворе  [c.261]

    Интенсивность спектральной линии при постоянных условиях пропорциональна количеству введенных в пламя атомов элемента или концентрации соли металла в анализируемом растворе. Однако в реальных случаях эта зависимость может нарушаться вследствие протекания в пламени процессов самопоглощения, ионизации и образования термически устойчивых соединений. На рис. 1.13 представлена зависимость интенсивности спектральной линии от концентрации элемента в растворе. При средних содержаниях определяемого элемента в растворе эта зависимость линейна. Для больших содержаний сказывается влияние самопоглощения эмиссии атомов в плазме и в этом случае интенсивность излучения спектральной линии пропорциональна корню квадратному, из концентрации элемента в растворе. При очень низких концентрациях элемента и высокой температуре плазмы проявляется процесс ионизации его атомов и интенсивность излучения спектральной линии пропорциональна квадрату концентрации. В обоих случаях градуировочный график искривляется. Кроме процессов, указанных выше, на ход графика влияет ряд других факторов, поэтому определение элементов в методе фотометрии пламени проводят с использованием серии растворов сравнения. Они должны содержать все вещества, входящие в состав исследуемого раствора, и фотометрироваться в одинаковых с ним условиях. [c.37]

    Эти вычисления показывают, что приемлемый результат часто можно получить сравнительно простым способом, именно пренебрегая образованием молекул слабой кислоты. Рассмотренные вычисления иллюстрируют также значения величин констант ионизации слабых кислот, соли которых мы осаждаем. Чем они меньше, т. е. чем кислота слабее, тем больше значение pH нужно создать для достижения практически полного осаждения данных солей. С другой стороны, чем меньше ПР осадков, тем для их количественного выделения потре- [c.89]


    Диссоциация кислот, оснований и солей в воде. Молекулы кислот в воде диссоциируют на ионы водорода (гидроксония) и на анион. Б табл. 2.10 приведены значения констант ионизации некоторых электролитов в воде, в том числе- кислот. [c.252]

    В отсутствие соли ионизация доходит до образования в лимитирующей стадия сольватно-разделенной ионной пары (1= П— Ш), которая реагирует с нуклеофилами (ЕМ, Н2О) по мере образования. Скорость последней реакции настолько велика, что реакция внешнего возврата не имеет значения.. [c.315]

    Кроме величины произведения растворимости большое значение имеют также величины констант ионизации соответствующей слабой кислоты. Чем эти константы меньше, тем полнее связываются осаждающие ионы Н+-ионами и тем большую величину pH нужно создать, чтобы добиться практически полного осаждения соли. [c.86]

    Эти результаты, полученные с хлористым галлием и галоидными солями алюминия, указывают на легкое образование сравнительно стойких продуктов присоединения галоидных алкилов к катализатору Фриделя-Крафтса 1 1. Эти продукты присоединения, по-видимому, существуют первоначально в неионизированной форме и ионизируются только очень медленно, если вообще ионизируются. Отсюда следует, что реакция Фриделя—Крафтса с галоидалкилами, вероятно, включает образование этих продуктов присоединения, причем ионизация возможная, но отнюдь не необходимая вторая стадия (ЬХХУ)  [c.434]

    Ионы. Ионизация, катионы и анионы. Окисление и восстановление. Простые и комплексные ионы. Координационное число. Температуры плавления и кипения солей. [c.13]

    Коррозия большинства металлов в нейтральных растворах (в воде и водных растворах солей) протекает с кислородной деполяризацией и ее скорость сильно зависит от скорости протекания катодной реакции ионизации кислорода и подвода кислорода к корродирующей поверхности металла, в то время как влияние рн растворов в нейтральной области (pH 4- -10) незначительно или даже отсутствует (например, для железа, цинка, свинца и меди 13 интервале pH = 4- -]0 7- -10 б- - В 5- И соответственно). Последнее обусловлено тем, что труднорастворимые продукты коррозии каждого из этих металлов устанавливают определенное значение pH раствора у поверхности корродирующего металла и коррозия происходит практически при одном и том же значении pH. [c.343]

    Теория электролитической диссоциации не сразу получила признание. Одним из возражений, которые выдвигались против этой теории, было то, что теория не указывала сил, вызывающих диссоциацию электролитов на ионы в растворе. Энергетические затраты на ионизацию твердых солей довольно велики — энергия решетки ионных кристаллов часто измеряется сотнями кДж/моль. Теория электролитической диссоциации не объясняла, за счет чего могли быть покрыты эти затраты и процесс ионизации в растворе мог стать самопроизвольным. [c.431]

    Названные методы позволяют анализировать соединения в растворе. В методе электродинамической ионизации [208] образец растворяется в подходящем растворителе (например, глицерине) с добавлением электролита (солей металлов) и затем к поверхности раствора прикладывается сильное электрическое поле, под действием которого происходит выталкивание в газовую фазу ионов типа [М + металл] + или [М + металл- -глицерин] + и др. В методе бомбардировки быстрыми атомами [209] вещество, ра- [c.136]

    Хотя схемы, передающие механизм взаимод. с водой во мн. случаях неверны, взгляды Вернера дали нек-рый импульс для изучения роли воды в кислотно-основном взаимод. Из работ в этом направлении выделяются работы А, Ганча (1917-2Д создавшего т. наз. хим. теорию к-т. В этой теории к-ты определены как соед. водорода, в к-рых последний м. б. замещен на металл илн неметаллоподобный радикал. Важнейший признак к-т-способность давать соли. Ионизация к-т в р-ре происходит в результате их взаимод. с р-рителем. Теория содержит принципиально новое положение в р-рах кислотные св-ва проявляются не самой к-той, а сольватир. катионами водорода. В хим. теории к-т четко сформулировано понятие об амфотерности-способности нек-рьи соед. проявлять как кислотные, так и основные св-ва в зависимости от условий и природы реагентов, участвующих в кислотно-основном взаимодействии. [c.393]

    В хлороформном растворе происходит индуцируемая солями ионизация оптически активных хлорсиланов Кз51 С1, приводящая к образованию ионных пар в тех случаях, когда анионная компонента соли менее основна и менее нуклеофильна (по отношению к кремнию), чем —С1. При этом рацемизация протекает без видимого обмена атомов хлора. Однако механизм не способен конкурировать с 5л2-81-механизмом, если анионная компонента соли более основна и более нуклеофильна (по отношению к кремнию), чем —С1. [c.178]

    Гетерогенный катализ применяется главным образом при газофазном хлорировании. В качестве катализаторов используют активированный уголь, пемзу, отбеливающие земли и т. п., пропитанные металлическими солями, особенно медными. В соответствии с теорией Тэйлора их действие основано на способности их активных центров вызывать ионизацию хлора. Гетерогенное каталитическое хлорирование протекает по криптоионному механизму и нечувствительно к обрыву цепи, особенно если оп вызывается кислородом. Благодаря этой нечувствительности к кислороду становится возможной разработка такого процесса хлорирования, при котором хлор будет использоваться целиком именно потому, что процесс будет проходить в присутствии кислорода. При этом применяются такие контактные массы, которые делают возможным превращение образовавшегося хлористого водорода под воздействием кислорода в воду и хлор [,5]. [c.113]


    Применение органических осадителей требует создания определенных услови1[ и прежде всего надлежащей величины pH раствора. Причину этого понять нетрудно. Выше указывалось, что при образовании внутрикомплексных солей происходит замещение водорода кислотной группы реагента ионами металла при этом в раствор переходят ионы водорода, как это следует, например, из приведенного выше уравнения реакции между N1 + и диметилглиоксимом. Ясно, что положение равновесия должно зависеть от концентрации Н" , т. е. от величины pH раствора. Диметил-глиоксим (и другие подобные ему органические реагенты) ведет себя как слабая кислота. Поэтому к рассматриваемой реакции применимо все то, что говорилось ранее о значении величины pH при осаждении малорастворимых солей слабых кислот. И здесь, если известна величина ПР осадка и константа кислотной ионизации реагента, можно вычислить величину pH, при которой достигается полное осаждение. [c.125]

    Следует, однако, заметить, что титруя растворы солей в спирте (С2Н5ОН) или ацетоне (СН3СОСН3), в которых образующиеся при реакции кислоты ионизируют значительно слабее, чем в воде (т. е. имеют гораздо меньщие константы ионизации, чем в водных растворах), удается титровать и такие соли, как Ha OONa и т. п. В смеси, состоящей из 70% спирта или ацетона и 30% воды, можно титровать почти все соли органических кислот. [c.286]

    Перейдем теперь к выводу формулы для расчета [Н+] и pH а процессе титрования, т. е. для тех случаев, когда в растворе имеется кислота НАп и ее соль МеАп. Напишем выражение для константы ионизации  [c.262]

    Константа ионизации основания МеОН равна 1 10" . Pa twixarb и построить кривую титрования 0,1 н. раствора его соли МеС1 0,1 н. растворолГ ОН и сравнить полученную кривую с кривой титрования 0,1 н. раствора слабой кислоты НАп с константой ионизации I-10" . С какими индикаторами можно прово.тить эти титрования  [c.293]

    С другой стороны, поскольку соль МеАп диссоциирована пол- ностью, а кислота ионизирована очень слабо, почти все имеющиеся в 1астворе Ап"-анионы получены в результате ионизации соли, при-че л каждая молекула соли дает один анион Ап . Отсюда следует, чт) концентрацию анионов можно принять равной общей [c.262]

    Из тождества кривых титрования можно сделать следующий важный вывод титрование солей слабых кислот типа NaAn сильными кислотами возможно только при условии, если соответствующая слабая кислота НАп имеет достаточно малую константу ионизации (т. е. достаточно большой рК). Действительно, выше указывалось, что если р/(нАп = 9, т. е. /Снап = Ю , то соответствующую соль можно точно оттитровать, подобно основанию с р осн = 5. [c.285]

    Так, нельзя было бы оттитровать соли, подобные Ha OONa или H OONa, так как величины констант ионизации соответствующих кислот (уксусной, муравьиной) сравнительно велики (1,74 X X 10 - и 1,8-10" ). Наоборот, соли подобные K N (/ h n = 6,2X X 10 ° и р/( = 9,21), титровать сильными кислотами можно.  [c.285]

    Гораздо более общий случай реакций гидролиза, который соответствует промежуточному случаю уравнения (ХУГ1.4) при kz (X ) /сз(Н20), с трудом подвергается анализу из-за того, что с увеличением содержания соли в системе увеличивается тенденция к ионизации (т. е. к увеличению Кион ki/k2 благодаря увеличению ионной силы), которая компенсирует торможение. Из-за возникающей при этом неопределенности использовались другие способы для установления механизма реакции. Один из них состоит в изучении стереохимических изменений RX в ходе реакции, в то время как другой заключается в изучении параллельных реакций промежуточного иона R". [c.473]

    Электрохимическая коррозия — это взаимодействие металла с коррозионной средой (электролитом), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала. Электрохимическая коррозия протекает только при контакте поверхности металла с электролитом, т. е. с токопроводящей средой (водными растворами солей, кислот, щелочей). Практически поверхность любого металла в ат осфе-ре покрывается тонкой водной пленкой различной толщины в зависимости от температуры и влажности воздуха, а также от температуры металлической поверхности. В этой пленке растворяются содержащиеся в воздухе газы (диоксид углерода, оксиды азота и серы, сероводород и др.) и мелкие частицы (пыль) различных солей, что приводит к образованию электролита. [c.279]

    В качестве стандартного электрода, потенциал которого при любых температурах условно принимают равным нулю, служит натриевый электрод, находящийся в равновесии с хорошо проводящей расплавленной солью натрия, для которой допускается полная ионизация (например, Na l или NaBr). [c.173]

    Чем полнее протекает собственная ионизация растворителя, т. е. чем больше коистанта автопротолиза, тем в большей степени происходит сольволиз. Например, в водном растворе соли азотной кислоты не подвергаются гидролизу, в растворе же безволион уксусной кислоты идет интенсивный сольволиз  [c.280]

    Очевидно, что экзотермичностъ обеи.х стадий обусловлена тем, что иергня гидратации нонов железа превосходит энергию ионизации ато.мов железа, а энергия ионизации атомов меди превосходит энергию гидратации ионов ме.ти. Суммарное уравнение реакции взаимодействия. железа с раствором соли меди, очевидно, выглядит так  [c.200]

    Интервал перехода pH 2,4-дипитрофенола в аци-форму составляет 2,6—4,6, полоса поглощения аци-формы обусловлена электроннымп переходами с переносом заряда с электронодо-норного (—ОН) на электроноакцепторный (—NO2) заместитель. В щелочной среде происходит усиление поляризующего влияния электронодонорного заместителя, вследствие его ионизации, что приводит к углублению окраски. Образуется соль ацп-формы, окрашенная в интенсивно-желтый цвет  [c.72]

    Разделение кислоты на оптически активные изомеры сопряжено-с некоторыми трудностями [84], однако эту задачу удалось разрешить, применяя оксигидриндамин [85]. Активные формы очень легко рацемизируются, возможно, вследствие подвижности водорода, связанного с асимметрическим углеродным атомом. Причина этой подвижности заключается в ионизации водорода. Вследствие указанной оптической неустойчивости оказалось возможным полностью превратить /-соединение в /-соль /-оксигидрин-дамина, которая кристаллизуется из ацетона. Растворы различных солей каждой активной формы показывают явление мутаротации. [c.121]


Смотреть страницы где упоминается термин Соли, ионизация: [c.178]    [c.87]    [c.122]    [c.182]    [c.286]    [c.293]    [c.297]    [c.486]    [c.473]    [c.80]    [c.196]    [c.163]    [c.45]    [c.168]    [c.199]    [c.200]    [c.200]    [c.201]    [c.30]    [c.158]   
Органическая химия (1964) -- [ c.101 ]

Органическая химия (1964) -- [ c.101 ]




ПОИСК







© 2025 chem21.info Реклама на сайте