Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Берцелиуса химические

    Особое место в изучении химической кинетики занимает вопрос о влиянии на протекание процесса примесей, участие которых в последнем не учитывается стехиометрическим уравнением реакции. Такие примеси в 1835—1836 гг. были названы шведом И. Я. Берцелиусом (1779—1848) катализаторами он же ввел в науку термин катализ. Под последним подразумевалось ускоряющее действие на химические процессы присутствия в реагирующей системе тел, не принимающих видимого участия в реакциях Сущность каталитической силы состоит в том, что тело лишь одним своим присутствием. .. может возбуждать дремлющие химические сродства взаимодействующих веществ . Однако Берцелиусу не удалось отстоять представления о катализе и понятие о нем прочно вошло в химию лишь благодаря работам Оствальда, проведенным в 1894—1911 гг. Оствальд дал катализу подробное научное объяснение, основанное на законах термодинамики это объяснение не утратило своего значения и поныне. [c.169]


    СЕЛЕН (Selenum, греч. selene— Луна) Se — химический элемент VI группы 4-го периода периодической системы элементов Д. И. Менделеева, п. н. 34, ат. м. 78,96. С. был открыт в 1817 г. Я. Берцелиусом. С. встречается как примесь в сернистых рудах металлов (FeiSj, PbS и др.). При обжиге пирита С. накапливается в газоочистных камерах сернокислотных заводов. С. состоит из шести стабильных изотопов, известны 11 радиоактивных изотопов. В свободном состоянии с., подобно сере, образует несколько аллотропических модификаций аморфный С. и кристаллический С.— хрупкое вещество серого цвета с металлическим блеском. Серая кристаллическая форма С. светочувствительна, ее электропроводность увеличивается под действием света. Это свойство используют в фотоэлементах. С. является типичным полупроводником. На границе С.— металл образуется запорный слой, пропускающий электрический ток только в одном направлении. В соединениях С. проявляет степень окисления +4, +6 и =-2. [c.221]

    Дальтон использовал данные Гей-Люссака для доказательства того, что равные объемы газов не содержат равного числа молекул это было еще одной его ошибкой, подобно правилу простоты. Рассуждения Дальтона иллюстрируются при помощи рис. 6-6,я. По иному пути пошел итальянский физик Амедео Авогадро (1776-1856). Он исходил из предположения, что равные объемы любых газов (при одинаковых температуре и давлении) содержат равное число молекул. Как показывает рис. 6-6,6, это предположение требует, чтобы газы таких реагирующих между собой элементов, как водород, кислород, хлор и азот, состояли из двухатомных молекул, а не просто из изолированных атомов. Если бы идеи Авогадро, опубликованные им в 1811 г., сразу же получили признание, это избавило бы химию от полувекового периода путаницы. Однако для большинства ученых идеи Авогадро представлялись всего лишь шатким предположением (равное число молекул в равных объемах), основанным на еще более шатком допущении (о двухатомных молекулах). В те времена представления о химической связи почти всецело основывались на учете сил электрического притяжения или отталкивания, и ученые с трудом могли представить себе, чтобы между двумя одинаковыми атомами могло возникнуть какое-либо другое взаимодействие, кроме отталкивания. Но если они все же притягиваются друг к другу, почему же тогда не образуются более сложные молекулы, как, например, Н3 или Н4 Шведский химик Йенс Якоб Берцелиус (1779-1848) пытался использовать данные о парах серы и фосфора, чтобы опровергнуть идеи Авогадро. Однако Берцелиус не понимал, что в этих случаях он имел дело как раз с примерами еще более сложных агрегатов (8 и Р4). Сам Авогадро не мог помочь делу он пользовался настолько путаной терминологией, что иногда казалось, будто он говорит о расщеплении атомов водорода (атомы он называл простыми молекулами ), а не [c.285]


    В первой половине XIX века атомистические представления получают в химии широкое распространение главным образом благодаря работам Дальтона, Гей-Люссака, Авогадро. В то же время в результате исследований Дэви, Фарадея, Берцелиуса и др. было открыто значение электрических сил в образовании химических соединений. Позднее были найдены количественные законы электролиза—законы Фарадея (1830). [c.15]

    Представления Берцелиуса и Кекуле в дальнейшем привели к более глубоким знаниям и, наконец, к разработке подробной физической теории, объясняющей сущность химических связей. Вначале Фарадей открыл зависимость между химическими и электрическими явлениями, которая была использована Аррениусом в созданной им ионной теории. Это позволило рядом с кекулевской теорией построить электрохимическую теорию, так что создалась система, основанная на представлениях [c.23]

    С атомной теорией был связан такой важнейший шаг в развитии химии, как введение химических знаков элементов. Созданная Берцелиусом химическая символика позволяла составлять эмпирические и рациональные формулы химических соединений и химические уравнения. Так возникли предпосылки для изучения строения химических соединений, выяснения порядка расположения атомов в молекуле и распределения в ней химических связей. Исследования в этом направлении и привели к созданию теории химического строения и стереохимии. [c.68]

    Развитие Берцелиусом химической атомистики 117 [c.117]

    РАЗВИТИЕ БЕРЦЕЛИУСОМ ХИМИЧЕСКОЙ АТОМИСТИКИ [c.117]

    Однако продукт реакции ими не был проанализирован. Лишь в 1823 г. Берцелиус установил, что в результате реакции между кремнефторидом калия и металлическим калием образуется новый химический элемент  [c.5]

    Клемент Александер Винклер (1838—1904) — сын химика Курта Винклера, одного из учеников Берцелиуса. Химическую подготовку К. Винклер получил в лаборатории, организованной его отцом но образцу лаборатории Берцелиуса. Здесь, еще в годы обучения в гимназии, реальной школе и техникуме, молодой Винклер приобрел хорошие [c.394]

    Оствальд был среди тех европейских ученых, которые открыли и оценили работы Гиббса. В 1892 г. он перевел статьи Гиббса по термодинамике на немецкий язык. Оствальд почти сразу же начал применять теории Гиббса при изучении катализа. Катализ (термин, предложенный Берцелиусом в 1835 г.) — изменение скорости химической реакции в присутствии небольших количеств веществ (катализаторов), которые не принимают видимого участия в реакции. Так, в 1816 г, Дэви установил, что порошкообразная платина [c.114]

    Из всего изложенного можно заключить, что к началу XIX в. в науке о веществе сформировались понятия об атоме и химическом элементе, близкие к истинным. Конечно, с учетом метаморфозы, произошедшей с переносом термина "атом" на другую частицу. Химия накопила значительные знания о свойствах химических элементов, число открытых элементов достигло трех десятков, ученые научились определять атомные веса. Так постепенно созревали условия для приведения всех химических элементов в систему. Введенные Берцелиусом в 1813 г. символы для обозначения химических элементов (которые используются до сих пор) облегчали задачу систематизации. [c.27]

    ПОД влиянием этой силы. В своем учебнике по химии, выпущенном в 1843 г., И. Берцелиус дает следующее определение катализа ...известные вещества, приходя в соприкосновение с другими, оказывают на эти последние такое действие, что возникает химическая реакция—разрушаются одни соединения и возникают другие, причем, однако, само вещество, присутствие которого вызывает эти явления, не принимает ни малейшего участия в этом процессе. Причину, вызывающую указанные явления, мы называем каталитической силой . [c.17]

    В то время как Дальтон считал, что химические силы можно изучить только путем исследования химических свойств, Берцелиус развил представления Деви о том, что в основе этих сил лежит кулонов-ское притяжение между различно заряженными частицами, образующими молекулу. Эта электрохимическая теория, возникшая на основе дуалистических представлений о чередовании положительно и отрицательно заряженных атомов и их взаимодействии, получила довольно широкое распространение, особенно в интерпретации реакций электролитов. Однако она оказалась ые в состоянии объяснить явления замещения в органических молекулах, так как отождествление химической связи с электростатическими силами взаимодействия дв.ух точечных зарядов привело к серьезным противоречиям. [c.23]

    Заслуга Бутлерова состоит и в том, что он очень продуманно определил понятие химического строения. Исследователи до него, в том числе Берцелиус и Жерар, понимали иод строением или конституцией истинную геометрию молекулы, т. е. пространственное расположение в ней атомов. Решение этой задачи для химиков XIX века было непосильным делом, порождало бесплодные спекуляции. Бутлеров прекрасно понимал трудности, стоящие на пути установления физического строения молекулы (с межатомными расстояниями, валентными углами) и, опираясь на факт существования изомеров, выдвинул более определенную и реальную задачу обнаруживать химическими методами порядок взаимодействия атомов. Такой порядок должен был существовать и быть устойчивым, в противном случае мы не наблюдали бы явления изомерии. Этот устойчивый порядок взаимодействия атомов в молекуле Бутлеров и назвал химическим строением. [c.10]


    Стереохимия — учение о геометрических свойствах молекул она изучает пространственное расположение атомов и молекул и его изменение в ходе химической реакции. Современная стереохимия исследует то, что во времена Берцелиуса и Жерара называлось физической конституцией тел. Определение физической конституции было для химии прошлого века неразрешимой проблемой, и Бутлеров справедливо и закономерно выдвинул вместо нее задачу установления химического строения. И лишь тогда, когда эта задача была решена, открылся путь к пониманию пространственной конфигурации молекулы. [c.95]

    Во-первых, химики уже в самом начале XIX в. пришли к выводу о недостаточности только понятия о составе, чтобы объяснить происхождение свойств химических соединении и, в частности, явлений изомерии и полимерии, которые обусловливают богатейшее качественное разнообразие веществ. Поэтому уже Дальтон, Берцелиус, Дюма и другие химики ввели представления об атомном строении частиц химических соединений, или о конституции тел. Совершенно неважно, какими терминами они при этом пользовались. Важно, что они ввели новый фактор и, следовательно, новое понятие помимо фактора состава, в объяснение генезиса свойств. [c.74]

    Практически все хорошо исследованные вещества того времени были веществами неорганическими и относительно простыми по составу. Для каждого из этих соединений Берцелиусом было предложено название на основе представления о том, что вещество состоит из электроположительной и электроотрицательной частей такие названия, состоящие из двух слов, до сих пор используются в неорганической номенклатуре. (Берцелиус также первым предложит буквенные символы для обозначения химических элементов, эти символы почти без изменений применяются и в наши дни). Однако успех идеи Берцелиуса и предложенной им системы названий задерл<ал развитие идеи заместительной номенклатуры органических соединений, которые не могли быть описаны в рамках его концепции. [c.16]

    Второй вопрос касается отхода Менделеева от идеи сложности и превращаемости элементов, к которой он если не склонялся полностью, то во всяком случае относился сочувственно на предыдущем этапе разработки периодического закона. Теперь в его работах все сильнее проявляется отрицательное отношение к этой идее, вылившееся в 1886 г. в специальное выступление по этому поводу (доб. If) особенно же настойчиво Менделеев начинает проявлять свое отрицательное отношение к этой идее после появления теории электролитической диссоциации (1887 г.), которая связывала в духе прежней электрохимической теории Берцелиуса химические явления с электрическими, видя причину химизма в действии электрически заряженных частиц — ионов (см. № 80, доб. 2t). Менделеев в это ше время (1887 г.) выступил с противополошной теорией — с гидратной (или химической) теорией растворов, в которой защищал и обосновывал свой исходный взгляд на связь химизма не с электрическими свойствами частиц, а с их механикой (доб. 31 и 41 и связанные С ними рефераты из доб. It). Очевидно, что в СВЯЗИ с этим, отстаивая свою общую химико-механическую концепцию, Менделеев стал выступать и против идеи сложности и превращаемости элементов, поскольку в представлении тогдашних физико-химиков эта идея связывалась с химико-электрической концепцией. [c.676]

    Поворотный этап в истории развития химической атомистики связан с именем шведского химика Иёнса Якоба Берцелиуса. Он вслед за Дальтоном внес особенно большой вклад в создание атомистической теории. Примерно о 1807 г. Берцелиус вплотную занялся определением точного элементного состава различных соединений. Проведя не одну сотню анализов, он представил столько доказательств, подтверждавших закон постоянства состава, что химики были вынуждены признать справедливость этого закона, а следовательно, и принять атомистическую теорию, которая непосредственно вытекала из закона постоянства состава. [c.61]

    В шестидесятых годах XIX в. бельгийский химик Жан Сервэ Стас (1813—1891) определил атомные веса точнее, чем Берцелиус. В начале XX в. американский химик Теодор Уильям Ричардс (1868—1928), приняв все меры предосторожности (во многом надуманные), определил величины атомных весов с такой точностью, которая только возможна при использовании чисто химических методов. Исследования Стаса и Ричардса ответили на те вопросы, которые в работах Берцелиуса оставались нерешенными. [c.62]

    Катализ (этот термин впервые был предложен шведским химиком Берцелиусом в 1855 г.) является исключительЕЮ эффективным методом осуществления в промышленности химических превращений. Б настоящее время до 90 % всей химической продукции мира изготавливается каталитическим путем. От развития катализа в значительной степени зависит технический прогресс химической, нефтехимической, нофтеперерабатываюы ей и других отраслей промышленности. [c.79]

    Последнее утверждение, высказанное итальянским ученым А. Авогадро в 1811 г., вошло в химию под именем закона Авогадро. Однако в начале XIX в. эти воззрения не получили должного признания даже крупные химики того времени Д. Дальтон и И. Берцелиус отрицали возможность существования молекул, состоящих из нескольких одинаковых атомов. Прошло еще полвека, прежде чем на I Мен-сдународном съезде химиков, состоявшемся в Карлсруэ (Германия) в сентябре 1860 г., были окончательно приняты основные химические представления (понятия об атомах и молекулах), зародившиеся в виде философского учения в Древней Греции (Левкипп, Демокрит, Эпикур), впервые развитые в виде научной концепции Д. Дальтоном, подтвержденные опытами Ж. Пруста, Ж. Г е й-Л ю с с а к а и окончательно сформулированные в трудах А. Авогадро и его ученика С. Канниццаро. [c.16]

    Слово катализ, вероятно, было впервые введено химиком XVI в. А. Либавиусом в его учебнике Алхимия . Оно произошло от греческого слова /.ата/.из и обозначало разложение или разрушение. В начале XIX в. этот термин был узаконен И. Берцелиусом для реакций, протекаюш,их в присутствии посторонних соединений, которые сами как будто в реакции не участвуют. По современным представлениям каталитическими называют такие реакции, протеканию которых способствуют специфические веш,ества—катализаторы, оказывающие существенное влияние на направление и скорость химических реакций. [c.12]

    Современные символы химических элементов были введены в 1813 г. Берцелиусом. Элементы обозначаются начальными буквами их латинских названий. Например, кислород (Oxygenium) обозначается буквой О, сера (Sulfur) — буквой [c.27]

    В 1833 г. появилась адсорбционная теория Фарадея, созданная нм на основании его наблюдений над свойствами платины и сопоставления работ других исследователей. М. Фарадей установил, что платина в любой форме способна соединять водород с кислородом, при условии совершенной чистоты поверхности. Он считал, что в основе каталитических реакций лежат не электрические силы и не таинственная vis o ulta Берцелиуса, а природные свойства газовой упругости, связанные с проявлением сил притяжения, которыми обладают твердые вещества. Если поверхность чиста, т. е. нет загрязнений, уничтожающих силы притяжения, то газы на ней сгущаются. При этом часть молекул реагентов настолько сближается друг с другом, что возбуждается химическое сродство, уничтожаются эластические силы отталкивания и облегчается реакция. Полученные продукты реакции затем испаряются, освобождая поверхность, и процесс повторяется с другими молекулами. [c.91]

    Идею о существовании остова в строении сложного вещества интересно сопоставить с общим представлением о химическом строении вещества, особенно о существовании радикалов. Предположение о существовании радикалов —особо устойчивых групп, входящих в строение молекул, — впервые высказал Лавуазье (1789 г.). Эта гипотеза была экспериментально обоснована Велером и Либихом (1832 г.), доказавшими существование радикалов в строении ряда органических молекул. Возникшая на почве, подготовленной дуалистической теорией Берцелиуса, теория радикалов была развита А. М. Бутлеровым (1861 г.) и включена в общую теорию химического строения. Синтезировав трифенилметил, М. Гамберг (1900 г.) реализовал предсказание теории о существовании свободных радикалов, выделение которых сегодня уже не вызывает сенсацию. Представление о радикалах прямо приводит к остовной гипотезе, которая предполагает существование в структуре твердых веществ макрорадикалов. [c.169]

    Первой такой теорией была теория радикалов (Берцелиус, Либих, Вёлер, Гей-Люссак). В ее основу было положено то, что при многих химических реакциях группа из нескольких атомов — орга-1iU4e Kuu радикал, входящий в состав органического соединения, может переходить без изменения из одной молекулы (исходное вещество) в другую (продукт реакции). Поскольку Берцелиус рассматривал органические вещества как системы, состоящие из двух частей — противоположно заряженных радикалов, связанных с помощью электростатического взаимодействия, теория радикалов известна еще и как дуалистическая теория (от лат. duos — два). Однако сторонники этой теории рассматривали радикал как абсолютно устойчивую и неизменяемую часть молекулы. В этом и была [c.8]

    Одним из наиболее выдающихся химиков-аналитиков первой половины XIX в. был шведский ученый И. Я. Берцелиус. Он проанализировал большинство известных в то время химических соединений и определил соединительные веса всех известных тогда химических элементов. Следует отметить высокую точность этих определений, многие из которых, вьшол-иенные в 1818 г., весьма близки к современным. Так, для углерода Берцелиус нашел атомный вес 12,12, для кислорода 16,0 (приатомном весе водорода, равном 1), для серы — 32,3. Некоторые атомные веса были опре-дтлены менее точно и, кроме того, были кратными величинами истинных атомных весов так, для железа Берцелиус принял атомный вес 109,1, так как окислам железа в то время приписывали состав РеОг и РеОз. Берцелиус ввел современные знаки химических элементов, открыл ряд новых элементов (церий, селен, торий). [c.11]

    СИМВОЛЫ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ — сокращенное название химических элементов. Чаще всего берут начальную букву литинского названия элемента и, в случае необходимости (если есть одинаковые названия) добавляют следующую, например, К — kalium — калий, Си — uprum — медь, Са — al ium — кальций. Система химических элементов предложена в 1811 г. выдающимся шведским химиком Я. Берцелиусом. [c.228]

    ЦЕРИЙ ( erium, от названия астероида Церис) Се — химический элемент П1 группы 6-го периода периодической системы элементов Д. И. Менделеева, относится к лантаноидам, п. н. 58, ат. м. 140,12. Природный Ц. состоит из 3 стабильных изотопов, известны около 15 радиоактивных изотопов. Открыт Ц. в 1803 г. Берцелиусом и Хизингером и независимо от них Клапротом. Основным сырьем для получения Ц. является минерал монацит. Ц.— мягкий металл серого цвета, т. пл. 804 С. Химически активен. В соединениях проявляет степень окисления +3 и +4, чем и отличается от других редкоземельных элементов. Ц. применяют в производстве высокоплас-тичных и термостойких сплавов, для изготовления стекла, не темнеющего под действием радиоактивного излучения, для дуговых электродов, кремней зажигалок и др. Соли Ц. (IV) — сильные окислители, используются в аналитической химии для определения различных восстановителей. [c.283]

    Естественно, что и до этого времени был получен целый ряд выдающихся результатов, на базе которых развивались те или иные разделы физической химии. Можно перечислить некоторые из них открытие адсорбции газов (К. Шееле — в Швеции, 1773 г., Ф. Фонтана — во Франции, 1777 г.), адсорбции из растворов (Т. Е. Ловиц — в России, 1785 г.) открытие каталитических реакций и установление представлений о катализе (Г. Дэви и Л. Тенар — в Англии, И. Берцелиус — в Швеции, начало XIX в.) открытие гальванических элементов и исследование переноса тока в электролитах, открытие электролиза (Л. Гальвани, А. Вольта — в Италии, В. В. Петров, К. Грот-гус — в России, Г. Дэви, М. Фарадей — в Англии, конец XVIII в. — начало XIX в.) исследование теплоты химических реакций (А. Лавуазье, П. Лаплас — во Франции, 1779—1784 гг., Г. Гесс — в России, 1836—1840 гг.) открытие первого и второго законов термодинамики (С. Карно — во Франции, Р. Майер, Г. Гельмгольц, Р. Клаузиус — в Германии, Дж. Джоуль, В. Томсон— в Англии, середина XIX в.) и последующее развитие тер-модинамического учения о химическом равновесии (К. Гуль-берг и П. Вааге —в Норвегии, Гиббс —в США). [c.7]

    Восприятие нового материала не может быть успешным, если учащиеся к нему не подготовлены. Подвести учащихся к пониманию новой темы, пробудить их любознательность и интерес можно с помощью учебного фильма. Рассмотрим это на примере использования фильма Химическая теория строения А. М. Бутлерова , который начинается с документального кинорассказа о борьбе в науке между сторонниками теории радикалов Берцелиуса и теории типов. Фильм вводит учащихся в обстановку Казанского университета середины прошлого века. [c.113]

    В эпоху доструктурных представлений химические реакции классифицировались, оценивались лишь по конечным продуктам, а не по внутренним механизмам. Берцелиус выделил два основных процесса химии соединение и разложение. Жерар на материале органической химии пришел к выводу о том, что эти внешне противоположные процессы следует объединить он стремился свести всякий процесс к реакции двойного обмена, как например при замене водорода на хлор в уксусной кислоте  [c.156]

    Ее сменила электрохимическая теория шведского ученого Берцелиуса (1810 г.). Согласно этой теории атом каждого элемента имеет два полюса — положительный и отрицательный, причем у одних атомов преобладает первый, у других второй. Соединение электроположительного магния с электроотрицательным кислородом с точки зрения теории Берцелиуса объяснялось притяжением преобладающих в них полюсов, имеющих противоположные знаки. Если просходит частичная компенсация зарядов, то продукт реакции не утратит их полностью. Этим объясняли образование сложных молекул (например, карбоната магния в результате соединения положительного MgO с отрицательным СОг). Теория Берцелиуса явилась развитием идей Дэви (1806 г.) о том, что химическая связь возникает благодаря взаимному притяжению разноименно заряженных тел. Электрохимическая теория, на первый взгляд, представляется правдоподобной и как будто подтверждается процессом электролиза электролиз как бы возвращает атомам полярность, утраченную ими при образовании соединения. Но при таком подходе, — писал по поводу теории Берцелиуса Гегель, — встречающиеся в химическом процессе изменения удельной тяжести, сцепления, фигуры, цвета и т.д., как равно кислотных, едких, щелочных и т. д. свойств, оставляются без внимания, и все исчезает в абстракции электричества. Пусть же перестанут упрекать философию в абстрагировании от частного и в пустых отвлеченностях , раз физики позволяют себе забыть о всех перечисленных свойствах телесности ради положительного и отрицательного электричества . Действительно, вскоре электрохимическая теория исчезла из научного обихода, ибо и существование прочных молекул, состоящих из атомов одинаковой полярности (например, Нг, и С1а), и осуществление (Дюма, 1834 г.) процессов, в которых разнополярные по теории Берцелиуса элементы заменяли друг друга в соединениях, оказались в непримиримом о ней противоречии. [c.103]


Смотреть страницы где упоминается термин Берцелиуса химические: [c.199]    [c.304]    [c.14]    [c.115]    [c.450]    [c.176]    [c.116]    [c.252]    [c.284]    [c.28]   
Современная общая химия Том 3 (1975) -- [ c.19 , c.22 ]

Современная общая химия (1975) -- [ c.19 , c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Берцелиус

Берцелиус и развитие химической атомистики

Первая таблица атомных весов элементов и первые формулы химических соединений . Работы Берцелиуса по установлению точных атомных весов элементов . Химические знаки и уравнения

Роль Берцелиуса в развитии химической атомистики

Система химических формул Берцелиуса

Химические пропорции Берцелиуса



© 2025 chem21.info Реклама на сайте