Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Часть электроотрицательная

    XIX в.). Согласно эюй теории, признаком органических веществ являются группы атомов—радикалы (бензил, ацетил, метил и др.), способные в неизменном виде переходить от одного вещества к другому. В рамках теории радикалов Я. Берцелиус развил дуалистические представления о том, что каждое соединение состоит из двух частей электроотрицательной — кислорода и электроположительной, представляющей собой органический радикал. [c.8]


    Полярность связи и концепция электроотрицательности. Степень полярности связи наиболее непосредственно характеризуется дипольным моментом, часто для этого используется также концепция электроотрицательности. Полинг назвал электроотрицательностью атома (ЭО) способность его в молекуле притягивать на себя электрон. Полярность молекулы определяется разностью электроотрицательностей атомов (ДЭО), чем она выше, тем полярнее связь, ЭО атома тем выше, чем выше его ПИ (способность удержать свой электрон) и чем выше СЭ (способность притягивать электрон соседнего атома). Поэтому мерой электроотрицательности может служить сумма ПИ и СЭ. Приняв за условную единицу ЭО атома Ь , получим шкалу ЭО атомов  [c.92]

    Я. Берцелиус в созданной им теории радикалов утверждал, что каждое органическое вещество состоит из двух составных частей, несущих противоположный электрический заряд. Одной из этих составных частей, а именно частью электроотрицательной, Я- Берцелиус считал кислород остальная же часть, собственно органическая, должна была, по мнению Я- Берцелиуса, составлять электроположительный радикал. Радикалы рассматривались как подлинные элементы органической химии. Отсюда вытекало и то определение, которое дал в 1843 г. Я. Берцелиус Органическая химия — это химия сложных радикалов . [c.8]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    Поэтому естественными являются попытки защитить никель о взаимодействия с водой путем применения протекторов. Магний-наиболее часто применяемый в настоящее время материал дл электрохимической защиты [58, т. I, с. 541, 552, 789]. Он обладае высоким электроотрицательным потенциалом  [c.124]

    Предположения сводятся к тому, что экстрагент — донор электронов — тем эффективнее, чем выше электронная плотность на функциональном атоме и чем слабее этот атом связан с остальной частью молекулы, ибо тогда выше его способность образовывать координационную связь. Например, в настоящее время принято, что экстракционная способность фос-форорганических экстрагентов определяется донорными свойствами группы Р=0, т. е. электронной плотностью на атоме кислорода [63]. Установлено наличие корреляции экстракционной способности с полярностью связи Р=0 для ряда фосфорорганических соединений [64], а также с электроотрицательностью групп-заместителей, входящих в состав фосфорорганических соединений, аминов и органических кислот [60, 61]. Ответственной за экстракционную способность, считается энергия связи Р=0, которая определяет длину связи, следовательно, и электронную плотность на атоме кислорода, частоту колебаний Р=0 связи в ИК-спектре и полярность [c.16]

    Большую роль в развитии химии в этот период сыграл шведский ученый Я. Берцелиус. В 1800 г. он провел известные работы по разложению солей электрическим током и развил представления об электрической природе химического сродства, так называемую теорию электрического дуализма . Суть этой теории сводилась к утверждению, что каждое вещество состоит из двух частей — электроотрицательной (это чаще всего кислород) и электроположительной (металлы, водород). Во втором десятилетии XIX в. Я. Берцелиус приложил свою руку химика к атомистической теории физика Д. Дальтона определив около 20 химических эквивалентов, он придал конкретность общим представлениям Д. Дальтона. [c.4]

    Эту последовательность, основанную на шкале электроотрицательности и на химической практике часто называют условным (или практическим) рядом неметаллов. — Прим. ред. [c.28]

    Электроотрицательность элементов и диполи. Для понимания реакционной способности органических соединений и установления механизмов реакций огромное значение имеет понятие электроотрицательности элементов. Этим термином Полинг определял способность атома притягивать электроны. Наиболее часто электроотрицательность элементов находится на основании сравнения с таковой атома водорода. [c.32]

    Электромерный эффект Еа часто превалирует над динамическим индукционным эффектом /d и определяет поляризуемость молекулы. Чем больше электроотрицательность атома, чем сильнее его сродство к электрону, тем больше значение Ed  [c.200]

    В какой части периодической системы находятся элементы с наибольшей электроотрицательностью У какого элемента наименьшая электроотрицательность  [c.409]

    Таким образом, существует целый ряд видов связи от неполярной до полностью ионной. Направление и величина полярности двухэлектронной связи имеют очень большое значение. При химических реакциях связи часто разрываются таким образом, что электронная пара остается у того атома, к которому она была ближе, т. е. первоначальная полярность усиливается в промежуточном реакционном комплексе до ионного состояния. С помощью шкалы электроотрицательности атомов (Полинг, Мулликен) можно определить направление и приблизительно оценить величину полярности (дипольный момент) связи. Чем больше разность электроотрицательности двух связанных атомов, тем больше дипольный момент связи, но зависимость между этими величинами не является линейной. Атом с меньшей электроотрицательностью образует положительный конец диполя. Ниже приводятся электроотрицательности некоторых атомов, наиболее важных для органической химии  [c.52]

    Определение состояний окисления соединений олова из МБ-спектров не столь строго, как в случае соединений железа. Величины 6 ниже 2,65 мм/с часто обусловлены оловом(1У), а большие величины — оло-вом(П). Известны и исключения. Изомерные сдвиги некоторых четырех-и шестикоординационных соединений олова (IV) значительно меняются в зависимости от средней электроотрицательности по Полингу Хр-групп, присоединенных к атому металла. Известно [17] о существовании следующих корреляций  [c.301]

    В данной главе будет рассмотрен простой метод описания ковалентных связей с использованием структурных схем Льюиса. Мы занищем льюисовы структуры для известных молекул и ионов и дадим им объяснение, пользуясь представлениями об обобществлении электронных пар и построении замкнутых валентных оболочек такого типа, как у атомов благородных газов. Затем мы объясним степени окисления атомов в соединениях на основе соображений о неравномерности обобществления электронных пар атомами, обладающими разной электроотрицательностью, после чего перейдем к установлению взаимосвязи между кислотностью некоторых молекул и электронным строением их центрального атома. В последней части главы будет показано, как для предсказания формы молекул используется метод отталкивания валентных электронных пар (ОВЭП). [c.465]


    Для построения систематических названий кислот и их солей эти соединения рассматривают как комплексные соединения и применяют правила, изложенные выше. Необходимо помнить, что название электроположительной части (катиона) соединения остается без изменений, а название электроотрицательной части (аниона) получает окончание -ат (-ate) независимо от степени окисления кислотообразующего элемента (цент- [c.38]

    В каждой из этих групп вещества расположены по алфавиту символов наименее электроотрицательного элемента, входящего в состав данного соединения, т. е. большей частью по алфавиту символа металла. В группах а), б) и в) соединения данного металла расположены в указанной последовательности (например, гидриды, фториды, хлориды и т. д.). При переменной валентности разные соединения двух данных элементов располагаются в порядке возрастания числа атомов металла, а при одинаковом числе атомов металла — в порядке возрастания числа атомов другого элемента. [c.319]

    Отношение (5.14) указывает на преимущественное протекание процесса рекомбинации различных радикалов. Если радикалы имеют различную полярность, часто оказывается, что ф > 2. Поэтому по значению ф можно судить о том, взаимодействуют полярные или неполярные радикалы. Влияние полярности существенно проявляется при соединении радикалов с различной электроотрицательностью (например, радикалы с нуклеофильными и электрофильными [c.75]

    Связывающие орбитали по энергии ближе к орбиталям более электроотрицательного атома, разрыхляющие — ближе к орбиталям менее электроотрицательного атома (рис. 28). Образно говоря, электрон на связывающей орбитали большую часть времени проводит вокруг ядра более электроотрицательного атома, а на разрыхляющей орбитали — вокруг ядра менее электроотрицательного атома. [c.52]

    При прокладке магистральных трубопроводов в труднодоступных районах часто отсутствуют линии электропередачи, так как сооружение для питания установок катодной защиты связано с большими затратами. В этом случае применяют протекторную защиту (рис. 7.1). Принцип действия ее заключается в том, что разрушению подвергается специально установленный анод (протектор), имеющий более электроотрицательный потенциал, чем защищаемое стальное сооружение. [c.157]

    Большая часть радикалов, образовавшихся в результате распада перекиси бензоила, успевает за время своего существования вступить в реакции роста полимерной цепи. Молекулу перекиси бензои.1а можно рассматривать как два диполя, соединенные друг с другом электроотрицательными полюсами  [c.101]

    Если расположить металлы по значениям потенциалов от более электроположительных к более электроотрицательным Аи, Ag, Си, В1, 5Ь, РЬ, 8п, N1, Со, Сс1, Ре, Сг, 2п, Мп, —то для ориентации можно принять, что при рафинировании каждого из них все левее расположенные металлы перейдут в шлам, а правее расположенные перейдут в раствор вместе с основным металлом. На катоде совместно с основным металлом разрядятся ионы всех левее расположенных металлов, а ионы, расположенные правее, — накопятся в растворе. Таким образом, рафинированию анодного металла способствует как анодный процесс (более электроположительные металлы выделяются в шлам), так и катодный процесс, в результате которого электроотрицательные примеси собираются в растворе. В шлам, кроме более электроположительных, чем основной, металлов, попадают также крупные частицы основного металла, потерявшие связь с телом анода при растворении более мелких частиц, а также нерастворимые при данном потенциале анода окислы, сульфиды, селениды, углерод, силикаты. Часто в анодном шламе обнаруживаются и слаборастворимые соединения (гидроокиси, соли). В ряде случаев анодный шлам представляет собой ценный промежуточный продукт, подлежащий переработке. [c.246]

    Протон приближается до соприкосновения с атомом Сг молекулы пентана. Действие протона сводится к нейтрализации части электроотрицательности атома Сг, который становится благодаря этому несколько более положительно заряженным, что создает движущую силу для освобождения атома i без его электрона в форме иона карбония. Это же самое действие протона вызывает отщепление атома водорода, связанного с атомом углероДа Сз, без его пары электронов. Этот протон притягивается отрицательным ионом, находящимся в непосредственной близости к молекуле пентана. При активированной таким образом молекуле пентана движущая сила для перегруппировки возникает из тенденции к отщеплению протона от углеродного атома Сз и карбониевого иона (СНз+) от углеродного атома Сг. Происходит межмолекулярный переход, при котором ион карбония мигрирует к углеродному атому Сз, а протон кислоты прочно связывается с углеродным атомом Сг, тогда как протон от углеродного атома Сз переходит к аниону, регенерируя таким образом сильно кислотный катализатор ЩС (Al la) ]". [c.47]

    Практически все хорошо исследованные вещества того времени были веществами неорганическими и относительно простыми по составу. Для каждого из этих соединений Берцелиусом было предложено название на основе представления о том, что вещество состоит из электроположительной и электроотрицательной частей такие названия, состоящие из двух слов, до сих пор используются в неорганической номенклатуре. (Берцелиус также первым предложит буквенные символы для обозначения химических элементов, эти символы почти без изменений применяются и в наши дни). Однако успех идеи Берцелиуса и предложенной им системы названий задерл<ал развитие идеи заместительной номенклатуры органических соединений, которые не могли быть описаны в рамках его концепции. [c.16]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]

    При построении полного названия бинарного соединения название его электроположительной части оставляют без изменений в некоторых случаях к нему добавляют указание на заряд или на степень окисления (см. ниже). Название электроотрицательной части соединения должно содержать суффикс -ид (-ide), который добавляется к корню соответствующего названия элемента (см. табл. 2.1). Примеры углерод (карб-) —карбид ( arbide) [c.28]

    Большинство неорганических соединений можно условно рассматривать состоящими из электроположительных частей (катионов) и электроотрицательных частей (анионов). Если в соединении имеется две (или более) одинаковых по типу заряда части, то возникает проблема их взаимного расположения в формуле. Порядок, в котором должны располагаться электроположительные части, может быть основан только на последовательности элементов в длиннопериодном варианте Периодической системы так, правильным является расположение KNaS04 и Na (NN4)012, а не NaKS04 и (NH4)Na l2. Расположение электроотрицательных частей должно подчиняться практическому ряду неметаллов например, правильным будет расположение P(I) l2 и Bi( l)0, а не РСЬ и Bi(0) l. [c.11]

    Наличие функциональных групп приводит к образованию специфических перегруппировочных ионов, так как в этом случае распад требует затраты сравнительно небольшой энергии. Специфические перегруппировки, в отличие от случайных (более характерных для молекул с равномерным распределением плотности электронов), являются причиной наличия весьма интенсивных пиков перегруппировочных ионов в масс-спектрах. Простым примером специфической перегруппировки можно считать миграцию водорода при разрыве связи в р-ио-ложепии по отношению к электроотрицательной группе. Эта перегруппировка характерна для большого числа соединений различных классов и приводит к образованию весьма интенсивных пиков. Такие группы, как карбонильная (в альдегидах, кетонах, амидах, сложных эфирах), нитрильная, фосфатная, сульфитная, часто вызывают указанную специфическую перегруппировку с образованием максимального пика в спектре. Исключение представляет нитрогруппа. [c.112]

    В соответствии с традицией, существующей в русском химическом языке, названия большинства неорганических соединений состоят из двух слов, причем на первом месте стоит название электроотрицательной части (или частей) формулы соединения, а на втором — название ее электроположительной части (или частей), например, KNaS04 — сульфат натрия-калия, Bi( l)0 — оксид-хлорид висмута. [c.11]

    При построении традиционных названий кислот и их солей используют приведенные ранее правила это касается перечисления названий электроотрицательной и электроположительной частей, применения способа Штока, окончаний -ная и -истая (-I , -ous), числовых приставок, способа Эвенса — Бассетта, что не вызывает недоразумений. [c.35]

    Ковалентная связь часто встречается и в кристаллах соединений. Так, карборунд Si состоит из атомов углерода и кремния, 6бразуюш.их тетраэдрическую решетку и связанных между собой ковалентной или, точнее, слабо полярной связью (вследствие несколько большей электроотрицательности углерода по сравнению с кремнием). [c.132]

    JB мoлeкyлe фурфурола имеется пятичленное фурановое кольцо, состоящее из четырех углеродных атомов и одного кислородного. Наличие в кольце электроотрицательного атома кислорода и двух сопряженных двойных связей создает сильное перераспределение электронных облак, еще больше усиливающееся присоединением к кольцу полярной альдегидной группы. В результате неполярная часть молекулы, способная образовывать комплексы с углеводородами за счет лишь дисперсионных сил, весьма незначительна. [c.170]

    Исследование межмолекулярных взаимодействий. В ИК-спектрах веществ в жидкой фазе часто обнаруживаются полосы, которых нет у отдельных компонентов смеси. Такие полосы объясняются межмолекулярными взаимодействиями с образованием новых связей. Типичным примером может служить водородная СВЯЗЬ, когда атом водорода, который связан в молекуле с электроотрицательным атомом, взаимодействует с атомом другой молекулы, имеющим иеподеленную пару электронов. Так, в растворах спиртов полоса свободной гидроксильной группы наблюдается в области около 3625 см . Эта узкая полоса четко проявляется в разбавленных растворах (<0,01 моль/л) в и-нертпых растворителях, когда все межмолекулярные связи разорваны. При увеличении концентрации спирта наблюдается широкая полоса, которая относится к ассоциированным гидроксильным группам, и интенсивность ее зависит от концентрации спирта. Наличие межмолекулярных взаимодействий необходимо учитывать при сравнении спектров веществ, снятых в разных растворителях, так как характеристические частоты некоторых групп могут изменяться в результате сольватации вещества растворителем. [c.219]

    Как видно из полученных результатов, хорошей экстрагирующей способностью по отношению к НСЮ обладают кетоны алифатического и циклического строения — МЭК, метилпропилкетон (МПК), циклогексанон (ЦГ), циклопента-нон (ЦП), сложные эфиры органических и неорганических кислот (бутилацетат, этилацетат, ТБФ), степень извлечения которыми при объемном соотношении растворителя к водной фазе 1 2 находится в пределах 91-95%. Введение в молекулу растворителя атома галогена резко снижает экстрагирующую способность (хлорекс, хлоркетоны (ХК), СС14, фторированные соединения). Сказывается, по-видимому, способность галогена оттягивать часть отрицательного заряда с активной группы, за счет чего снижается ее основность. Особенно резко этот эффект сказался при использовании фторсодержащих соединений. Атом фтора, обладающий высокой электроотрицательностью, изменяет распределение электронной плотности в молекуле, снижая или совсем лишая ее основных свойств. [c.58]

    Понятие, используемое для описания смещения электронной плотности по цепи атомов, связанных а-связя1у1и. в результате разл1гчной электроотрицательности атомов путем электростатической индукции. Это же явление часто обозначают тер.мином "полярный 3( )iJ)eh-r". [c.235]


Смотреть страницы где упоминается термин Часть электроотрицательная: [c.238]    [c.198]    [c.57]    [c.477]    [c.200]    [c.313]    [c.31]    [c.54]    [c.27]    [c.29]    [c.41]    [c.491]    [c.57]    [c.127]    [c.22]    [c.19]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Электроотрицательность



© 2025 chem21.info Реклама на сайте