Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефти исследование масляной фракции

    Исследуемый бензин был выделен из средней пробы (от 6 марта 1953 г.) нефтей I и II участков мирзаанского месторождения. Резу.льтаты исследования масляных фракций и сырой нефти этой же пробы приведены в работах [6,7]. [c.206]

    Присутствующие в нефтях и масляных фракциях высокомолекулярные парафины, а также частично ароматические и нафтеновые углеводороды являются кристаллическими веществами. Тем не менее вопрос о характере кристаллизации парафинов и других углеводородов и зависимости этого процесса от характера окружающей жидкой фазы до настоящего времени подвергается обсуждению и исследованию. [c.88]


    Исследование масляных фракций показало возможность получения из них индустриальных масел с небольшими выходами. Так, из фракций 350—420° С может быть получено 7—8% (на нефть) масла типа швейное или индустриальное 12 из фракции 420—500° С — около 5% масла ИС-45 (см. рис. 34—39). [c.96]

    Ниже описывается метод жидкофазного дегидрирования для анализа масляных фракций нефтей. Исследование бензиновых фракций рекомендуется проводить методом ГЖХ, позволяющим определять индивидуальный углеводородный состав фракций НК—150, а в ряде случаев и фракций НК—200 °С (см. гл. 2). [c.362]

    ИССЛЕДОВАНИЕ МАСЛЯНОЙ ФРАКЦИИ НЕФТИ [c.312]

    Основой научной школы Л.Г. Жердевой явились глубокое исследование масляных фракций различных нефтей с применением современных методов исследований и значительным вкладом в разработку самих методов исследования  [c.167]

    Так как эти результаты основаны только на исследовании масляных фракций нефти Венесуэлы, содержащей до 2,3% серы, нельзя быть уверенным, что эта поправка пригодна и для фракций других нефтей и для еще более высокого процентного содержания серы. [c.318]

    Данные исследования масляных фракций нефти, содержавших углеводороды с числом от 25 до 35 атомов углерода в молекуле, привели Россини и его сотрудников к выводу, что ароматические углеводороды, не содержащие нафтеновых ко- [c.134]

    Методы исследования масляных фракций нефти [c.138]

    В результате детального исследования масляных фракций до и после деароматизации и определения их ух леводородного состава исследованные нефти нами подразделяются на три основные группы. Качества фракций до и после деароматизации и результаты определения углеводородного и кольцевого состава узких масляных фракций трех нефтей, являющихся представителями трех групп исследованных нами нефтей, даются в табл. [c.70]

    Поскольку асфальтены являются нелетучими соединениями и в них концентрируются порфири-ны из нефти, качество широкой масляной фракции ухудшается в основном за счет жидкости, уносимой после однократного испарения сырья в питательной секции колонны. Поэтому при топливном варианте перегонки мазута более важно уменьшить унос тяжелой флегмы в концентрационной части колонны, нежели обеспечить четкое разделение мазута на масляные фракции и гудрон. Вследствие этого вакуумные колонны по топливному варианту имеют небольшое число тарелок или невысокий слой насадки и развитую питательную секцию (рис. П1-22). В верху колонны обычно два циркуляционных орошения для лучших условий регенерации тепла. В секции питания устанавливается отбойник из сетки и промывные тарелки. Часть остатка мо жет охлаждаться и закачиваться вновь в колонну для снижения температуры низа [47]. Качество вакуумного газойля контролируется по его коксуемости, цвету и фракционному составу. Для автоматического регулирования процесса целесообразно определить экспериментально зависимость содержания металлов в вакуумном газойле и его цвет от коксуемости. Исследование радиоактивными изотопами содержания асфальтенов и металлов (N 0 и УгОз) в вакуумном газойле показало, что между ними сущест- 12 вует линейная зависимость (рис. П1-23) [48]. [c.176]


    Большие систематические исследования ароматических углеводородов масляных фракций анастасьевской нефти проведены [c.18]

    Монография состоит из двух частей. В первой части приведены химический состав масляных фракций нефтей и физико-химические методы их разделения п исследования во второй части даны физико-химические основы получения нефтяных масел и возможные пути интенсификации процессов их производства. [c.304]

    Для установления эффективности действия сульфонатных (и других) присадок в зависимости от группового углеводородного состава сырья были исследованы масляные фракции 350—420 °С и 420—500 °С и остаточные выше 500 °С, выделенные вакуумной перегонкой из мазутов трех нефтей, резко различающихся по физико-химическим свойствам и углеводородному составу (бала-ханская масляная и балаханская тяжелая нефти, а также нефть месторождения Нефтяные камни). Углеводородный состав фракций был определен адсорбционной хроматографией на крупнопористом силикагеле АСК [15, с. 73]. В результате исследования структурно-группового состава и свойств отдельных групп углеводородов, выделенных из этих фракций, было установлено, что парафино-нафтеновые углеводороды из фракций балаханской нефти являются лучшим сырьем для синтеза присадок, чем те же углеводороды, выделенные из фракций двух других нефтей, причем наиболее низким качеством отличаются парафино-нафтеновые углеводороды балаханской тяжелой нефти. [c.72]

    В табл. 4 приводятся данные, показывающие действие депрессатора АзНИИ на масла различного происхождения и на отдельные группы углеводородов, выделенные из этих масел. Приемистость к депрессатору неодинакова не только у масел и дистиллятов, но и у парафино-нафтеновых углеводородов, выделенных из различных нефтей. Тем не менее четко обозначена хорошая приемистость для парафино-нафтеновых углеводородов и парафинистых масляных дистиллятов присутствие смол и ароматических углеводородов (особенно полициклических) почти полностью подавляет депрессорную способность присадки. Поэтому применение депрессорных присадок необходимо сочетать с исследованием углеводородного состава масляных фракций и с подбором оптимальной степени их очистки. [c.149]

    Робинзон Е. А., Нечаева М. А. Метод структурно-группового анализа керосиновых и масляных фракций и результаты его применения при исследовании нефтей // Химия и технология топлив и масел.- 1956.— № 7.— С. 50. [c.224]

    Исследования, выполненные с использованием метода ЭПР, показали, что стабильные свободные радикалы Нрисутствуют в остаточных и некоторых дистиллятных маслах, в смолистой части реактивных топлив. Они образуются в масле в процессе работы двигателя, причем источником образования свободяых радикалов служат ароматические углеводороды. Так, исследования масляных фракций 325—350, 350—375 и 375—400°С, вЦ деленных из бузовнинской нефти и разделенных на силикагёлё на нафтено-парафиновую и ароматическую части, показали, что в последней присутствуют свободные радикалы в количестве (1-ь2,7)10 в 1 г. В нафтено-парафиновых частях их не содержалось. При окислении выделенных фракций в стеклянных аь -пулах, запаянных с кислородом (250 °.С), наблюдалось увеличение содержания свободных радикалов в ароматической части. [c.43]

    В табл. 1-11 приведены результаты исследования масляной фракции оклахомской нефти [75]. Масляная фракция подвергалась разгонке под вакуумом. Затем методом противоточной экстракции ее разделяли на целый ряд относительно однородных компонентов. Химический состав каждого из этих компонентов уточнялся на основании соотношения физических свойств, включая молекулярный вес и углеродно-водородное соотношение до. и после гидрирования ароматики в соответствующие нафтены. [c.27]

    Весьма перспективными являются ведущиеся в настоящее время в Советском Союзе и за рубежом работы по применению к исследованию масляных фракций нефти сдектральных и масс-спектрометрических методов анализа. Однако в применении к тяжелым масляным фракциям эти методы делают еще первые шаги. Так, например, по спектрам поглощения в ультрафиолетовой части спектра удается идентифицировать мнргоядерные ароматические углеводороды в высокомолекулярных нефтяных фракциях. [c.8]

    В одной из американских нефтей (Понка) масляная фракция, отвечающая содержанию углеводородов — 35 была разделена на раффинат и экстракт (сернистым ангидридом), после чего экстракт был разделен на большое количество фракций. Результаты исследования показали, что около половины приходится на гомологи полиметиленовых углеводородов и около 25% на гибридные углеводороды, заключающие ароматические кольца (табл. 44). [c.119]

    Первые сведения о применении метода термодиффузии для исследования нефтяных фракций приводятся в работе В. Мейра и Ф. Россини [1955 г.]. Этим методом масляную фракцию нефти Понка (га °д = 1,4725) разделяли в колонке с полым зазором в течение 6 нед. Было получено девять фракций с м °д= 1,46004-1,4870 и установлено, что в масляных фракциях, содержащих 25—30 углеродных атомов, более 40 % составляют конденсированные системы с двумя и более циклами. Исследованию масляных фракций [c.123]


    Таким образом, при помощи адсорбционной хроматографии, применив синтетический адсорбент — силикат хрома, из исследованной фракции ароматических углеводородов н сернистых соединений ромашкинской нефти удалось получить значительное количество легких моноциклических ароматических углеводородов, почти не содержащих сернистых соединений содержанию серы, равному 0,05%, соответствует лишь около 0,4% сернистых соединений. Выход освобожденных от сернистых соединений ароматических углеводородов составил около 50% всех моноциклических ароматических углеводородов или 8,5% от всей взятой для исследования масляной фракции. [c.135]

    Метод и степень разделения. Природа изучавшегося сырья показана в верхней части фиг. 22-1. Из диаграммы видно, что для исследования была выбрана фракция, составляющая 10% от исходной сырой нефти. Эта масляная фракция, составленная из 16 фракций, полученных при первоначальной разгонке нефти, произведенной специально для настоящего исследования Станд. ойл компани , разделялась по схед1е, показанной на  [c.312]

    В ГрозНИИ еще в довоенные годы работал большой коллектив высококвалифицированных исследователей, а научное руководство лабораториями осуществлялось группой ученых - исследователей высшей категории. Исследованиями нефтей занимался П.С. Лисицин, исследованиями масляных фракций и созданием методов производства масел и парафинов - Л.Г. Жердева, Воронов, О.А. Артемьева, Н.Ф. Богданов, Лысенко, изучением заводских установок и разработкой новых процессов переработки нефти -группа крупнейших технологов М.Д. Тиличеев, С.Н. Обрядчиков, [c.149]

    Сколько-нибудь широкого примепения для исследования нефти названная реакция до сих пор не получила, однако успешное приложение ее при изучении структуры высших терпенов (сесквтерпенов) [18] позволяет он идать, что при исследовании масляных фракций нефти реакция эта еще может принести пользу. [c.85]

    Для исследования масляных фракций, как сырья для получения масел, использовали методику, предложенную ВНИИ НП. В результате такого исследования установлено, что в качестве компонентов масел можно использовать только нафтеновые углеводороды, выход которых на нефть незначителен 2,7 и 1,5% для фракций 350—400° С и 400—450° С и 8,4% для фракции 300—400° С. Поэтому саитовскую нефть нри существующей технологии производства масел нельзя считать перспективной для получения масел. [c.6]

    Цифры, приведенные в табл. 10, показывают, что при одинаковом числе ароматических ядер в молекуле ароматические углеводороды из дестиллата нафталанской нефти обладают значительно большим удельным весом и значительно меньшей вязкостью, чем ароматические углеводороды остаточного масла доссор-макатской нефти. Это показыв1ает, что исследованные масляные фракции нафталанской нефти имеют в своем составе ароматические углеводороды с короткими алкильными цепями. Наоборот, ароматические углеводороды высококипящих фракций, смеси доссорской и макатской нефтей имеют длинные алкильные цепи. [c.21]

    Парафины и церезины, присутствующие в нефтях и масляных фракциях, являются кристаллическими веществами. Прежние взгляды, например Залозецкого и др., что в нефтях наряду с кристаллическими парафинами присутствуют изопарафины, выделяющиеся из нефтей в виде аморфной, некристаллической массы, последующими, тщательно проведенными исследованиями Л. Г. Гурвича, затем в ГрозНИИ Н. А. Васильева и Л. Г. Жердевой, а также работами других авторов, были отвергнуты. [c.88]

    Как было отмечено ранее, в бензиновых и керосиновых фр<1кциях идентифицированы простейшие циклано —аренов ые углеводороды индан, тетралин и их алкильные производные. Исследования группового химического состава масляных фракций неф тей показали, что они практически полностью состоят из высокомолекулярных гибридных углеводородов. В очищенных товарных маслах гибридные углеводороды первого типа представлены преимуществе шо моно— и бициклическими цикланами с длинными алкильными цепями (до 50 — 70 % масс.). Гибридные углеводороды с моно — или бициклическими аренами с длинными алкильными цепями могут входить в состав парафинов и церезинов. Третий тип гибридных углеводородов наиболее распространен среди углеводородов высокомолекул5[рной части нефти. [c.67]

    Комплексное исследование твердых углеводородов, входящих в состав масляных фракций туй-.мазинской девонской нефти, которая широко используется для производства масел и парафина, было выполнено [c.49]

    Наиболее важные из полученных результатов касаются числа ароматических и циклопарафиновых колец в молекулах смазочных масел и соединения ароматичесхсих и циклопарафиновых 1 олец в одной молекуле. В исследованном масляном сырье из нефти Понка число колец изменялось от 1 до 4. Ароматические кольца, связанные с циклопарафиновыми углеводородами, образуют нафтеново-ароматические углеводороды. Предположение, что циклические углеводороды представляют собой смеси в соответствующих пропорциях ароматических и циклопарафиновых углеводородов, исключается. Такие смеси легко разделяются фракционировкой и обработкой растворителями, так как ароматические и циклопарафиновые углеводороды в однородных фракциях имеют различные температуры кипения и разную растворимость. [c.31]

    В литературе имеются данные о положительном влиянии добавок в небольших количествах (до 3%) высокоароматичных продуктов в сырье каталитического крекинга [4.25-4.29]. Исследование влияния на агрегативную устойчивость добавления в вакуумный газойль западносибирской нефти ароматических активирующих добавок показало [4.26], что агрегативная устойчивость системы газойль — оптимальное количество добавки обеспечивает вынос из реактора компонентов, наиболее склонных к коксованию. В качестве активирующей добавки использовали 1 — экстракт селективной очистки III масляной фракции (до 2%) 2 — дистиллятный крекинг-остаток (до 0.3%) 3 — остаточный крекинг-остаток (до 0.5%) этой же пефти. При оптимальном количестве активирующей добавки 1 (2%) уменьшается выход кокса с 9.9 до 3.8% (за счет увеличения выхода каталитического газойля с 51.0 до 55.7%) при постоянном выходе газа и бензина. При использовании активирующих добавок 2 и 3 (оптимальное количество 0.3 и 0.5% соответственно) выход кокса снижается до 3.1 и 3.5%. При сопоставлении результатов крекинга вакуумных газойлей западносибирской и парафини-стой мангышлакской нефтей выявлено что для газойлей с высоким содержанием парафинов требуется повышенный расход активирующей добавки. [c.111]

    Наименее исследованной группой заключающихся в нефти соединений являются асфальтовые и смолистые вещества — важнейшие компоненты природных и искусственных асфальтов. Главная масса этих веществ содержится в так называемом гудроне — вязкой, смолистой массе, остающейся после выделения из нефти легких и масляных фракций. Этот гудрон и по составу, и по своим свойствам очень напоминает природный асфальт и состоит в основном из остатков неотогнанных масел, нейтральных нефтяных смол и асфальтенов и кислых нефтяных смол (асфальтогеновые кислоты). [c.97]

    В тридцатых — сороковых годах произошел резкий скачок в технических возможностях изучения химического состава сложных смесей. Для разделения тяжелых нефтяных фракций наряду с методами перегонки и ректификации начали использовать хроматографию на адсорбентах, комплексообразование с карбамидом, термическую диффузию. Получили широкое распространение многочисленные физические методы исследования УФ- и ИК-опектроскопия, ядерно-магнитный резонанс, масс-опектрометрия, дифференциально-термический анализ, электрофизические методы (определение диэлектрической проницаемости, удельного и объемного сопротивлений, диэлектрических потерь) и др. Большое применение нашли расчетные методы определения структурно-группового состава, позволившие в первом приближении получить представление о соста1ве масляных фракций. Новые методы разделения и анализа значительно углубили наши познания о составе и структуре тяжелых компонентов нефти и позволили более обоснованно решать технологические задачи производства масел и химмотологические проблемы рационального их использования в условиях эксплуатации. [c.8]

    Нафтеновые углеводороды масляных фракций различаются не только по числу колец в молекуле, но и по их природе. При помощи масс-спектрометри ческого анализа в масляной части нефти установлено присутствие пяти- и шестичленных нафтеновых углеводородов, содержание которых зависит от характера нефти и пределов выкипания фракции. Исследование парафино-нафтено-вых фракций масел ряда нефтей, выкипающих в одинаковых пределах [8] показало, что в них преобладают пятичленные нафтены. Соотношение шести- и пятичленных колец в смесях нафтеновых углеводородов можно вычислить, исходя из того, что при одной и той же молекулярной массе их плотности резко различаются Расчеты показали, например, что, нафтено.вые углеводороды смазочных масел нефти месторождения Понка состоят больше чем на половину из гомологов циклопентана. Исследования фракций нефти месторождения Тексас показали, что соотношение циклогексановых и циклопентановых колец в нафтеновых углеводородах колеблется в широких пределах (от 4 1 до 1 9) и за- висит от пределов выкипания фракции. [c.10]

    Исследование ароматических углеводородов масляных фракций усложняется тем, что им всегда сопутствует большее или меньшее количество сероорганических соединений. Во фракциях ароматических углеводородов, выделенных из масляных дистиллятов или остатков даже так называемых бесоернистых нефтей, всегда содержатся эти соединения их тем больше, чем выше среднее число ароматических циклов в углеводородах, составляющих ароматическую фракцию. Обычный путь разделения нефтяных фракций на силикагеле или активной окиси алк>миния, позволяющий достаточно полно отделить нафтено-парафиновую часть нефтяной фракции от ароматической или с известным приближением разделить ароматические углеводороды друг от друга по числу колец в молекуле, большей частью неприменим для отделения ароматических углеводородов от сопутствующих им серосодержащих соединений. При разделении по этому методу сернистые производные даже неароматических углеводородов, т. е. содержащие алкильные или ацильные радикалы, попадают в аро- [c.17]

    Комплексообразование с карбамидом. В 1940 г. Бенген [1] открыл способность карбамида образовывать кристаллические комплексы с парафиновыми углеводородами нормального строения. Первые исследования, относящиеся к 1949—1950 гг. [2—8], показали, что комплекс с карбамидом могут образовывать кроме нормальных парафинов слаборазветвленные изопарафины с достаточно длинным прямым участком цепи, циклические углеводороды с боковыми цепями нормального строения, а также другие органические соединения, содержащие в молекуле длинные не-разветвленные углеводородные цепи, в частности спирты, кислоты, эфиры, моногалоидные производные нормальных парафинов и др. Неразветвленная часть цепи должна быть тем длиннее, чем больще пространственная нагрузка и число заместителей в молекуле. Свойство карбамида образовывать комплексы с соединениями, имеющими парафиновые цепи нормального строения, используется при изучении химического состава сложных органических смесей, в частности масляных фракций нефти, так как позволяет разделить сложную смесь углеводородов на узкие фракции по структуре парафиновых цепей и в промышленности для получения низкозастывающих топлив и масел. [c.196]

    Одним из неполярных адсорбентов, применяемых при разделении компонентов масляных фракций с целью исследования их структуры, является а1ктивированный уголь. В настоящее время выпускается несколько марок активированных углей, однако для промышленных установок и при исследовании химического состава масляных фракций нефти наибольшее распространение получил активированный уголь маржи БАУ. Этот уголь получают из древесного березового или букового угля-сырца, обрабатывая его водяным паром при высокой температуре. Еще в 40-х годах И. Л. Гуревичем была обнаружена опособность активированного угля адсорбировать парафиновые углеводоро ды нормального строения. Обзор литературного материала, посвященного адсорбционной способности активированного угля [3—б], позволяет сделать заключение о том, что на активированном угле углеводороды разделяются не по гомологическим рядам, а по структуре молекул, причем решающее значение имеет длина >и структура парафиновых цепей. Поверхность активиро ванного угля как нелоляр- [c.260]

    Сравнительный анализ ароматических углеводородов, выделенных из фракций 350—420°С, показал, что наилучшими качествами обладают углеводороды балаханской масляной нефти, наихуд-шими — углеводороды, выделенные из нефти месторождения Нефтяные Камни. В высококипящих фракциях (420—500 °С) наилучшие качества наблюдаются у ароматических углеводородов из нефти месторождения Нефтяные Камни, наихудшне — у углеводородов из балаханской тяжелой нефти, ароматические углеводороды балаханской масляной нефти в данном случае занимают промежуточное положение. Из всех исследованных групп арома тических углеводородов наилучшими качествами обладают легкие ароматические углеводороды, выделенные из фракции 350—420°С балаханской масляной нефти и из фракции 420—500 °С нефти [c.72]

    В ИХП АН АзССР в результате изучения группового химического состава нефтепродуктов и влияния химической структуры алкиларилсульфонатов на эффективность их моющего действия удалось научно обосновать рациональный выбор нефтяного сырья для сульфонатных присадок [15, с. 68]. На основе подобранного сырья А. М. Кулиевым и К. И. Садыховым были синтезированы присадки АзНИИ-5, СБ-3, СК-3, разработана технология их промышленного. производства. Проведены также исследования различных масляных фракций из нефти Сангачалы-море [38—42]. [c.76]


Смотреть страницы где упоминается термин Нефти исследование масляной фракции: [c.41]    [c.427]    [c.147]    [c.4]    [c.9]    [c.10]    [c.11]    [c.211]   
Углеводороды нефти (1957) -- [ c.312 , c.315 ]




ПОИСК





Смотрите так же термины и статьи:

Исследование масляных фракций

Нефть фракции



© 2025 chem21.info Реклама на сайте