Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глицерин—применение в анализе бор ной кислоты

    До настоящего времени каталитические реакции не нашли значительного применения в органическом качественном анализе. Известно, что каталитическое ускорение химических реакций часто обусловлено присутствием минимального количества (следов) вещества. Следы вещества принимают участие в промежуточных реакциях и ограничивают их активность в ряде определенных гомогенных и гетерогенных систем. Процесс ускорения реакций может быть использован для разработки специфических и чувствительных реакций на соответствующие катализаторы. Значение каталитических реакций долгое время недооценивали при поисках новых специфических реакций. Однако исследователям, заинтересовавшимся этим явлением, удалось за относительно короткий срок создать много чувствительных и специфических реакций, применимых в качественном неорганическом анализе и в капельном анализе. Нет никакого сомнения, что каталитическое ускорение чисто органических реакций органическими катализаторами также сможет быть использовано в анализе. Характерным примером является катализируемое глицерином разложение щавелевой кислоты, которое позволяет обнаружить глицерин микрометодом. Несмотря на то, что органических соединений во много раз больше, чем неорганических, и что они значительно многообразнее, они реже, чем неорганические ионы, проявляют каталитическое действие, видимо, вследствие отсутствия способности изменять свое валентное состояние. Использование катализа в ана- [c.45]


    Хлорная кислота в оксидиметрии. Анион Се(С10 ),. - в растворе хлорной кислоты обладает чрезвычайно высоким окислительным потенциалом и нашел применение в объемном анализе в качестве окислителя многих органических оксисоединений. Смит - определял глицерин добавлением избытка раствора перхлората церия и обратным титрованием раствором оксалата натрия (индикатор—нитроферроин) и сообщил, что окисление потребовало меньше времени и более низкой температуры, чем при окислении сульфатом церия или бихроматом. Метод применим к другим многоатомным спиртам, сахарам, оксикислотам, некоторым кетонам и т. д. [c.126]

    Еще не решенной задачей полярографического анализа неорганических соединений является определение малых количеств элементов в присутствии больших количеств мешающих элементов. Мешают такие элементы, которые выделяются на капельном электроде при потенциалах, более положительных или весьма близких к потенциалу выделения определяемого элемента. Поставленная задача обычно решается предварительной химической обработкой пробы, т. е. или количественным отделением определяемого элемента, или отделением мешающих его определению компонентов. Идеальным способом, не требующим химических разделений, является маскирование мешающих элементов в виде прочных комплексов, полярографически не открывающихся. Применение комплексообразующих веществ в полярографии ограничивалось до сих пор несколькими известными веществами, например винной кислотой, фторидом, цианидом, глицерином, маннитом, триэтаноламином и т. п. [c.144]

    Методика работы. Навеску 2,0000 г глицерина разбавляют 10 мл дистиллированной воды в мерной колбе емкостью 250 мл. Раствор нейтрализуют 30%-ной уксусной кислотой, разбавляют водой (примерно 50 мл) и добавляют приготовленное непосредственно перед анализом углекислое серебро (к 140 мл 0,5%-ного раствора сернокислого серебра добавляют 5 Л4л 1 н. раствора углекислого натрия и двукратно промывают водой, каждый раз декантируя воду с осадка). Для анализа применяют всю порцию приготовленного углекислого серебра. Колбу сильно встряхивают в течение 10 мин и приливают по каплям основную соль уксуснокислого свинца до тех пор, пока капля этого реактива не будет вызывать выпадения осадка (основная соль уксуснокислого свинца 1 л 10%-ного раствора уксуснокислого свинца нагревают до кипения со 100 г глета после охлаждения раствор фильтруют хранят без доступа двуокиси углерода). Содержимое колбы разбавляют водой до метки и затем добавляют из бюретки 0,2 мл дистиллированной воды и по 0,15 мл воды на каждые 10 мл примененного раствора основной соли уксуснокислого свинца. [c.360]


    Число ацетилирования (иначе—ацетильное или гидроксильное число) показывает, сколько миллиграммов едкого кали необходимо затратить на нейтрализацию уксусной кислоты, выделяющейся при омылении 1 г ацетилированного вещества. Сущность применения определения числа ацетилирования к анализу глицерина видна из схемы реакций  [c.245]

    Для повышения кислотности растворов борной кислоты наиболее часто используют маннит. Глюкоза при определении борной кислоты дает заниженные результаты [45]. Очищенный глицерин приходится добавлять в значительном количестве (на 80—100 мл раствора 40— 50 мл глицерина), поэтому объем жидкости увеличивается и точка перехода получается очень нечеткой. То же самое, но в меньшей мере относится к свежеприготовленным растворам инвертного сахара. При применении хлоридов натрия, лития и кальция точность анализа недостаточна. Удобнее всего применение маннита, так как объем титруемой жидкости не увеличивается и окраска фенолфталеина резко изменяется при одной капле избыточно добавляемого раствора.едкого натра [45]. Влияние маннита на ход титрования борной кислоты рассматривается в нескольких работах [1, 46, 47]. Оптимальной концентрацией маннита можно считать 1 г на 10 лл 0,1 н. раствора борной кислоты. [c.12]

    Первые конкретные указания на возможность и целесообразность рефрактометрического анализа некоторых растворов и технических продуктов были сделаны еще в начале XIX в. Было, в частности, отмечено, что преломляющая сила пустотелых линз, заполненных соляной кислотой различной концентрации, зависит от плотности кислоты, и предлагалось использовать измерение фокусного расстояния таких линз для определения крепости и плотности кислоты при ее производстве. Однако широкое практическое применение рефрактометрические методы получили лишь после создания простых, точных и удобных в обращении приборов для измерения коэффициентов преломления. Поэтому важным событием в истории рефрактометрического анализа было появление известного рефрактометра Аббе (1869 г.) и последующий выпуск этой и других удачных моделей фирмой Цейсс. Применение рефрактометров в промышленных лабораториях началось в 80-х годах прошлого века (анализ растворов глицерина, а затем сахарозы). С этого времени значение рефрактометрических методов анализа стало быстро возрастать, и они заняли видное место не только в практике исследовательских лабораторий, но и в произ- [c.31]

    Определение олова в рудах [391]. Определению не мешают (в кратных количествах) ш,елочноземельные элементы, А1, Се(1У), Сг(П1), Ьа, НМ, Рг, ТЬ—ЫО Со,Ре(П1), Мп, N1 — 600 Ag, Си, Т1(П1) — 100 Аз(1П), Hg(II) — 60 8Ь(У), Т1(1) — 50 В1, Ое, 1п, и (VI), 2п — 40 РЬ, Рс1 — 20 Оа, У. Не мешают сульфаты, ацетаты, нитраты, хлориды, фосфаты, глицерин и аскорбиновая кислота. Метод применен для определения 0,15—1,20% олова в рудах, применим для анализа минералов, латуни и бронзы. Кроме ПАН-2, можно применять 2-ХАДМФ-5,6 и ПАДМФ-5,6. [c.122]

    Реакционная газовая хроматография была, кроме того, применена для определения глицерина в водных растворах (Драверт, Фельгенхауэр и Куп-фер, 1960). При этом глицерин может дегидратироваться до акролеина нри помощи фосфорной кислоты или же превращаться в акролеин под действием иодистоводородной кислоты с последующим гидрированием до н-иропана в присутствии никеля Ренея. Применение реакционной газовой хроматографии имеет также преимущества при анализе жирных кислот в форме их метиловых эфиров (ср. разд. 8.1.1). Продукт реакции, образующийся при взаимодействии соответствующих жирных кислот с фтористым бором и метанолом, для полной этерификации вводят шприцем прямо в реакцион- [c.273]

    Можно также собирать газообразные продукты по фракциям, вытесняя запирающую жидкость из бюреток емкостью 100—500 МЛ, для поддержания постоянной температуры пользуются водяной рубашкой. В этих случаях скорость отбора дестиллята регулируется по скорости истечения запирающей жидкости из бюретки. Удобно иметь по крайней мере две бюретки когда одна наполнена, поток может быть направлен во вторую. Фракции могут быть переведены в склянки или в другие сосуды или в приборы для дополнительного анализа. Этот способ требует применения соответствующей запирающей жидкости в бюретке, в чем и состоит его основной недостаток. Ртуть всегда пригодна, потому что газы не растворяются в ней. Однако она слишком подвижна и тяжела для того, чтобы быть удобной в обращении при необходимосги относительно больших объемов. Почти насыщенный раствор соли, содержащий 1% серной кислоты или 50%-ный раствор глицерина, вполне пригоден для некоторых целей. Однако применение таких запирающих жидкостей требует проведения предварительных опытов, в которых устанавливают поправку на растворение или подтверждают, что ею можно пренебречь. Во многих случаях требуются также поправки на присутствие водяного пара (рис. 21). [c.352]


    Вендт В. П. Применение гидроперита в лабораторном качественном анализе. Тр. Киргиз, филиала АН СССР, 1943, 1, вып. 1, с. 107—109. Библ. 3 назв. 3356 Вендт В. П. О фотоколориметрическом определении воды в некоторых жидкостях (ацетоне, пиридине, уксусной кислоте, этиловом, метиловом спирте, глицерине, уксусном ангидриде, фосфорной и серной кислотах, бутиловом спирте, уксусноэтиловом эфире, СНС1з эфире, бензоле толуоле]. ДАН СССР, 1949, 65, № 5. с. 689— 691. Библ. 8 назв. 3357 [c.139]

    Тантал и ниобий, как известно, не образуют комплексных соединений с этилендиаминтетрауксусной кислотой. Это свойство уже было ранее использовано для отделения тантала и ниобия от остальных элементов (стр. 121). В последнее время Ласснер и Вейссер [41] разработали основанный на этом принципе метод определения суммарного содержания ниобия, тантала и титана. Анализируемый раствор они просто вносят в аммиачный раствор комплексона, содержащий также глицерин. Метод был применен для анализа твердых сплавов [41] и ниобий-танталовых сплавов с железом [42]. [c.540]

    Дихлоруксусную кислоту и ее эфиры используют в качестве интермедиатов в органических синтезах. На ее основе получают глиоксиловую кислоту, диалкокси- и диарилоксикислоты, а также сульфамиды. Она находит применение в анализе лавсана и в качестве дезинфицирующего препарата взамен формалина. Эфиры дихлоруксусной кислоты находят применение в производстве антибиотиков, дихлорацетамида, для защиты сельскохозяйственных культур, а также в производстве красителей полимерных материалов. Ее эфиры с глицерином и гликолем являются пластификаторами производных целлюлозы. [c.175]

    Восстановительный полярографический метод. Определение индивидуальных полярографически активных веществ в отсутствие других компонентов или в смеси с пЪлярографически неактивными соединениями представляет собой наиболее простой случай полярографического анализа и нашло широкое применение в практике органического анализа. Например, для определения полярографически активного акролеина в смеси с глицерином отбирают 1 мл пробы, смешивают его с 0,1—0,5 н. соляной кислотой (4 мл) и снимают полярограмму. Содержание акролеина в глицерине на  [c.40]

    Для анализа экспериментальных данных приведенных в табл. 37 для /(-солей кислых эфиров полиглицеридов алкенилянтарной кислоты был применен тот же способ рассуждения, который мы использовали выше для полиглицеридов. При этом было установлено, что изменение длины полиглицеридной цепи на две молекулы глицерина влечет за собой изменение толщины адсорбционного слоя примерно на 8 А. [c.189]

    Спирты. Разделению и исследованию смесей спиртов посвящено большое количество работ. Хроматографированием на активированной глине была разделена смесь метилового и этилового спиртов, причем растворителем служил азот . Методом фронтального анализа определялись смеси н-октилового спирта с н-дециловым и н-ундециловым спиртами, растворителем и проявителем служил этиловый спирт, а сорбентом—активированный уголь . Были разделены также смеси многоатомных спиртов, как-то й1-маннита и -сорбита, -маннита и дульцита и др. с применением в качестве растворителя спирта и сорбента флорек-саХХХ. Хроматографированием на бумаге с проявлением бутиловым спиртом была разделена смесь гликоля, глицерина и дульцита . При хроматографировании смеси фенолов их водный раствор смешивают с раствором хлорного железа и полученную темно-окрашенную жидкость пропускают через окись алюминия. Этим путем можно хорошо разделить смесь фенола, резорцина, пирокатехина и флороглюцина. При освещении кварцевой лампой без предварительной обработки раствором хлорного железа обнаруживаются зоны различных фенолов. На окиси алюминия и окиси магния обычный фенол и пирокатехин дают слабофиолетовое свечение, резорцин—сине-фиолетовое, галловая кислота—темно-фиолетовое, флороглюцин—желтое. [c.141]

    ГЖХ ацетатов альдитов представляет собой эффективный и точный метод определения содержания альдоз в биологических материалах. Разделение ацетатов альдитов, начиная с триацетата глицерина и кончая октаацетатами октитов, методом ГЖХ было впервые описано в 1961 г. [1, 2]. Несмотря на то что пригодность метода для количественного анализа была доказана, он не находил широкого применения из-за сложности подготовки колонки кроме того, не удавалось разделить D-глюцит и галактит. В последующие четыре года существенного прогресса не наблюдалось. В 1965 г. была предложена новая жидкая фаза EGNSS-M— сополимер сукцината этиленгликоля и цианоэтил-кремния, — которая оказалась пригодной для разделения всех простых альдитов вплоть до гекситов [3]. С этого времени метод ГЖХ с успехом применяется для определения содержания нейтральных альдоз в гемицеллюлозах древесины [4], полисахаридах клеточных стенок растений [5], гликопротеинах [6—8] и почвенных гидролизатах [9], а также для определения альдоновых кислот в целлюлозе древесины 10], частично метилированных альдоз [11] и продуктов периодатного окисления олигосахаридов [12]. [c.22]

    Нелетучая часть живицы, называемая живичной канифолью, состоит примерно из 90% смоляных кислот и 10% нейтральных масел, не улетучивающихся со скипидаром при температуре 150—170°. Типичная американская живичная канифоль имеет кислотное число 166. число омылегшя 172, цвет 80А+13К (шкала Ловибонда), удельное вращение [а] - п =+23° и зольность 0,03%. Анализы показали, что иностранные канифоли очень мало отличаются от описанной. Живичная канифоль производится во Франции, России, Португалии, Испании, Греции, Мексике, Германии и других странах. На долю Соединенных Штатов приходится при нормальной конъюнктуре примерно 53% всего мирового производства [36 [ живичной канифоли. Живичная и экстракционная канифоль находят широкое применение в бумажной, мыловаренной и лакокрасочной промышленности. Они потребляют около 7з всей канифоли [36], производимой в США. Канифоль приобрела огромное значение в производстве различных химикатов, фармацевтических препаратов, эфиров (например, эфиров глицерина и пентаэритрита) и других синтетических смол, модифицированных малеиновым ангидридом. Канифольные эфиры с низким молекулярным весом используются в качестве пластификаторов и мягчителей в производстве нитроцеллюлозных лаков и термопластиков. Одним из первых направлений использования канифоли была ее деструктивная перегонка для получения смоляного масла. Современные технологические методы направлены на стабилизацию канифоли преимущественно путем окисления, гидрирования, диспропорционирования и полимеризации. Производным этих стабилизированных канифолей свойственно превосходное сопротивление старению. [c.507]


Смотреть страницы где упоминается термин Глицерин—применение в анализе бор ной кислоты: [c.43]    [c.835]    [c.273]    [c.69]    [c.765]   
Рабочая книга по технической химии часть 2 (0) -- [ c.148 , c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ применение

Глицерин

Глицерин—применение в анализе бор



© 2025 chem21.info Реклама на сайте