Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация природных соединений

    Классификация природных соединений [c.7]

    Классификация природных соединений — вопрос не тривиальный по причине их многообразия и сложности химического строения. К настоящему времени сложилось несколько подходов к этой проблеме, но ни один из них не является универсальным, всеобъемлющим — скорее всего, каждый из них имеет право на жизнь тот или иной классификационный признак может быть приемлем в зависимости от сферы деятельности и от используемых акцентов. [c.7]


    Суммируя все вышесказанное о классификации природных соединений, следует в первую очередь отметить, что нельзя выбрать какую-либо одну из них при полном анализе материала. Скорее всего, все они имеют право ка <изнь и должны быть использованы Но тех или иных этапах изложения курса. [c.9]

    В настоящее время общепринятой (и мы также будем придерживаться ее) является классификация природных соединений на две основные группы вещества первичного биосинтеза и вещества вторичного метаболизма. Внутри первой группы вещества делятся на классы в соответствии с их химическим строением (по основным функциональным группам) и отчасти с их биологической функцией. Внутри второй группы вещества классифицируются также в соответствии с их принципиальной химической природой и путями биосинтеза. Внутри каждого класса, с учетом особенностей отдельных соединений, указывается их принадлежность к природным источникам и общность по деталям химического строения. Биологическая активность природных соединений рассматривается уже не как классификационный признак, а как свойства этих веществ. Т.е. мы видим, что основные классификационные признаки природных соединений — это путь биосинтеза и химическая структура. [c.9]

    Биосинтетическая классификация природных соединений 342 [c.8]

    БИОСИНТЕТИЧЕСКАЯ КЛАССИФИКАЦИЯ ПРИРОДНЫХ СОЕДИНЕНИИ [c.342]

    Несколько типов окисленных стеринов образуют группы веществ, для которых выделены отдельные ячейки в системе классификации природных соединений. Эти группы рассматриваются в разделах, следующих далее. [c.268]

    Согласно классификации природных ископаемых с углеводородной основой, предложенной Абрахамом [213], к нефтям относят те, что содержат до 35-40 % масс. САБ, а природные асфальты и битумы содержат до 60-75 % масс. САВ, по другим данным - до 42-81 % [141]. В отличие от более легких компонентов нефти, признаком отнесения которых к своим группам было сходство их химического строения, критерием объединения соединений в класс под названием САВ служит их близость по растворимости в конкретном растворителе. При действии на нефть больших количеств петролейного эфира, низкокипящих алканов происходит осаждение веществ, называемых асфальте-нами, которые растворимы в низших аренах, и сольватирование других компонентов - мальтенов, состоящих из углеводородной части и смол. [c.26]

    Химическая классификация предполагает разделение на классы и формирование названий веществ строго в соответствии с номенклатурой классической органической химии. Но учитывая то, что уже сказано о природных соединениях как полифункциональных, этот подход может быть рационально использован только в случае достаточно простых соединений, таких, например, как оксикислоты и жирные кислоты или же тогда, когда необходимо указать только характерные функции данной группы соединений. Например, мы называем класс соединений "аминокислоты , не учитывая тот факт, что как правило, в их молекулах имеются другие функции, и они должны быть отнесены, по меньшей мере, к трехфункциональным соединениям (схема 1.2.1). [c.7]


    Биохимическая классификация основана на разграничении природных соединений согласно путям их биосинтеза различают вещества первичного метаболизма (углеводы, аминокислоты [c.7]

    Классификация по источникам природных соединений имеет ограниченное применение. Эта классификация, конечно же, очень грубая, так как одни и те же вещества могут быть найдены в самых различных субстанциях, но все же в некоторых случаях она может быть полезной. В первую очередь, здесь выделяют природные соединения растительного происхождения, животного происхождения, вещества, выделяемые из микроорганизмов, в последнее время выделяют еще природные соединения морских организмов. Более мелкое подразделение проводят уже внутри этих групп в соответствии с их биологической классификацией. Например, выделяют алкалоиды отдельных видов растений (алкалоиды спорыньи, алкалоиды мака, алкалоиды тыквенного кураре и т.д.). [c.9]

    Классификация гидроксикислот построена по общему принципу классификации бифункциональных соединений — согласно взаимному расположению функциональных групп при углеродной цепи и количеству этих функциональных групп (схема 2.1.2). Очень многие природные гидроксикислоты имеют тривиальные названия, которые прочно укоренились в химической и биохимической практике. [c.19]

    В дополнение к описанным выше классам природных соединений пиранового ряда, характеризующихся бен-зо-конденсированными структурами как основными, следует представить отдельные примеры и целые группы пирановых соединений, являющихся либо исключениями из представленной типичной классификации, либо структурным развитием их. Во-первых, существуют простые, т.е. неконденсированные [c.206]

    Безусловно, что такой большой набор этого важного класса природных соединений требует своей классификации. Существует три основных подхода к этой проблеме  [c.291]

    В нашем изложении за основу взята химическая классификация — как соответствующая определению предмета химии природных соединений, и как наиболее детальная и строгая. Но как и во всех предыдущих случаях такого типа (наличие нескольких способов классификации определенного класса природных соединений) наряду с химической (как основополагающей) [c.291]

    В природных соединениях и в живых организмах встречаются в основном а-аминокислоты, из них только 20 входят в состав белков, и они называются протеиногенными, или белковыми. Другое важнейшее свойство белковых АК связано с оптической активностью все они являются L-изомерами. Строение АК, их названия и классификация приведены на схеме (с. 9-12). [c.8]

    Одним из важнейших источников органических соединений в природе является глюкоза, которая образуется в растениях и ауто-трофных микроорганизмах путем восстановления СОг. Из глюкозы в результате различных ферментативных превращений образуется несколько типов универсальных биосинтетических единиц, из которых в процессе ряда последовательных катализируемых ферментами реакций формируются углеродные скелеты большинства природных соединений. Эти взаимосвязанные последовательности метаболических превращений составляют основу биосинтетической классификации, согласно которой все природные соединения несколько произвольно подразделяются на две основные группы-" первичные и вторичные метаболиты. [c.342]

    Большое число продуктов метаболизма растений и микроорганизмов выделено и идентифицировано задолго до начала экспериментального изучения биосинтеза природных соединений это позволило создать классификацию, основанную на сходстве химических структур. Основные классы природных соединений (терпены, стероиды, алкалоиды, фенолы, углеводы, пигменты и т. д.) формировались по признаку наличия в их молекулах тех или иных характерных группировок. [c.351]

    Ряд авторов на качественно различных стадиях развития исследований природных кумаринов разрабатывал классификацию этого обширного класса веществ, изобилующего многочисленными структурными особенностями как основных циклов, так и присоединенных к ним боковых радикалов. Впервые классификация природных кумаринов предложена в 1937 г. [2], но в тот период число изученных соединений этого класса природных веществ было незначительным. Высказанная этим ученым мысль, что кумарины представляют в природе значительную группу соединений, но из-за больших трудностей их выделение находится еще в начальной стадии, подтверди- [c.57]

    Гликозиды — обширная фуппа природных соединений, молекулы которых состоят из неуглеводного компонента (агликона) и остатков углеводов, связанных между собой гликозидными связями. Классификация основана на природе агликона (например, флавоноидные, три-терпеновые, стероидные гликозиды и т .)  [c.81]

    Изучение природного соединения состоит из нескольких этапов. Прежде всего его необходимо обнаружить и выделить в чистом виде. Затем следует работа по установлению его химической структуры. Далее исследователи стремятся понять функцию изучаемого вещества в живом организме, вскрыть путь его биосинтеза, предложить направления и способы его практического применения. На каждом этапе требуются специальные теоретические знания и многие экспериментальные приемы. Однако цель данной книги — ознакомление читателя с химической структурой природных веществ, путями их биосинтеза и принципами классификации. Основы экспериментальной техники и методы установления химического строения подробно изложены во многих руководствах, часть из которых приведена в конце раздела. [c.12]


    Строение углеродных скелетов лежит в основе классификации и систематизации в химии природных соединений. Однако большой строгостью эта классификация не отличается, так как принципы, положенные в ее основу, неоднородны. Некоторые природные вещества объединяют в один класс по химическому признаку, например алифатические углеводороды, производные нафталина. В других случаях в основу классификации положены биогенетические закономерности. Так, под названием изопреноиды понимают вещества, углеродные остовы которых образовались конденсацией нескольких молекул изопентенилпирофосфата, имеющего скелет изопрена. Название алкалоиды дано природным продуктам, содержащим азот и выделяемым из растений. А подобные им по структуре метаболиты плесневых грибов именуются антибиотиками. Такая непоследовательность приводит к тому, что, например, в разделе алкалоидов помешают вещества, которые с равным правом можно отнести к изопреноидам, ароматическим соединениям, производным алифатических углеводородов и т.п. [c.13]

    Однако классификация продуктов вторичного метаболизма сложилась исторически и, несмотря на элементы непоследовательности, удобна в практической работе. Задача данной книги ввести начинающего исследователя в мир химических формул природных соединений таким образом, чтобы этот мир не выглядел сложным набором не связанных между собой структур, а предстал в виде системы, где каждое известное или вновь открываемое вещество находит свое логическое место. [c.13]

    В ряду а-аминокислот, у которых конфигурация молекулы характеризуется расположением заместителей нри я-углеродном атоме, классификация различных соединений по оптической активности долгое время имела чисто условный характер. В результате изучения механизма замещения при асимметрическом атоме углерода Ингольду удалось связать структуру этих соединений со структурой глицеринового альдегида. Природный левовращающий аланин (УП) был, таким образом, связан с /-глицериновым альдегидом через промежуточную стадию — О-а-бромпропионовую кислоту (VI). [c.414]

    Классификация высокомолекулярных соединений производится по их различным признакам. Их различают по происхождению, например, природные и синтетические, по хи- [c.533]

    Классификация высокомолекулярных соединений основана на различных признаках. Прежде всего, их подразделяют на природные высокомолекулярные соединения — целлюлоза, белки, крахмал, натуральный каучук, силикаты — и синтетически полученные полимеры. Большинство полимеров относится к органическим соединениям. По химическому составу главной цепи полимеры делятся на три группы  [c.291]

    В книге рассмотрены особенности фрагментации под электронным ударом некоторых классов органических соединений с указанием диагностических признаков, позволяющих установить строение по масс-спектрам. Особо отмечены перегруппировочные процессы, осложняющие классификацию, систематизацию и обработку масс-спектров на электронно-вычислительных машинах. Высокую практическую ценность представляет разбор нескольких примеров установления структуры, включающих сложные органические, металлоорганические и природные соединения (пептиды). [c.8]

    Исследование природных органических продуктов, которое всегда было одной из главных целей органической химии, представляет и в настоящее время величайший интерес как теоретический, так и практический. Огромное число известных природных нродуктов и непрерывное открытие новых соединений в природе, непредвиденное разнообразие структур этих соединений доказывают практически неограниченную способность живых организмов, главным образом растительных, к синтезу веществ. В настоящей книге главные групны таких природных продуктов, как жиры, углеводы, а-аминокислоты, природные красящие вещества, различные витамины, коферменты, гормоны и т.д., рассматривались в разделе, соответствующем их строению, согласно систематической классификации органических соединений. Имеются, однако, две большие группы природных нродуктов растительного происхождения — соединения с полиизопреновым скелетом и алкалоиды (причем первая включает углеводороды, спирты, альдегиды и кетоны, а вторая — азотсодержащие соединения, главным образом гетероциклические), включение которых в общую классификацию нарушило бы единство изложения. Этим двум классам соединений посвящена последняя, шестая часть книги. [c.811]

    Вкратце будут также рассмотрены исторические аспекты развития биосинтетических исследований и техника эксперимента, которая до последнего времени базировалась в основном на применении меченных изотопами промежуточных соединений. Особенно успешно взаимосвязи между соединениями-предшественни-ками и продуктами биосинтеза изучались в последние годы. На основе полученных данных создана простая биосинтетическая классификация природных соединений, которая во многом совпадает с разработанной ранее традиционной системой структурной классификации, но в ряде случаев решительно расходится с ней. [c.340]

    Тиофеновые производные, а также другие упоминавшиеся сульфиды, вполне укладываются в общепринятую и устоявшуюся классификацию природных соединений. Больший интерес для темы данного раздела представляют ди- и полисульфидные метаболиты, а также сульфоксиды, сульфоны и другие соединения высоковалентной серы. Следует знать, что самые простые сернистые органические соединения — сероуглерод, карбонилсуль-фид, диметилсульфид — не только производятся промышленностью, но и функционируют в живой природе. Первые два играют роль пищевых аттрактантов у крыс. А диметилсульфид синтезируется океаническим планктоном и выделяется в атмосферу в количестве большем, чем содержится серы в выбросах всех электростанций мира. [c.614]

    Если взять любую рациональную классификацию органических соединений, например, по функциональным фуппам, и заполнить ее только структурами природных соединений, то мы увидим очень странную картину отдельные кластеры, густо усеянные разнообразными структурами, области, содержащие лишь отдельные точки, и, наконец, огромные пустые области. В такой системе, например, будут шедро представлены неразветвленные алифатические кислоты с четным числом атомов углерода, но будет маю разветвленных кислот или кислот с нечетным числом атомов углерода будет множество очень причудливо устроенных циклических и полициклических систем, но почти не встретится их простейших представителей. Редкими и случайными структурами будут представлены такие важнейшие классы, как алкилгалогениды, тиолы и сульфиды, нитро- и диазосоединения. Удивительно, но будут отсутствовать даже такие тривиальные соединения, как формальдегид, хлороформ, диэтиловый эфир или тетрагидрофуран. Мы уже не говорим о том, что многие важнейшие классы органических соединений, такие, как, например, различные типы металлоорганических соединений или борорганические производные, вообще никак не представлены в списке природных веществ. [c.52]

    При этом остальные липорастворимые соединения не пропадут из поля зрения — они всплывут в других классах природных соединений, таких как изопреноиды и др. Таким образом, весь блок наших знаний о липидах мы разделим на два основных раздела жирные кислоты во всем их многообразии и производные жирных кислот, которые можно считать собственно липидами. Наиболее рациональная классификация липидов предполагает разделение их на три группы первая группа представлена метаболитами, образованными в результате реакций окисления вторая группа является глицеридами жирных кислот — это наиболее традиционные представители класса липидов, известные как жиры и жироподобные вещества третью группу составляют жироподобные соединения разного типа,отличные от глицеридов. Сразу же надо отметить, что в ряде случаев трудно провести однозначную границу между метаболитами первой группы и некоторыми жирными кислотами, также достаточно условно разделение между второй и третьей группами с чисто химических позиций. [c.103]

    Классификация жирных кислот может быть проведена достаточно последовательно с учетом вышеуказанных деталей их строения. В первую очередь, Мы можем разделить их по размеру и структуре углеродной цепи на втором этапе охарактеризовать степень и характер их ненасыщенности а далее выделить группу оксигенированных жирных кислот. Названия жирных кислот могут быть построены обычным образом по правилам 1иРАС, но как уже упоминалось, в химии природных соединений часто используются исторически сложившиеся тривиальные названия и сокращенные обозначения, отражающие основные структурные характеристики. В последнем случае цифрами по порядку обозначают количество углеродных атомов в основной цепи, после двоеточия — количество кратных связей (двойных и тройных), затем в скобках указывают положение и характер кратных связей (А-ацетиленовая, 2- цис-конфигурация, Е-транс-конфигурация). Далее в таблицах будут приведены такие сокращенные обозначения. [c.105]

    В последнее время интенсивное исследование природных соединений морских организмов принесло весомую прибыль в корзину алкалоидов. Структуры их подчастую достаточно оригинальны, но по типу гетероциклической системы они, как правило, вписываются в общую классификацию этого класса природных соединений. Пиридиновые, индольные и др. группы алкалои- [c.248]

    Но в любом случае, какая-то, хоть и ограниченная, классификация является полезной, поэтому в понятия витамины" и коферменты" можно проставить следующие акценты и ввести некоторые определения. Витаминами можно назвать некую группу низкомолекулярных органических соединений различной химической природы, необходимых для осуществления жизненно важных биохимических процессов in VIVO Природные соединения, не являющиеся витаминами, но легко превращающиеся в них в организме человека, называются провитаминами. Если несколько соединений близкой химической природы выполняют одну и ту же витаминную функцию в организме — их называют витамерами. [c.267]

    Химическая экология природных вод. Химический состав и классификация природных вод. Макрокомпоненты хлорид-, сульфат-, карбо-нат- и гидрокарбонат-ионы, катионы натрия, калия, магния, кальция. Ионы кремния, железа, алюминия, фосфора, азота в разных степенях окисления, органические вещества в природных водах. Микрокомноненты ионы лития, стронция, меди, серебра, хрома, марганца, бромид-, иодид-ионы и их способность к комилексообразовапию. Эколого-химические особенности загрязнения гидросферы. Металлы как загрязняющие вещества источники ностунления в воду, токсические эффекты, химическое состояние. Органические соединения - загрязнители вод разных типов хлорорганические, фосфорорганические соединения. Особенности нефтяного загрязнения. Детергенты в природных водах. Коллоидные ПАВ и их влияние на загрязнение природной воды. [c.4]

    Промежуточный метаболизм представляет собой сложное переплетение химических реакций, в ходе которых расщепляются, взаимопревращаются и синтезируются органические природные соединения. Такая интенсивная химическая деятельность преследует две цели высвобождение энергии для выполнения полезной работы и создание нового клеточного вещества. Согласно удобной и часто используемой классификации, эти химические реакции формально разделяют на две группы 1) реакции, идущие с выде-лением энергии, и 2) реакции, приводящие к новым метаболитам (так называемые биосинтетические реакции). Следует, однако, иметь в виду, что многие являющиеся промежуточными соединения в классических путях деградации, при которых выделяется [c.395]

    На основе современных достижений фармации и смежных наук (биологии, химии, физики) дается научное обоснование создания лекарственных средств на основе биологически активных соединений растительного происхождения. Большой раздел книги содержит результаты исследований по поиску, вьщелению и установлению структуры основных групп природных соединений стероидов, ферментов, флавонои-дов, фенольных соединений, кумаринов и т.п. и их классификации. [c.3]

    Липиды не являются однородным классом веществ. Эта фуппа природных соединений включает в себя достаточно разнообразные по химическому строению соединения. Общим свойством, позволившим на ранних этапах исследования объединить эти соеданения в единую группу, явилась их растворимость липиды не растворялись в воде, но, проявляя гидрофобные свойства, растворялись в спирте, эфире, хлороформе, бензоле или петролейном эфире, поэтому под липидами подразумевали материал, извлекаемый из животной или растительной ткани обработкой её органическими растворителями. Разнообразие химического строения чрезвычайно осложняет классификацию липидов, вследствие чего единая строгая система классификации отсутствует. Липиды можно разделить на две группы, различающиеся отношением к щелочному гидролизу омылению). Те липвды, которые легко расщепляются в щелочных условиях, называют омыляемыми липидамщ липиды, устойчивые к действию щелочей, относят к неомыляемым липидам. [c.120]

    Дитерпеноидами называют природные соединения, молекулы которых построены из четырех изопреновых эквивалентов и, следовательно, содержат двадцать углеродных атомов. Основным биогенетическим родоначальником этого класса веществ является пирофосфат геранилгераниола 2.460. Подавляющее большинство других типов дитерпеноидов, за исключением иррегулярных, образуются путем различных способов циклизации фосфорного эфира 2.460. При этом число вариантов очень велико. Внутримолекулярные перегруппировки еще больше разнообразят картину. В ряду Сго-соеди-нений наибольшее распространение получила классификация, основанная на количестве циклов в углеродном скелете. Многие разделы ее предложены давно, устоялись и общеприняты. В то же время химия дитерпеноидов интенсивно развивается. Постоянно обнаруживаются новые типы, выпадающие из привычных классификационных рамок. Особенно много их находят в грибах, микроорганизмах, морской фауне и флоре. Приведение в систему и описание такого материала затруднено. Оно облегчается, если здесь так же, как и в случае сесквитерпеноидов, прибегнуть к помощи спасительных закономерностей биосинтеза. [c.161]

    Пирановое кольцо может быть сочленено с бензольным двумя способами, и существуют два гетероциклических ансамбля бензо[Ь]- и бензо[с]пираны 3.226 и 3.227. Оба они встречаются в природе. Для веществ типа 3.227 иногда применяют термин изобензофураны . Более часто в названиях природных соединений и в их классификации используют тривиальные имена гетероциклов 3.226 и 3.227 — хромай и изохроман. [c.340]

    Индольные алкалоиды охватывают скопление разнородных природных соединений, содержащих индольный или близко родственный ему скелет, чье нахождение ограничено (за несколькимя исключениями) высшими растениями и некоторыми грибами. Согласно традиционному определению, они являются азотистыми основаниями, но современная классификация включает также нейтральные и кислотные соединения, и сейчас их известно более- [c.554]


Смотреть страницы где упоминается термин Классификация природных соединений: [c.327]    [c.86]    [c.203]    [c.5]    [c.327]    [c.218]    [c.15]   
Смотреть главы в:

Введение в химию природных соединений -> Классификация природных соединений




ПОИСК







© 2025 chem21.info Реклама на сайте