Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительное у бактерий

    Основную часть активного ила составляют бактерии. На 1 г активного ила приходится ЫО бактерий с суммарной поверхностью 1200 м2. Бактерии представлены а- н р-мезосапробными группами. Их видовой состав зависит от того, какими веществами загрязнена сточная вода. Биоценоз активного ила развивается в условиях ярко выраженных окислительных аэробных процессов, поэтому наряду с други.ми микробами в большом количестве содержатся в нем бактерни-ннтрификаторы (до 3-10 па 1 г активного ила). Кроме одноклеточных бактернй в активном иле развиваются в небольшом количестве нитчатые бактерии, дрожжи и отдельные нити плесневых грибов. Микрофауна активного ила представлена в основном одноклеточными животными — простейшими, но в нем присутствуют также более сложно организованные представители животного мира, например коловратки н круглые черви. Из одноклеточных животных развиваются саркодовые, жгутиковые, ресничные и сосущие инфузории. [c.305]


    ДЕЗАМИНИРОВАНИЕ И ПЕРЕА МИНИРОВАНИЕ. Дезаминирование может осуществляться как неокислительным, так и окислительным путем. Неокислительное дезаминирование встречается в основном у бактерий и грибов. В качестве примера можно назвать превращение аспарагиновой кислоты в фумаровую кислоту и аммиак под действием фермента аснартазы. [c.396]

    Ферментация—химическое превращение под каталитическим влиянием энзимов, которые представляют собой азотистые органические вещества, вырабатываемые живыми организмами (бактерии, плесневые грибки и дрожжи). Энзимы имеют коллоидную структуру и их молекулярная масса достигает 300 ООО. Каталитическое действие энзимов очень специфично, сильно зависит от pH и температуры и чувствительно к промотирующему или тормозящему действию многих веществ. Оптимальная температура для большинства энзимов лежит между 18 и 38 С. Энзимы называют по -их функции с прибавлением окончания аза . Катализатор гидролиза имеет название гидролаза, окислительно-восстановительные энзимы называют оксидазами. [c.329]

    Многие ферменты, катализирующие окислительно-восстановительные реакции, содержат атомы железа. Примером могут служить цито-хромы, присутствующие в каждом живом организме. Они содержат гем-группы, связанные с белком иначе, чем в молекулах миоглобина и гемоглобина. Интересным является белок, содержащий негемовое железо (так называемый высокопотенциальный железосодержащий белок), выделенный из клеток нескольких видов пурпурных бактерий. Он может обратимо одноступенчато (путем потери одного электрона) окисляться ионом гексацианоферрат(П1) кислоты [Ре(СК)б] и другими окислителями и, вероятно, катализирует какие-то окислительные процессы, важные для физиологии бактерий. На рисунке, где приведена [c.443]

    Уксуснокислые бактерии включают группу окислительных бактерий, основная функция которых — окисление этанола до уксусной кислоты — давно используется человеком на практике для приготовления уксуса  [c.118]

    Окислительное брожение, вызываемое плесневыми грибами и так называемыми окислительными бактериями, может происходить только в случае, если у микроорганизмов есть особые энзимы — редуктазы, способствующие неполному разрушению углеводородов в присутствии кислорода воздуха. В качестве промежуточных продуктов этого биохимического процесса образуются органические кислоты (глюконовая, фумаровая, щавелевая, янтарная и лимонная), вызывающие коррозию металлов и органических материалов — разъедание, снижение веса, изменение окраски, потерю прочности — так называемые вторичные явления. [c.21]


    Железо является одним из элементов, наиболее распространенных в земной коре в обычных почвах его содержание достигает 4%. Функции железа в живых клетках многочисленны и разнообразны - . Общее содержание железа в бактериях и грибах составляет в среднем I ммоль/кг, но в тканях животных его, как правило, меньше. 70% из 3—5 г железа, содержащихся в организме человека, сосредоточено в эритроцитах, где общее содержание железа составляет 20 мМ. В остальных тканях общее содержание железа составляет лишь 0,3 мМ в основном оно приходится на разного рода резервные формы. Суммарное содержание всех железосодержащих ферментов составляет 0,01 мМ. Хотя средние концентрации получаются низкими, железо сконцентрировано в окислительных ферментах в мембранах, и, следовательно, локальные его концентрации могут быть значительно выше. Удивительно, что одна из групп анаэробных бактерий, а именно молочнокислые бактерии, которые вообще не содержит ферментов, реагирующих с кислородом, по всей видимости, полностью лишена и железа, и меди. Во всех других организмах железо обязательно должно присутствовать. [c.126]

    Внимание ученых давно было обращено на новые источники получения белка из отходов. Одним из таких богатых источников несомненно является активный ил, который благодаря жизнедеятельности окислительных бактерий содержит до 50% белка (в расчете на абсолютно сухой вес). В нем находятся почти все необходимые аминокислоты, микроэлементы и витамины группы В, в том числе и В12. Все эти питательные вещества содержатся в белке активного ила, микробиологический синтез которого при биологической очистке сточных вод отличается исключительно большой интенсивностью. [c.179]

    Гемоглобин и миоглобин —комплексы железопорфиринов с белками, выполняющие функцию фиксации и транспорта молекулярного кислорода в организмах животных. Цитохромы, имеющие аналогичную принципиальную структуру, выполняющие роль переносчика электрона в схемах фотосинтеза, дыхания, окислительного фосфорилирования и др. окислительно-восстановительных реакциях, найдены у всех животных, растений и микроорганизмов. Хлорофиллы — главные участники процессов фотосинтеза — содержатся в высших растениях, водорослях и фотосинтезирующих бактериях. [c.265]

    Благодаря высокому окислительному потенциалу (2,076 В) озон обладает более сильным бактерицидным действием, чем хлор (1,36 В), Озон действует на бактерии быстрее хлора и расход его значительно меньше. [c.159]

    Озон. Отличается более сильной окислительной способностью, чем кислород, он обесцвечивает многие красящие вещества, окисляет металлы (за исключением Аи, и др.), переводит аммиак в азотистую и азотную кислоты, сульфиды в сульфаты и т. д. Являясь сильнейшим окислителем, озон убивает бактерии, а потому применяется для обеззараживания воды и для дезинфекции воздуха. Озон разлагается с выделением атомарного кислорода, обладающего, как указано выше, очень большой активностью Оз = О2 + О. Например, серебро не окисляется кислородом даже при высокой температуре. Напротив, озон быстро окисляет серебро с образованием оксида серебра (И) Ад + Оз = = Ад0 + 02. [c.129]

    Велика роль воздуха в процессах выветривания (разрушения) горных пород и почвообразования. При участии воздуха в почве минерализуются органические остатки отжившее органическое вещество превращается (под действием бактерий) в минеральные соединения, снова усваиваемые растениями. Инертный газообразный азот воздуха уменьшает масштабы окислительных процессов в почве, замедляет их. [c.379]

    Практическое применение озона основано на его сильных окисляющем и стерилизующем действиях. Под действием озона погибают не только бактерии, но и грибковые образования и вирусы. Озонированным воздухом пользуются для дезинфекции помещений (холодильных складов и др.), для устранения неприятных запахов (в курительных комнатах и т. д.), стерилизации питьевой воды, кондиционирования воздуха и проведения некоторых других окислительных процессов. Горючие вещества в атмосфере озона сгорают гораздо быстрее и дают более высокие температуры, чем при сжигании тех же веществ в кислороде. Поэтому озон представляет большой интерес для реактивной техники. [c.44]

    В некоторых случаях разрушение ароматических соединений бактериальной клеткой начинается с реакций элиминирования. Так, у некоторых бактерий в результате -элиминирования из тирозина освобождается фенол. Чаще наблюдается гидроксилирование и окислительное разрушение боковых цепей, ведущее к образованию производных бензойной кислоты или к различным оксибензойным кислотам [133]. Не- [c.149]

    Молибден является одним из важнейших микроэлементов. Небольшие количества этого металла в почве благоприятно влияют на рост и развитие растений и клубеньковых бактерий. Мо обнаруживается также и в животных тканях, входит в состав многих ферментов, осуществляющих окислительно-восстановительные превращения в клетке. [c.480]


    Необходимо отметить, что механизм окислительного действия уксуснокислых бактерий еще недостаточно изучен [82—84]. [c.257]

    Установлено, что нет такого микроорганизма, который бы окислял все углеводороды или их производные. На практике редко встречается организм, который действовал бы на подложку из одного углеводорода. Обычно организм использует несколько родственных соединений, отличающихся такими характеристиками, как например, длина цепи. Существует различие в типах углеводородов, разрушаемых определенным организмом. С другой стороны, имеется множество различных организмов, которые могут окислять углеводороды или материал, аналогичный углеводородам. Полученные данные указывают на то, что углеводородов, стойких -к действию микроорганизмов, вероятно, не существует. Зобелл [35], подробно изучавший разрушение углеводородов бактериями, пришел к выводу, что существуют предельные значения окислительной способности различных организмов по отношению к различным углеводородам. [c.189]

    Продукты первой стадии метанового брожения наряду с повышением кислотности вызывают увеличение окислительно-восстано-вительного потенциала среды, тогда как нормальному протеканию второй стадии брожения благоприятствуют нейтральная реакция и низкий окислительно-восстановительный потенциал поэтому метановое брожение происходит чрезвычайно медленно. Приток барды в метантенки регулируют таким образом, чтобы образующиеся в первой стадии брожения органические кислоты потреблялись метанобразующими бактериями во второй стадии брожения с образованием главным образом метана и витамина В12, иначе процесс брожения завершается на первой стадии и происходит закисание культуры. Для активации жизнедеятельности бактерий в метантенки добавляют суспензию кормовых дрожжей. [c.390]

    Большое значение в разнообразных процессах обмена в-в имеет ферментативное Д. Существует два типа подобных р-ций простое Д. (обратимая р-ция) и окислительное Д., в к-ром происходит сначала Д., а затем дегидрирование субстрата. По последнему типу в организме животных и растений осуществляется ферментативное Д. пировиноградной и а-кетоглутаровой к-т-промежуточных продуктов распада углеводов, жиров и белков (см. Трикарбоновых кислот цикл). Широко распространено также ферментативное Д. аминокислот у бактерий и животных. [c.19]

    Койевая кислота образуется при произрастании на фруктозе или на манните уксуснокислых окислительных бактерий (превращающих глюкозу в глюконовую кислоту). Другие бактерии Aspergillus) синтезируют койевую кислоту из других моносахаридов, а также из глицерина. Она была получена и химическим путем из глюкозы. Это природное производное пирона еще содеря ит пиранозный цикл моносахарида, из которого оно происходит. [c.690]

    Все белки являются полимерами аминокислот. Общая формула такого полимера показана в нижней части рис. 21-1, а модель отдельной аминокислоты-на рис. 21-12. Ферменты представляют собой один из классов белков, причем, видимо, наиболее важный. Ферменты имеют компактные молекулы с молекулярной массой от 10000 до нескольких миллионов и диаметром от 20 А и выше. Они выполняют роль катализаторов, регули-руюидах биохимические реакции. Другие компактные молекулы белков, например миоглобин и гемоглобин, выполняют роль переносчиков и накопителей молекулярного кислорода (см. рис. 20-25, 20-26). Цитохромы-это белки, способные к окислительно-восстановительным реакциям и играющие роль промежуточных звеньев при извлечении энергии из пищевых продуктов (см. рис. 20-23). Молекулы гамма-глобулинов с молекулярной массой порядка 160000 представляют собой так называемые антитела, защитное действие которых заключается в том, что они присоединяются к вирусам, бактериям и другим чужеродным телам в живом организме и осаждают их из жидких сред. Все перечисленные белки относятся к глобулярным белкам. [c.313]

    Ответ, видимо, заключается в рассмотрении пути развития жизни на Земле. Предполагается, что на ранней стадии существования Земли она имела восстановительную атмосферу, состоявшую из таких газов, как Hj, СН4, NH3, Н2О и HjS, но содержавшую очень мало свободного О2 или вообще не имевшего его. В этих восстановительных условиях органические молекулы, которые образовывались небиологическими способами, не могли разрушаться в результате окисления, как это происходит в наше время, а продолжали накапливаться в течение тысячелетий. Первые формы живых организмов, по-видимому, питались тем, что они могли извлечь из этого химического супа в океанах, и получали энергию путем разложения встречающихся в естественных условиях соединений с большим запасом свободной энергии. Скорее всего, lostridia и родственные ей бактерии сегодня являются живыми ископаемыми, потомками тех древних способных к ферментации анаэробов, которые отступили в редкие анаэробные области мира, когда атмосфера в целом накопила большие количества свободного Oj и приобрела окислительный характер. [c.334]

    Впадина Кариако представляет собой характерный бассейн указанного типа. Длина его около 240 м, ширина около 80 км. Расположен он у побережья Венесуэлы. Максимальная глубина достигает 1500 м. Этот бассейн окружен барьером высотой 200 м, затрудняющим водообмен с океаном, в результате чего ниже 200 м температура и соленость его становятся постоянными (16,9 °С и 36,6 °/ ) Однако только глубже 400 м в воде исчезают 0 и нитраты и появляется H S. В этой впадине была пробурена скважина, которая вскрыла осадки, представленные известковой глиной с большим количеством ОВ - около 2 % сухой массы. К сожалению, керн из верхней части осадков не был изучен, но, судя по приведенной характеристике газов в воде над впадиной, в ней отсутствовала верхняя окисленная зона, считающаяся основной зоной генерации СО , являющегося, по-видимому, источником жизнедеятельности метангенерирующих бактерий. Несмотря на отсутствие окислительной зоны в осадках рассмотренной скважины обнаружено большое количество как СН , так и СО , что свидетельствует об образовании значительных количеств СО не только в результате окисления ОВ, но и в большей мере в результате жизнедеятельности микроорганизмов при образовании 1TS. [c.50]

    В чем же заключается принципиальная разница между осадками, формировавшимися в бассейнах с нормальным, т.е. кислородным, режимом придонных вод и в бассейнах с придонным сероводородным заражением Такой пришшпиальной разницей является отсутствие окисленной зоны и зоны углекислого заражения в бассейнах с придонным сероводородным заражением. Вьшадение этих зон имеет громадное значение, так как именно в них при окислении ОВ происходит образование большого количества СО , который, как сейчас считается, является основным продуктом для жизнедеятельности метангенерирующих бактерий. Кроме того, в отложениях, формировавшихся в условиях придонного сероводородного заражения, отсутствуют окисные и карбонатные формы Ре и ряд иных соединений, образующихся лишь в окислительной обстановке. Таким образом, наличие сульфидных соединений Ре при отсутствии реакционноспособных окисных и карбонатных форм Ре является характерным признаком слоев, формировавшихся в условиях придонного сероводородного заражения. Однако всегда нужно помнить, что в отложе- [c.57]

    Не полностью используемый бактериями на окислительные процессы кислород обеспечивает протекание катодной деполяризационной реакции грунтовой коррозии стали в анаэробных условиях. Сероводород уменьшает перенапряжение водорода в кислых и слабокислых грунтах, облегчая протекание катодного процесса в этих условиях. Сульфид-ионы, действуя как депассиваторы, а также связывая железо в труднорастворимые и малозащитные сульфиды, растормаживают анодный процесс коррозии стали. По данным некоторых исследователей, скорость коррозионного разрушения стали при воздействии этих бактерий может возрастать в 20 раз. [c.388]

    Окисление нефти в недрах, на больших глубинах, атмосферным воздухом маловероятно, потому что нефть, всегда залегает в условиях восстановительной среды. Если бы воздух мог проходить толщу прикрывающих нефть пород, кислород его израсходовался бы еш,е до попадания в самую нефть на различные окислительные реакции минерального характера и на окисление рассеянного органического вещества, всегда содержащегося в осадочных породах. В связи с этим интересно, что выветривание каменного угля, сказывающееся например, на потере теплотворной способности, не распространяется глубже 50 м, даже в случае выхода пласта угля на поверхность. Известно также, что в поверхностных слоях почвы наблюдается полное отсутствие кислорода на совершенно незначительных глубинах. Осадочные породы являются своего рода фильтром, не пропускающим кислород воздуха в более глубокие слои. Все эти хорошо известные обстоятельства заставили искать иные пути заноса кислорода в недра, хранящие нефть. Много внимания уделялось в этом плане бактериальной деятельности. Преднолагается, что некоторые виды анаэробных бактерий, живущие в недрах, заимствуют необходимый им кислород из [c.155]

    Каталитический процесс окислительного карбонилирования алкинов в эфиры замещенных пропиоловых кислот (1) протекает в системе Pd(0A )2 -хинон - PPhr метанол - органический растворитель. Исследования проводились с использованием фе-нилацетилена - получаемый продукт метиловый эфир фенилпропиоловой кислоты (МЭФПК). Производные пропиоловой кислоты используются при синтезе лекарственных препаратов, подавляющих рост бактерий и грибков. [c.10]

    Уже давно известно, что большинсгво жиров при хранении, особенно ири доступе света и воздуха, прогоркает. Раньше были склонны считать, что прогорклый запах вызывается присутствием отщепленных жирных кислот. Однако новейшие работы Фирца и Штеркле, Халлера и Чирха показали, что при прогоркании протекают разнообразные процессы распада. Прогоркание ненасыщенных жиров может происходить прн действии света, кислорода воздуха и воды н в отсутствие бактерий или грибков. При этом ненасыщенные жирные кислоты, возможно также и рицинолевая кислота, в результате окислительных процессов распадаются с образованием альдегидов, кетонов и кислот. Насыщенные жирные кислоты в этих условиях не изменяются. [c.270]

    На патогенную микрофлору свет действует губительно. Бактерицидное действие на нее оказывают ультрафиолетовые лучи. Причиной бактернцидности света является усиление окислительных процессов. Это явление сравнивают с выцветанием красок. Считают, что свет действует и на цитоплазму самих бактерий, вызывая в пей фотохимические процессы, приводящие к смерти. [c.285]

    После работ Омелянского проводились систематические исследования механизма образования метана из органических и неорганических веществ. Сложность изучения метанообразующих микроорганизмов связана с тем, что оии являются строгими анаэробами, поэтому их чрезвычайно трудно изолировать. Кроме того, метановые бактерии очень медленно развиваются в культурах. Ряд исследователей связывают медленное развитие метановых бактерий в питательной среде с ее окислительно-восстановительными условиями. Установлена прямая зависимость механизма преобразования органического вещества от гНз среды. Так, при значении Ж2=12—12,9 разложение кальциевой соли муравьиной кислоты протекает с образованием водорода по следующей схеме (НС00)2Са-1-Н20->СаС0з + С02 + 2Н2. А при введении в систему газообразного водорода и значения гНг = 6—7 муравьиная кислота минерализуется с образованием метана по уравнению НСООН-Ь + ЗН2 >СН4 - - 2Н2О. [c.314]

    Дыхание микроорганизмов — совокупность биохимических окислительно-восстановительных процессов, необходимых для обеспечения энергетических потребностей в условиях их жизнедеятельности. Л. Пастер впервые установил способность некоторых микроорганизмов существовать без использования кислорода воздуха. По этому признаку все микроорганизмы делят на две группы аэробы и анаэробы. Аэробы нуждаются в кислороде для биохимических процесов внутри клеток (многие бактерии и микрогрибы). Анаэробы способны к дыханию без использования свободного кислорода. [c.16]

    Донные отложения могут несколько отличаться по составу и биологической активности. В иле часто присутствуют сульфатвосстанавливающие бактерии. Следует ожидать, что отсутствие окислительных агентов должно приводить к локальной потере пассивности и в результате к питтинговой н щелевой коррозии. Так п происходит в действительности. Как видно пз табл. 19 (испытания в Тихом океане у побережья Калифорнии), в большинстве случаев наблюдается примерно одинаковое коррозионное поведение сплава в июле и в расположенных непосредственно над ним слоях воды. [c.64]

    В.А. Гриненко показали, что высокая минерализация и восстановительная обстановка приводят к облегчению и.с.у. Этому способствует, с одной стороны, практически неограниченный запас сульфата в воде, а с другой — низкая (на 2—3 порядка ниже, чем в пресноводных бассейнах, по С.С. Беляеву, А.Ю. Лейн, М.В. Иванову), скорость сульфат-редукции. Известно, что эффект фракционирования изотопов серы находится в обратной зависимости от скорости сульфатредукции. Поскольку сульфатредуцирующие бактерии строго анаэробны, то окислительная обстановка практически исключает сульфатредукцию. Кроме того, окислительные условия часто сопутствуют опресненным бассейнам. В совокупности с высокой скоростью сульфатредукции все это приводит к формированию ОВ с тяжель1м изотопным составом серы. [c.71]

    Анаэробные бактерии способны восстанавливать пролин в 5-амино-валерат [уравнение (8-34)], сопрягая эту реакцию с окислительным распадом другой аминокислоты (реакция Стикленда). [c.103]

    Интересно, что подобное же биохимическое нарушение было отмечено у одной мутантной формы Ba illus subtilis . В клеточной оболочке этих бактерий обязательно должны содержаться жирные кислоты с разветвленной цепью (гл. 5, разд. А, 4), а для их синтеза исходным материалом служат СоА-производные разветвленных жирных кислот (гл. 12, разд. Д). Если блокировано окислительное декарбоксилиро-ванне необходимых для этого кетокислот, то мутанты могут расти лишь в среде, содержащей добавленные разветвленные жирные кислоты. [c.117]

    С. всех изученных организмов прочно связаны с внутр. мембраной митохондрий (высшие животные, дрожжи) или плазматич. мембраной (бактерии и синезеленые водоросли), являясь компонентами электронотранспортной дьпсат. цепи (см. Дыхание, Окислительное фосфорилирование). [c.451]


Смотреть страницы где упоминается термин Окислительное у бактерий: [c.140]    [c.91]    [c.350]    [c.70]    [c.89]    [c.99]    [c.122]    [c.196]    [c.156]    [c.35]    [c.629]    [c.139]    [c.142]   
Основы биохимии Т 1,2,3 (1985) -- [ c.713 ]




ПОИСК







© 2025 chem21.info Реклама на сайте