Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активный разрушение углеводородов

    Важная, роль в процессе разрушения нефтяной эмульсии принадлежит дгэмульгаторам, в качестве которых используются поверхностно-ак-тивные вещества (ПАВ). ПАВ обладают способностью изменять фазовые взаимодействия на различных поверхностях раздела. Такая активность обусловлена химическим строением ПАВ, одаа часть молекулы которого имеет сродство к углеводородам (гидрофобная), а другая - к воде (гидрофильная). На поверхности раздела нефть - вода полярная часть молекулы ПАВ, обладающая гидрофильными свойствами, погружена в воду, а неполярная гидрофобная - в нефть. В зависимости от величины и расположения этих частей изменяются и свойства ПАВ как деэмульгаторов,  [c.128]


    Контакт воды с металлической поверхностью приводит к коррозии металлов, протекающей по электрохимическому механизму. Величина водонефтяного соотношения, характерного для конкретного месторождения, при котором система нефть — вода становится неустойчивой, может быть использована в качестве параметра для прогнозирования скорости коррозионного разрушения оборудования. Углеводороды практически не вызывают коррозию металлов. Однако неполярная фаза в системе нефть — вода оказывает значительное влияние на коррозионную активность водонефтяной системы в целом, повышая или понижая ее. Повышение защитного действия углеводородной составляющей в эмульсионной системе вода — нефть связано в основном с ингибирующими свойствами ПАВ, входящими в природную нефть. Наиболее активные ПАВ — нафтеновые н алифатические кислоты и асфальтосмолистые вещества. Содержание ПАВ в нефтях различных месторождений колеблется в широких пределах. Молекулы нафтеновых и алифатических кислот состоят из неполярной части — углеводородного радикала и полярной части карбоксильной группы, что обусловливает их способность адсорбироваться на границе раздела фаз. Соли нафтеновых кислог более полярны, чем сами кислоты, и более поверхностно-активны. Величина поверхностного натяжения на границе раздела вода — очищенная фракция нефти (например, вазелиновое масло или очищенный керосин) составляет 50—55 мН/м, в то время как поверхностное натяжение на границе раздела вода — сырая нефть не превышает 20—25 мН/м. Это свидетельствует об адсорбции поверхностно-активных компонентов нефти на границе раздела сырая нефть—вода. В щелочной пластовой воде происходит реакция взаимодействия нафтеновой кислоты с ионом щелочного металла. Образующееся соединение более поверхностно-активно, чем нафтеновые кислоты. [c.122]

    Отметим, что образуюш,ийся в ходе каталитических реакций превращения углеводородов (дегидрирования, гидрокрекинга и т. д.) кокс может снижать активность катализатора в отношении основной реакции как за счет хемосорбции самого кокса на активных центрах и их дезактивации, так и в результате изменения макроструктуры катализатора, блокирования устьев пор и активной поверхности. Открыт новый вид разрушения катализатора при дендритном механизме образования кокса, названный каталитической эрозией [24] при росте дендритов на никелевой пластине последняя подвергается разрушению. Частицы никеля уносятся первичными дендритами, а пластина убывает в массе вплоть до полного разрушения. Унос отдельных компонентов обнаружен также в случае эрозии алюмохромового катализатора дегидрирования бутана. Однако пока еще не доказано, что этот механизм влияния кокса на наблюдаемую активность катализаторов является доминирующим более вероятно, что роль кокса сводится к усилению диффузионного торможения основной реакции в порах и на поверхности зерна (см. 5.4). [c.108]


    Причины такого избирательного действия на битум клеток, выросших в указанных условиях, объясняют по-разному. По одному из объяснений, в процессе окисления углеводорода принимают участие энзимы микроорганизма. Но эти адаптированные энзимы образуются клеткой только в присутствии углеводородного материала. С другой стороны, энзимы, окисляющие глюкозу, присутствуют всегда, и, следовательно, их активность не зависит от наличия подложки. Если это так, то среда глюкоза — углеводород должна дать кривую роста, состоящую из двух частей. Первая часть представит потребление глюкозы, а вторая, следующая за областью адаптационного уменьшения роста, будет представлять разрушение углеводорода. [c.184]

    Доказано, что интенсифицированная биологическая активность направлена на разрушение углеводородов. При этом почвы обогащаются азотом, воспринимаемым растениями, быстро переходящим из неорганической в органическую форму. Это обстоятельство облегчает синтез протеинов, в результате чего улучшаются питательные качества растительных культур. Показано также улучшение агрономических характеристик почв в результате обработки, в частности, повышение урожайности. [c.165]

    Основными опасностями процесса хлорирования являются высокая экзотермичность реакций и активность хлора при взаимодействии с ацетиленом и другими непредельными углеводородами. Известны многочисленные аварии, вызванные случайным смешением ацетилена с хлором. При этом активное присоединение хлора по ненасыщенным связям и сильный разогрев среды инциировали-взрывной распад ацетилена. В ряде случаев аварии сопровождались разрушением технологического оборудования и хранилищ хлора. [c.349]

    Эти исследования показали, что при обеспечении условий, повышающих активность процесса микробиального разрушения углеводородов, т. е. при активном перемешивании и аэрации и при наличии необходимых количеств питательных веществ, биохимическая доочистка сточных вод, содержащих до 50—60 мг[л нефти и нефтепродуктов, может быть также осуществлена в аэро-тенках или в более простых сооружениях — аэрируемых биологических прудах (при благоприятных климатических условиях). [c.110]

    Участие поверхности в парофазном частичном окислении парафиновых угловодородов заключается обычно либо в образовании активных центров, либо в разрушении некоторых активных центров. Имеется много данных, свидетельствующих о протекании на поверхности раз-.личных реакций рекомбинации радикалов. С другой стороны, образование продуктов частичного окисления почти никогда но происходит в результате процессов хемисорбции парафиновых углеводородов и -кислорода на каталитической поверхности с последующей химической трансформацией на поверхности и десорбцией, образовавшихся стабильных продуктов в газовую фазу. Реакции, подобные конверсии этилена до окиси этилена на серебряных катализаторах, не обнаружены в случае окисления парафиновых углеводородов. Вместо этого такие обычные катализаторы окисления, как например, окислы металлов переменной валент- [c.320]

    Рассмотренный механизм термокаталитической конверсии углеводородов в присутствии водяного пара включает в себя образование и разрушение промежуточных соединений катализаторов с кислородом. В соответствии с этим в цитируемых работах надежно установлено, что относительная активность веществ в отношении различных реакций с участием кислорода определяется главным образом энергией связи кислорода с катализатором q5. Общая закономерность, установленная в подавляющем большинстве указан- [c.12]

    Таким образом, сернистые соединения, обладая большим сродством к поверхности катализатора, содержащего активный кислород, взаимодействуют с ней в первую очередь с образованием сульфонового комплекса, который характеризуется, как показывают экспериментальные данные, более высокой устойчивостью, чем карбоксилатный комплекс, при температурах 500-б00°С. При более высоких температурах (700°С) скорость разрушения сульфонового комплекса с образованием 502 существенно (в 4-7 раз) возрастает, тем самым обеспечивая доступ к окислительным центрам другим углеводородам. Этим обусловлено сближение кривых скоростей образования СО2 для различных видов сырья при температуре 700 С. В этих условиях сернистые соединения перестают выполнять свою ингибирующую роль и сульфоновые комплексы разрушаются с образованием 502. [c.24]

    Следует отметить еще одну особенность этилированных бензинов. Действие солнечного света ускоряет окисление бензина и ТЭС. Но степень воздействия света на ТЭС очевидно выше, чем на бензин. Поэтому в этилированных бензинах, подверженных действию солнечного с ета, в первую очередь окисляется ТЭС, и осадок свинцовых соединений появляется весьма быстро. Можно полагать, что окисление углеводородов и неуглеводородных примесей в этом случае несколько затормаживается вследствие того, что ТЭС и продукты его распада под действием света более активно реагируют с кислородом и перекисями. Разрушение перекисных соединений обрывает реакционные цепи и задерживает смолообразование. [c.249]


    Таким образом, процесс простого распада углеводородов на более мелкие молекулы при температурах от 50 °С и выше и относительно малом времени контакта над активным алюмосиликатом, например флоридином, может не сопровождаться термическими реакциями глубокого разрушения. [c.46]

    Отравление катализатора серой возможно из-за нарушения режима в системе очистки от сернистых соединений. При подобном непродолжительном нарушении катализатор в течение нескольких суток постепенно восстанавливает свою активность. Условия регенерации катализаторов, отравленных серой, рассмотрены в работе [33]. При отравлении катализатора серой нарушается кинетическое равновесие реакции образования и газификации углеводорода, что может привести к отложению углерода на катализаторе и разрушению последнего. [c.84]

    Рассмотрим еще один вариант газовых выбросов, содержащих углеводородные примеси, наиболее часто встречающиеся в промышленности. Во многих производствах возникают как плановые, так и неплановые залповые выбросы, приводящие к резкому возрастанию средних значений концентрации углеводородов в газе от нескольких раз до десятков раз. При частых повышениях концентрации углеводородов в газе происходит быстрое разрушение катализаторной пленки, теряется его активность. [c.310]

    Известно, что остаточные нефтепродукты, в частности остатки вакуумной перегонки нефти — гудроны, проявляют в некоторых случаях значительную депрессор-ную активность по отношению к парафиносодержащим нефтяным системам. В этих случаях взаимодействие парафиновых углеводородов и смолисто-асфальтеновых соединений приводит в различных сочетаниях к формированию либо разрушению структурных элементов нефтяной системы. Наличие смолисто-асфальтеновых соединений может привести к образованию коагуляционных каркасов различной прочности, способных удерживать часть легкокипящих компонентов нефтяной системы даже в ус- [c.204]

    Пример коррозии в неэлектролитах — наиболее распространенная в технике коррозия в жидком топливе, например разрушение цилиндров двигателей внутреннего сгорания. Сами по себе чистые углеводороды не разрушают металлы. Их коррозионное действие обусловлено примесями, особенно серой и ее соединениями. При сгорании топлива соединения серы превращаются в ЗОг и ЗОд, являющиеся коррозионно-активными веществами. [c.223]

    Продукты глубокой полимеризации пропилена постепенно блокируют активные центры катализатора и, возможно, способствуют также механическому его разрушению вследствие их расклинивающего действия на кристаллическую структуру. При увеличении давления возрастает количество углеводородов, находящихся в жидкой фазе. Эти углеводороды, видимо, оказывают очищающее действие на катализатор, удаляя с его поверхности неизбежно образующиеся при полимеризации высокомолекулярные смолы, хорошо растворимые в жидких углеводородах. Этому также способствует использование рециркуляции легких полимеров. [c.405]

    Таким образом, при существующих параметрах регенерации (Р=7,0-7,5 МПа 1=180-200°С) не обеспечивается десорбция наиболее высококипящей части тяжелых углеводородов и происходит их постепенное накапливание в активном слое адсорбента. Для более полной десорбции поглощенных углеводородов необходимо повышение температуры регенерации до 300-350°С. Однако возможности повышения температуры ограничены техническими характеристиками печей газа регенерации и механической прочностью самого адсорбционного оборудования. Кроме того, это мероприятие представляется нерациональным как из-за возможного разрушения гранул силикагеля, так и повышения эксплуатационных затрат. [c.49]

    Как указывалось выше, к основным загрязнителям атмосферного воздуха, определяющим увеличение трансграничных загрязнений, выпадение кислотных дождей, разрушение озонового слоя, накопление в атмосфере токсичных и химически активных веществ относятся диоксиды серы и азота, оксид углерода, углеводороды, твердые вещества. [c.198]

    Значительно многообразнее причины снижения активности твердых катализаторов. Твердые катализаторы претерпевают как физические, так и химические изменения. При длительном воздействии температуры происходит рекристаллизация металлов, приводящая к изменению удельной поверхности катализа тора или числа активных центров. Для повышения устойчивости катализаторов к рекристаллизации в его состав вводят небольшие добавки веществ — структурообразующих промоторов, снижающих скорость рекристаллизации. Механические и термические воздействия приводят также к постепенному разрушению гранул катализатора. Химические изменения катализаторов вызваны хемосорбцией на их поверхности примесей к сырью или продуктов их разложения. Примеси, отравляющие катализатор, называются ядами. В процессах нефтепереработки ими обычно являются соединения серы, азота и других гетероатомов, а также металлорганические соединения, содержащиеся в сырье. При каталитической переработке углеводородов на поверхности катализатора постепенно накапливается кокс. Отложения кокса, покрывая активную поверхность катализатора, прекращают доступ к ней молекул сырья. Удаление коксовых отложений с поверхности катализатора Осуществляют [c.328]

    В качестве разновидности плазмохимического воздействия можно рассмотреть низковольтный искровой разряд, создаваемый в среде жидкого диэлектрика и обладающий способностью интенсивно разрушать твердые токопроводящие материалы. В искровом канале и на поверхности электродов плотность тока чрезвычайно велика и достигает величины 10 —10 А/мм . Развиваемая при этом температура способна превратить в пар любой тугоплавкий металл или сплав. Но такие разрушения локализованы на малых участках, а сами высокотемпературные импульсы кратковременны (10 3—10- с). Благодаря этому окружающая среда остается жидкой, подвергаясь разрушению лишь в искровом канале. Возникает своего рода плазма в жидкости —частицы металла превращаются в пар илн расплав и, выбрасываясь в жидкий диэлектрик, активно взаимодействуют с компонентами последнего, образуя разнообразные продукты. В качестве диэлектрических сред используются чаще всего углеводороды либо в чистом виде (гептан, бензол), либо в хлорированном состоянии (тетрахлорид углерода, хлороформ, дихлорэтан). [c.98]

    Среди карбонатных комплексов наиболее крупные скопления углеводородов приурочены к тем из них, которые содержат рифогенные тела. Внутреннее строение рифовых массивов сложное. Сами рифовые тела резко выделяются в рельефе поверхности комплекса. Относительное превышение вершин массивов может достигать 1—2 км. В целом риф является резервуаром массивного типа, но внутри него зоны отличаются друг от друга. Это прежде всего ядро рифового массива, его склоны, сложенные скелетными остатками разных организмов. Кроме того, вьщеляется так называемый обломочный шлейф в нижней части склона, образованный при разрушении рифа абразией, а между рифовых массивов — депрессионные фации, сложенные тонкозернистым глинисто-карбонатным материалом. Породы во всех этих частях имеют различную структуру и свойства. Внутри ядра породы, сложенные скелетами разных организмов, также различаются по своей структуре. В рифах формируются субгоризонтальные протяженные зоны или горизонты, в которых породы были выщелочены и промыты в зонах наиболее активного воздействия различных агентов, например при выходе рифа выше уровня моря. Это горизонты развития так называемых ситчатых известняков с очень высокой пустотностью. Из этих зон получают особенно высокие объемы нефти — тысячи тонн в сутки (ряд месторождений Ближнего Востока и Мексики). По форме рифы бывают более или менее изометрические куполовидные или с несколькими куполами на одном основании, вытянутые или кольцевые (типа атоллов). [c.243]

    Влияние примесей, содержащихся в бензинах, ва активность ката Дизатора риформинга. Сернистые соединения в прямогоншлх бензинах представлены в основном меркаптанами, ди- и пояисудь-фидами. В продуктах вторичного происхождения (бензины коксования, термокрекинга, отгоны гидроочистки дизельного топлива) среди сернистых соединений заметную роль играют циклические соединения — тиофены. Соединения первого типа легко гидрируются до сероводорода и соответствующих углеводородов, циклические сернистые соединения типа тиофена гидрируются с трудом, и для их разрушения требуются более жесткие условия процесса. [c.25]

    Способность ТЭС предотвращать детонацию объясняют с позиций перекисной теории окисления. При высоких температурах в камере сгорания ТЭС разлагается на очень активные свинцовые и этильные радикалы, способные вступать в реакции с перекисями, разрушая их. При этом образуются малоактивные продукты окисления углеводородов л окись свинца. Окись свинца, взаимодействуя с кислородом воздуха, снова окисляется в двуокись св1инца, способную реагировать с новой перекисной молекулой. Таким образом, один атом свинца, восстанавливаясь и окисляясь, способен разрушит , большое число перекисных молекул. Каждая разрушенная перекисная молекула, согласно цепной теории детонации, могла быть началом самостоятельной цепи образования новых перекисей. Этим объясняется высокая эффективность малых количеств ТЭС в подавлении детонации, в повышении 6кта ового числа бензинов. [c.288]

    Антиокислители. Наиболее эффективные антиокислители найдены среди фенолов, аминов и аминофенолов. Антиокислители добавляют во многие топлива в количестве от тысячных до десятых долей процента. Действие их основано на разрушении активных перекисных радикалов с образованием малоактивных продуктов. Обрыв цепей окислительных реакций углеводородов и неуглеводородных примесей 1поз(воляет затормозить процесс окисления топлива, увеличить индукционный период окисления. [c.292]

    Некоторые микроорганизмы хорошо развиваются в среде жидкого нефтяного топлива. В настоящее время известны уже сотни видов таких грибков и бактерий. Их жизнедеятельность основана на усваивании углеводородов. Эти микроорганизмы вызывают различные неполадки при эксплуатации реактивных самолетов (забивка датчиков, фильтров, разрушение защитных покрытий, коррозия топливных баков и другие). Это стало серьезной опасностью. Одной из эффективных мер защиты от микроорганизмов является применений биоцидных присадок, которые парализуют активность микроорганизмов. В качестве присадок этого типа применяют химические соединения, обладающие антисептическими, бактерицидными свойствами например, фенолы, аминофенолы, борные эфиры, гликольбораты и различные комбинированные патентованные присадки. [c.92]

    Скорость детоксикации экзогенных химических соединений в почве в значительной степени зависит от их стабильности. Изучение стабильности ряда препаратов в почве показывает, что для деструкции гептахлора на 95% требуется 3—5 лет, линдана —3—10 лет, а ДДТ — от 4 до 30 лет (25). В. А. Медведь и В. Д. Давыдова (26) обнаружили, что фенолы в черноземной почве разрушаются без об-разован.чя токсичных и устойчивых продуктов превращения. В пахотном слое фенол в концентрации 1 —10 г/кг разрушается в течение 16 дней, однако в более глубоких горизонтах (материнской породе) в тех же концентрациях он сохраняется свыше 40 дней. Наиболее высокой скоростью разрушения в почве отличаются двухатомные фенолы. Результаты изучения стабильности бенз(а)пирена, так называемого индикаторного загрязнения окружающей среды канцерогенными углеводородами, показали, что деструкция его в почве находится в определенной зависимости от ее pH, типа и концентрации ве[цества. Наибольшее количество канцерогена разрушается в первые 10 суток, в дальнейшем его деструкция значительно замедляется. Длительное сохранение в почве остаточных количеств бенз(а)пирена указывает на стабильность вещества, а при наличии постоянных источников загрязнения обусловливает возможность накопления его в почвах. При изучении влияния бенз(а)пирена, фенолов и др. препаратов на почвенную микрофлору и биологическую ее активность показало, что [c.82]

    Предотвращение образования горючей среды в надпонтонном пространстве может быть обеспечено посредством устройства естественной вентиляции. За рубежом на крышах резервуаров с понтонами устанавливают люки из стеклопластиков с добавкой ингибиторов, предохраняющих их от разрушения ультрафиолетовыми лучами. Люки устанавливают через 7,5 м по периметру крыши. В свою очередь, активное вентилирование приводит к возрастанию испарения паров углеводородов через кольцевой зазор резервуара. Для снижения воздействия ветровой нагрузки на кольцевой зазор и соответственно для уменьшения интенсивности испарения устраивают дополнительно вторичные уплотнения затвора. При использо- [c.18]

    Помимо высокой адгезии к металлу, профилактическое средство должно предохранять металлическую поверхность транспортного оборудования от коррозии, иметь низкую испаряемость и стабильность при хранении. Исследования коррозионной активности базовых основ и изучаемых составов по отношению к металлической поверхности показали, что образцы профилактической смазки на основе продуктов нефтепереработки и нефтехимии в своем составе имеют значительное количество углеводородов и асфальто-смолистых веш,еств, которые при контакте с металлической поверхностью адсорбируются на ней и образуют прочные хемосорбционные пленки предохраняющие металл от коррозии. Коэффициенты коррозии опытных образцов с течением времени изменились незначительно (рис. 7, 8), что говорит об отсутствии коррозионной активности по отношению к стальным пластинам. При визуальном осмотре на металле следы коррозии не обнаружены. Необходимость детального изучения указанных параметров профилактической смазки обусловлена спецификой их эксплуатации. Профилактическая смазка должна быть достаточно текучей, при распыливании через форсунки происходит разрушение структуры смазки, для быстрого восстановления при адсорбции на металлической поверхности профилактическая смазка должна иметь достаточно высокие структурномеханические свойства. Анализ полученных на Реотест-2 данных показывает, что разрабатываемые и опытные образцы профилактической смазки в исследуемом интервале температур (от 20 до минус 45 °С) являются вязкопластичными жидкостями. Для полученных композиций были построены графики зависимости структурных вязкостей Г1тах Лт1п Лэфф от температуры. Представленные зависимости характеризуются наличием экстремумов, свойственных фазовым переходам углеводородных дисперсных систем. Все исследуемые смеси на нефтяной и нефтехимических основах при содержании от 1 до 20% ТНО, в области положительных и отрицательных температур, являются слабо-структурированными дисперсными системами. Они по своим прочностным и вязкостным характеристикам [c.19]

    Фактором, определяющим силу взаимодействия между двумя молекулами, возможно, даже более важным, чем водородная связь или электростатическое притяжение, является гидрофобное связывание [8,84]. Молекулы или части молекул, недостаточно сольватируемые водой, разрушают сеть водородных связей, составляющую структуру растворителя. Это разрушение снижается в случае сближения таких молекул, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой. Углеводороды, например, образуют отдельную вторую фазу, в то время как детергенты, обычно представляющие собой длннноце-почечные углеводороды с полярными группами с одного конца, образуют мицеллы [9]. Последние представляют собой шарообразные агрегаты молекул с заряженными концевыми группами на поверхности, сольватпрованными водой и с углеводородными цепочками внутри, в контакте только друг с другом. Маленькие неполярные участки или полости на поверхности белка также слабо сольватированы водой, однако они не контролируют состояния агрегации молекулы в целом. Эти участки могут, однако, взаимодействовать с гидрофобными молекулами или частями молекул близкого размера, соединяясь с ними, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой, как это указано выше. При обсуждении трехмерной структуры химотрипсина уже рассматривался пример такого рода (см. с. 488). Вблизи активного центра этого фермента располагается образованный гидрофобными группами карман [46], размер которого позволяет связыванию в нем индольного бокового радикала остатка триптофана. Сам индол прочно связывается в этом кармане (энергия связывания 60 кДж-моль ) [88]. Селективность действия химотрипсина в отношении той или иной пептидной связи в большой степени определяется комплементарно-стью соответствующего бокового радикала аминокислоты этому гидрофобному карману. [c.505]

    Вода, являясь неизбежным продуктом окисления углеводородов, может оказывать воздействие на кинетику и химизм происходящих реакций. В качестве растворителя в процессе окисления ксилолов (см. с. 20) используют преимущественно уксусную кислоту, содержащую от 2 до 10% воды. О концентрации последней имеются противоречивые данные. В одних случаях предлагается использовать уксусную кислоту с минимальным количеством воды и выводить реакционную воду, образующуюся в процессе окисления -ксилола, из реакционной зоны в целях исключения возможности высаждения катализатора [115]. В других работах объясняется ингибирующее действие воды при этом приводятся примеры жидкофазного окисления алкилбензолов и нафталинов, связанные с разрушением активного кобальтбромидного комплекса [116, 117]. Отмечено также [118], что торможение процесса возможно вследствие образования аквакомплексов из кобальта и воды, которые с точки зрения каталитической активности являются индифферентными и снижают таким образом концентрацию активных комплексов кобальта 119]. Кроме того, в процессе образования аква-комплексов возможна дезактивация пероксидных радикалов. [c.36]

    Наиболее широко были изучены процессы карбидообразова-Н1 Я при электроискровом разрушении металлов подгрупп титана, ванадия и хрома, а также семейства железа в углеродсодержащих жидких диэлектриках. Полученные в искровых разрядах продукты характеризуются высокой дисперсностью. Например, диспергируя ферромагнитные металлы в углеводородах при мягком режиме искрового разряда, удалось получить ферро-магнетизированиую сажу , которая широко используется для извлечения благороднтлх металлов. Полученные в низковольтном разряде дисперсные металлы (например, цирконий) настолько активны, что самопроизвольно возгораются при 150—170°С. Помимо карбидов, низковольтный разряд широко используется для получения хлоридных продуктов в среде четыреххлористого углерода. В отличие от обычного высокотемпературного хлорирования хлорирование в разряде приводит к одновременному образованию всех известных хлоридов данного металла. [c.98]

    По мнению Б. Тиссо и Д. Вельте, первичная миграция углеводородов в виде мицеллярных растворов наиболее вероятна на глубинах 1,5-2 км. К такому заключению они приходят, исходя из того, что на этих глубинах раскрытость каналов еще позволяет мицеллам перемещаться по ним в водах отложений на этих глубинах еще достаточно много поверхностно-активных компонентов. При снижении количества поровых вод при погружении пород возможность образования мицеллярных растворов уменьшается. Мицеллярные коллоидные растворы подвержены соответствующим физико-химическим законам, в частности явлению коагуляции, которая происходит при смене характера среды, температуры, концентрации раствора и т.д. В какой-то степени коагуляция, возникновение хлопьев может, конечно, и затруднять первичную миграцию, но, вероятнее всего, образование хлопьев происходит на основной геохимической границе материнская порода-коллектор. Здесь чаще всего изменяется характер среды и возможно вьщеление углеводородов при смешении мицеллярных растворов с водами коллектора. При разрушении мицелл и вьще-лении углеводородов в воде образуется эмульсия. Т.П. Жузе отмечает, что мицеллярные растворы могли играть заметную роль для протекания первичной миграции в Западной Сибири, так как здесь подземные воды богаты поверхностно-активными веществами, в том числе карбоновыми кислотами. [c.208]

    Фостера [117]. Область pH 4—9, соответствующая нагивиому состоянию белка -глобулина (минимальные значения вязкости и оптической активности), характеризуется постоянной связывающей способностью белка по отношению к бензолу. Увеличения вязкости и оптического вращения при pH > 9 и < 4 свидетельствуют о глубоких конформационных изменениях в структуре белка. Эти изменения вызывают уменьшение связывания бензола в интервалах pH 9—10 и 4—2, Однако области при pH < 2 и pH > 11 характеризуются возрастанием величины связывания [бензола. В нативном состоянии связывание углеводорода определяется числом и размерами гидрофобных областей. При отклонении в более щелочные и кислые области осуществляется переход из нативного состояния вследствие отталкивания одноименных зарядов в состояние расширенное , характеризующееся раскрытием гидрофобных складок (подобно -форме сывороточного альбумина). Авторы [118] предполагают, что уменьшение связывания углеводородов сывороточным альбумином в результате перехода N Р вызывается частичным разделением четырех субъединиц и разрушением гидрофобных областей, которые расположены в интерфазах этих субъединиц. [c.26]


Смотреть страницы где упоминается термин Активный разрушение углеводородов: [c.60]    [c.238]    [c.238]    [c.241]    [c.21]    [c.108]    [c.91]    [c.155]    [c.276]    [c.300]    [c.171]    [c.26]    [c.281]   
Очистка сточных вод предприятий хлорной промышленности (1978) -- [ c.34 ]




ПОИСК







© 2025 chem21.info Реклама на сайте