Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эволюция физическая

    Проблемы, с которыми сталкивается применение вычислительных методов в химической кинетике, и уравнения, на которых оно основано, встречаются весьма часто и при анализе широкого круга задач эволюции физических, химических, биологических систем, экологических сообществ, популяций и т. п. Это позволяет надеяться, что книга будет представлять интерес не только для специалистов в области вычислительных методов в химической кинетике. [c.3]


    Уже из названия книги следует, что автор предлагает новый подход к проблеме эволюции живых организмов. Новизна его подхода состоит в том, что эволюция рассматривается как нечто общее, присущее материи в целом, а не только ее биологической форме. В современной физике предполагается, что множество элементарных форм и функций материи ограничено, а новые формы и функции появляются лишь в результате комбинаций и превращений базисных форм и функций. По мнению автора книги, биологическая эволюция, в свою очередь, есть канализированное продолжение эволюции физического мира, суть которой состоит в комбинировании и наложении друг на друга (суперпозиции) ограниченного числа исходных форм и функций. Появление новых форм (видов) обусловлено внутренней нестабильностью, повышающей частоту перебора возможных вариантов. При этом новые варианты отбираются (автор протестует против этого термина) по законам внутренней симметрии и под давлением окружающей среды. Эволюция же направлена на стабилизацию получающихся вариантов. [c.5]

    И наконец, рассмотрим главный генетический ряд № О, более содержательный по своей физической сути. Он характерен тем, что ядра его атомов имеют равное число р" и N. Надо иметь в виду, что в основе эволюции атомов в нем лежит реакция о-распада, т. е. испускание (поглощение) ядра атома гелия оНе. Это означает, что его шаг по оси А составляет четыре единицы, а по оси р — две. Из-за ограниченности габаритов рисунка этот ряд усечен с обоих концов. Но по оставшейся части можно сделать некоторые предварительные выводы  [c.130]

    Я. И. Михайленко — ученик химической школы, возглавляемой гениальным русским ученым Д. И. Менделеевым. Родился Яков Иванович 18 октября 1864 г. в Киеве. После успешного окончания Киевского университета началась его научно-педагогическая деятельность . Его познания в области химии были энциклопедичны. Он читал курсы общей, неорганической, органической, аналитической и физической химии. Научно-исследовательская деятельность Я. И. Михайленко отличалась большой многогранностью. Круг его научных исканий обширен. Исследования Я. И. Михайленко были посвящены той области химической науки (эволюция представлений о строении атомов и молекул теория окислительновосстановительных процессов химия комплексных соединений, теория растворов и т. п.), которая предопределила бурное развитие всех областей химии в последующие годы. [c.3]

    Это тем более удивительно, что мир неживых систем и царство жизни связаны с постоянным обменом и один и тот же атом имеет шансы много раз стать составной частью и организма, и минерала, и земной атмосферы (В. И. Вернадский). Несомненно, однако, что устойчивость динамических организаций увеличивалась по мере их усложнения. Способность выдерживать физические и химические атаки внешней среды (например, повышение давления, колебания температуры, кислотности среды и т. п.) у живых существ выражена более отчетливо, чем у относительно просто построенных систем неживой природы. Такие процессы, как растворение, выветривание, эрозия, существенно изменяющие неживые системы, не оказывают разрушительного действия на живую материю во всем разнообразии ее форм. Химический состав и важнейшие последовательности реакций в живых системах мало изменялись на всем протяжении колоссального пути биологической эволюции. Это значит, что химическая эволюция в одних определенных условиях может завершиться примитивной стадией кристаллизации, а в других дать начало синтезу усложняющихся организаций, в которых механизмы, обеспечивающие устойчивость, строятся из одних и тех же химических фрагментов (белков, ферментов, липидов и др.), но выполняют все более тонкие и специфические функции. [c.7]


    Это значит, что Вселенная эволюционирует, развивается. Для нас важен этап ее химической эволюции возникновение и развитие химической формы движения материи-, возникновение ее из физической и развитие до биологических форм. [c.4]

    Периодический закон и периодическая система оказали неоценимую услугу для развития теории строения атома. В свою очередь, познание строения атома привело к эволюции как периодического закона, так и периодической системы. Наряду с установлением новой фундаментальной величины — положительного заряда ядра атома — и совпадением его с порядковым номером элемента в таблице Д. И. Менделеева, наряду с раскрытием физического смысла периодического закона, или причин периодичности, появилась возможность открытия целой плеяды новых элементов и конструирования периодов таблицы. [c.99]

    Принцип эволюции является модификацией принципа Карно-Клаузиуса. Это означает, что эволюция замкнутой системы связана с возрастанием ее энтропии. Другими словами, наиболее вероятным состоянием замкнутой системы является состояние хаоса, т.е максимальной степени неупорядоченности. Естественно, что хаос рассматривается здесь в физическом и термодинамическом аспектах. Это состояние характеризуется отсутствием структурной организации материи, ее предельной гомогенностью. [c.19]

    В ходе атмосферного переноса аэрозольные частицы вступают с окружающей средой во взаимодействие, в результате которого изменяются их физические, химические и токсикологические характеристики. К основным процессам, определяющим эволюцию аэрозолей, можно причислить воздействие радиации, адсорбцию и абсорбцию газовых компонентов (здесь речь не идет об уже рассмотренном коагуляционном росте частиц). [c.142]

    Ход эволюционного процесса на Земле непредсказуем и неуправляем человеком еще по одной объективной причине, имеющей вселенское значение. Наша планета как подсистема входит в космическую систему мироздания, солнечную систему. Эффективное воздействие на нее многочисленных физических факторов внешней среды и привело к возникновению жизни и повлияло на всю последующую эволюцию биосферы. А.Л. Чижевский пришел к выводу, что излучения "связывают наружные части Земли непосредственно с космической средой, роднят ее с нею, постоянно взаимодействуют с нею, а потому и наружный лик Земли, и жизнь, наполняющая его, являются результатом творческого воздействия космических сил. А потому и строение земной оболочки, ее физико-химия и биосфера являются проявлением строения и механики Вселенной" [39. [c.43]

    Эволюционные концепции в физике и биологии базировались на огромном опытном материале. Но так как между физическими и биологическими экспериментами долгое время не находили прямых связей, и одна концепция касалась явлений только неорганического мира, а другая - только мира растений и животных, утвердилось представление, имевшее до середины XX в. повсеместное распространение, о несовместимости законов физики и биологии, особой сущности живой природы. Эволюционные процессы самоорганизации биосистем, не обнаруживаемые в неживых системах и не находившие естественнонаучного объяснения, представлялись загадочными и поражали воображение ученых и философов. Через 50 лет после выхода в свет "Происхождения видов" Ч. Дарвина С. Булгаков писал Теория эволюции вводит нас, сама того не замечая, в мир чудес, в мир нового непрерывного творения, в мир постоянных преобразований. Теория эволюции устанавливает лишь порядок становления нового создания, и, описывая эти условия, она делает нас нечувствительными к тому, что мы живем в атмосфере непрерывного чуда. Разве не чудо, не новое творение - появление жизни на нашей планете, новых видов, наконец, культуры ... Центр вопроса состоит именно в том, где же искать мирового демиурга, творящего эту "естественную необходимость" [37. С. 50]. [c.48]

    Рассмотрен подход к решению обратной структурной задачи, основанный на физической конформационной теории природных пептидов и белков, прежде всего оценке особой роли ближних взаимодействий в их структурной организации и использовании классификации пептидных структур на шейпы, формы и конформации. Показано, что можно добиться целенаправленного и контролируемого изменения структуры пептида за счет ближних взаимодействий простыми средствами, выработанными в процессе эволюции органического мира. Изложенный в книге подход к решению обратной задачи позволяет заранее, еще до синтеза и биологических испытаний целенаправленно конструировать модели искусственных аналогов, пространственные структуры которых отвечают низкоэнергетическим и физиологически активным конформационным состояниям природного пептида. Возможности теоретического моделирования искусственных аналогов продемонстрированы на конкретных примерах. Полученные результаты подтверждают необходимость его использования в изучении молекулярных механизмов функционирования пептидных гормонов, катализа ферментов, взаимодействий антител с антигенами и т.п. (см. гл. 17). [c.590]


    Мы пытались написать эту главу почти не пользуясь формулами. В физической химии полимеров наибольшую эволюцию за последние годы претерпели именно вопросы, связанные с термодинамикой, и в первую очередь, термодинамикой растворов, а скейлинговый подход позволил в ряде существенных случаев сильно упростить описание и избавиться от громоздких формул и выкладок. Насколько это удалось показать — судить не авторам главы. [c.137]

    Оказалось, что вырожденность генетического кода имеет несомненный биологический смысл, обеспечивая организму ряд преимуществ. В частности, она способствует совершенствованию генома, так как в процессе точечной мутации, вызванной химическими или физическими факторами, возможны различные аминокислотные замены, наиболее ценные из которых отбираются в процессе эволюции. [c.522]

    Изучение распределения и распространения химических элементов в различных природных телах представляет собой одну из основных задач космохимии и геохимии. Химический состав различных природных тел отражает сложные пути их эволюции и определяется рядом физических и химических факторов, главными из которых по А. Е. Ферсману являются преобразование и образование атомов во времени, распределение уже готовых атомов под влиянием космических причин (тяготение, световое давление, электромагнитные поля и т. п.), физикохимическое перераспределение групп атомов, электронов, [c.67]

    Многие исследования методологических проблем квантовой химии в нашей литературе опирались на понятия форм движения материи и иерархии структурных уровней вещества. Такие исследования могут быть продуктивны, если понятия формы движения и структурного уровня не вводятся арг1ог1, а возникают в результате философского обобщения истории естествознания. Мы, однако, принимаем иной подход, свойственный скорее логике научного исследования. Возникновение квантовой химии трактуется как закономерный итог эволюции физического и химического знания, неизбежности моделирования и выдвижения гипотез и общей тенденции к математизации естествознания. Исследование этих познавательных процессов, мы надеемся, позволит привлечь новые критерии для оценки возможностей квантовой химии и пределов ее применимости. [c.14]

    В чем же здесь дело, ведь время и раньше входило во все уравнения динамики и являлось предметом особого рассмотрения в теории относительности Это действительно так, однако в динамическом описании Системы, как в классическом, так и в квантовом, время играет ограниченную роль, поскольку и уравнение Гамильтона, и уравнение Шредингера инвариантны относительно обращения времени t в Динамика Галилея и Ньютона, как и квантовая механика, не знают различий между прошлым и будущим, не знают эволюции физического мира в их описании мир — это набор траекторий. И. Пригожин по этому поводу замечает ...из всех изменений, происходящих в природе, классическая физика выделяет только движение. Все, что дает классическая физика, сводится к утверждению изменение есть не что иное, как отрицание возникновения нового, и время есть всего лишь параметр, не затрагиваемый преобразованием, которое он описывает. Образ устойчивого мира — мира, избегающего процесса возникновения, вплоть до нашего времени оставался идеалом теоретической физики. Динамика И. Ньютона, дополненная его великими последователями П. Лапласом, Ж. Лагранжем и сэром У. Гамильтоном, представляла собой замкнутую универсальную систему, способную дать ответ на любой поставленный вопрос. Любой вопрос, на который динамика не могла дать ответ, отвергался как псевдопроблема почти по определению [318. С. 41]. [c.436]

    В начале второй половины нашего столетия стала очевидной невозможность описания возникновения в макроскопических системах когерентных структур на основе известных законов, применимых, подобно закону возрастания энтропии, к множеству частиц, не говоря уже о невозможности понимания этого явления. Классическая термодинамика, как и другие теории "среднего поля", оказались неподготовленными для выяснения причин спонтанного образования порядка из беспорядка за счет большей хаотизации окружающей среды. Возникшая в середине XX в. ситуация в принципе аналогична той, которая имела место в первой половине XIX в. когда выяснилась несостоятельность классической физики в описант поведения макроскопических систем. Теории бифуркаций диссипативных структур, а в общем плане -нелинейная термодинамика неравновесных процессов, по существу, представляют собой отход от унифицированных моделей теорий "среднего поля" и признание невозможности непротиворечивого объяснения эволюции (физической, химической и биологической) в рамках исключительно макроскопического описания, иными словами, является отказом от чисто вероятностных представлений классической и линейной термодинамики. [c.457]

    Аппараты биологического перемещения в пространстве, реальные механизмы движения протоплазмы или амебоидного движения бесспорно специфичны и сложны, поскольку они возникли в результате сотен миллионов лет эволюции. Однако исходные для эволюции физические механизмы, вероятно, вполне соответствуют принципам, механизмам движения неспециализированных макромолекулярных комплексов. И сейчас, с высоты уже имеющихся знаний о специфичных и сложных аппаратах биологического перемещения в пространстве мы можем попытаться райти эти исходные принципы и посмотреть, куда должна привести биологические системы с такими исходными данными последующая эволюция. (В предложенной Л. X. Эйдусом [351] теории мышечного сокращения изменение поверхностного натяжения, капиллярных сил рассматриваются в качестве основного механизма). [c.170]

    Шноль С. Э. Физико-химический аспект процесса биологической эволюции. Возможная детерминированность основных этапов эволюции физическими свойствами эволюционирующей системы.— Журн. общ. биол. [c.256]

    В процессе развития ИП образы многократно взаимоперекры-ваются. Иерархически более высокие образы позволяют преодолевать прагматические барьеры непреодолимо стоящие перед ИИС в контексте только локальных образов (1.14 и 1.15). Информационная иерархичность образов в ИП - это механизм своеобразного туннельного эффекта ИИС. Постепенно все ИИС устремляются к абсолютному прагматическому максимуму. Негэнтропия в ПО становится необратимым процессом. Это два пути эволюции физический и информационный. [c.81]

    Нормальной эволюции наших представлений о катализе, теорий каталитических процессов, выводов и обобщений, несмотря на огромное количество исследований по генезису, активности, активации и отравлению катализаторов, сильно мешает отсутствие единого взгляда. Разные авторы подходили и подходят к разрешению сложных вопросов гетерогенного катализа и поведения поверхностей в рамках субъективно выбранных ими условий. В силу этого многие исслецов ния дают разноречивые результаты. Лишь в последнее время вырабатывается единое мнение, что теоретические исследования в области катализа необходимо вести в стандартизованных условиях, учитывая такие параметры, как величина удельной поверхности, удельная каталитическая активность веществ разного состава, являющихся катализаторами, всестороннее изучение свойств поверхностных соединений химическими, физическими, оптическими и другими методами. [c.168]

    В настоящее время можно считать установленным большое влияние на состояние человека, его поведение, работосаособность, надежность, безопасность гравитационных, магнитных, электрических сил Земли, переменного лунного и солнечного тяготения, уровня радиации и других гелиофизических явлений. Под влиянием этих неодинаковых по природе, глубине и характеру воздействия естественных сил проходила эволюция человека, формирование и становление его физических, психофизиологических и психологических функций. Воздействия эти были и продолжают оставаться настолько глубокими и сильными, что почти все биологические виды, в том числе человек, запечатлели их в своей динамической жизненной структуре в виде различных биологических ритмов, жизненных отправлений и др. В этих ритмах, как во многих других явлениях природы, заключено большое разнообразие внешних факторов, их временная, пространственная, энергетическая периодичность, неоднозначность, специфическое воздействие на различные системы, подсистемы, анализаторы, рецепторы и т.д. [c.50]

    Построение естественной системы атомов предполагает гюказать множество в органичном единстве как естественную систему с отражением реальных генетических связей между атомами. Используя искусственные основания, не получишь естественной системы Из перечисленных оснований только атомная масса (А) является физической характеристикой. Но и она представляет собой составную величину. Всякая эволюция строится на первичных элементарных основаниях. Массовое число для подвида атомов не является таким элементарным "кирпичиком", лежащим в основе превращения [c.108]

    Отечественная или переводная литература пЬ физике полимеров носит скорее монографический характер. Исключение составляют книги Бреслера и Ерусалимского Физика и химия макромолекул [1] и недавно вышедшая Структура и механические свойства полимеров Гуля и Кулезнева [2]. Но первая из книг, как явствует из ее названия, посвящена макромолекулам, вторая предназначена для студентов не физиков (можно было бы назвать и ряд других пособий с выраженным — в силу особенностей эволюции физики и химии полимеров — технологическим уклоном). Написанной физиками книги, где трактовались бы основные свойства полимеров в массе, их статистическая механика, термодинамика и физическая кинетика — вообще нет, а в ряде компилятивных курсов проблемы физической кинетики, термодинамики и статистической механики полимеров (которые необходимо рассматривать в связи со структурной механикой) были донельзя искажены. [c.3]

    Н. Бора. На химическом этапе закон периодичности и система Д. И. Менделеева рассматриваются в форме естественной системы химических элементов, вскрывающей и отражающей наблюдаемые отношения между элементами. Единство всех этих элементов в природе рассматривается как всеобщая взаимосвязь. Сам Д. И. Менделеев так говорил об этом ...Периодический закон, опираясь на твердую и здоровую почву опытных исследований, создался совер-Ц енно помимо какого-либо представления о природе элементов.... Естествознание нашло, после великого труда исследователей, индивидуальность химических элементов и потому оно может ныне ие только анализировать, но и синте ировать, понимать и охватывать как общее, единое, так и индивидуа.аьное, множественное. Единое и общее, как время и простраь ство, как сила и движение, изменяется последовательно, допускает интерполяцию, являя все промежуточные фазы. Множественное, индивидуальное... как дальтонов-ские кратные отношения — характеризуются другим способом в нем везде видны — при связующем общем — свои скачки, разрывы сплошности [И -, с. 221—222] Считается, что на физическом этапе эволюции идей о периодичности — этапе, который был подготовлен открытием и мпирическим обоснованием естественной системы элементов, появилась фундаментальная теория периодической системы. [c.49]

    Ныне в связи как с достижениями, так и с трудностями моделирования биокатализаторов взгляды на роль проблемы химической эволюции в изучении катализа существенно изменились. При моделировании биокатализаторов теперь принимаются во внимание уже не только некоторые общие закономерности биогенеза , но по возможности и вся совокупность такого рода закономерностей. Принципы искусственного отбора структур в направлении совершенствования моделей все более приближаются к принципам естественного отбора. Но, что весьма суидественно, одновременно с этим в самой каталитической химии накапливается все больше эмпирического материала, не укладывающегося в рамки отправных постулатов классической кинетики о неизменности химического состава, энергетических параметров и специфичности действия катализаторов. Изо дня в день появляется все больше работ, результаты которых свидетельствуют о физических и химических изменениях катализаторов, о самоприспособлении их к требованиям каталитической базисной реакции. [c.184]

    Теперь мы переходим к применениям теории, развитой в предьи дущих главах. Мы рассмотрим в основном такие случаи, к которым можно применить линейную теорию устойчивости (гл. 6—7) и критерий эволюции (гл. 9). В гл. 12 рассмотрены приложения метода локального потенциала, изложенного в гл. 10. Такое рассмотрение различных частных случаев применения условий устойчивости совершенно необходимо, так как данная нами формулировка этих условий весьма общая и, следовательно, рассмотрение част-ных случаев проясняет физическое содержание теории. [c.149]

    Некоторые реакции протекают менее чем за 10 с, так что их кинетику нельзя изучать методом смешения. Время измерения скорости реакции можно уменьшить до 10 с, если использовать релаксационные методы, разработанные Эйгеном и сотр. [1, 22—24]. Равновесный раствор подвергается внешнему воздействию — быстрому изменению одной из независимых переменных (обычно температуры или давления), влияющих на равновесие. За эволюцией системы в сторону нового равновесия следят с помощью физических методов, которые быстро регистрируют все изменения в системе (например, измеряют поглощение света или электропроводность). [c.285]

    Таким образом, внешние геосферы и биота прошли длительный путь совместной эволюции, в результате которой сложился своеобразный природный "биосферный метаболизм", определяющий химический состав атмосферы, океанов и твердой поверхности нашей планеты. Этот "метаболизм" выступает в виде совокупности взаимосвязанных физических, химических и биологических процессов. Как и любому организму со сложным метаболизмом, биосфере Земли присущ внутренний гомеостазис в отсутствие значительных нарушений (вследствие действия космических, внутрипланетарных или антропогенных факторов) эти процессы определяют природные циклы элементов, сбалансированные во временном интервале менее 1000 лет по всем источникам и стокам. Ключевым звеном поддержания такого квазистационарного состояния является деятельность биоты. [c.75]

    Если историческое развитие науки действительно представляет собой самопроизвольный статистико-детерминистический процесс совершенствования структурной организации научного мировоззрения, то механизм этого процесса должен описываться бифуркационной термодинамической моделью. Следовательно, ему должны быть свойственны закономерности, присущие явлениям возникновения из хаоса пространственно-временных упорядоченных структур как в естественных, так и в экспериментальных диссипативных системах. Непременное условие появления такой структуры заключается в энергетическом и/или материальном обмене диссипативной системы с окружающей средой. В отличие от самопроизвольных равновесных процессов, при которых все части системы хаотизируются и, следовательно, вносят положительный вклад в общее увеличение энтропии, в нелинейных неравновесных процессах в закритической области имеет место диспропорционирование энтропии между подсистемами, происходящее без нарушения второго начала термодинамики. Уменьшение энтропии при создании упорядоченной структуры сопровождается одновременным, большим по абсолютной величш1е, увеличением энтропии остальной части изолированной системы. Сходство в этом отношении эволюции научного мировоззрения с известными процессами структурной самоорганизации физических, химических и биологических открытых систем представляется очевидным. [c.27]

    Одни искали "мирового демиурга" в вещественном мире, другие, их было большинство, в мире трансцендентном, находящемся за пределами опыта. Первые пытались воссоздать, как им казалось, на материальной и чисто научной основе целостную картину живой и неживой природы, выявить и изучить связи между биологическими и физическими явлениями и тем самым устранить противоречивость двух эволюционных теорий. Вторые, не находя или не пытаясь искать самостоятельного пути и полагая, что на вещественной основе это сделать принципиально невозможно, объясняли эволюцию и особенности биосистем не материальными причинами, имманентными свойствами материи, а действием духовного начала. Впервые последовательное виталистическое представление было развито еще Аристотелем (IV в. до н.э.) в учении об энтелехии как о душе, определяющей форму, развитие и назначение первоматери, которая сама по себе пассивна и лишь потенциально одарена жизнью. Философы и естествоиспытатели, придерживающиеся материалистических позиций, объясняли различия между живым и неживым существованием разных форм движения материи - биологической, в первом случае, и механической, физической и химической - во втором. Считалось, что формы находятся в иерархической субординации высшие качественно отличаются от низших и не сводятся к ним. Бытующее и сейчас учение о формах движения материи [44, 45] по своему уровню соответствует натурфилософскому, достойному античных времен, воззрению. Оно не опирается на опытные факты и по существу представляет собой простую декларацию, своего рода "материалистический" вариант витализма. [c.48]

    Итак, между глобином и цитохромом 5-гсф существует подобие, распространяющееся на части спиралей А, В, Е, Р я О (рис. 8.4) и на расположение гема. Однако остается нерешенным вопрос о том, относится ли это подобие к гомологии, т. е. объясняется дивергентной эволюцией от общего предшественника, или к аналогии, т. е. возникло в результате конвергентной эволюции к физически предпочтительной пространственной структуре для невалентного связывания гема [569]. По-видимому, к решению этого вопроса может привести определение третичной структуры цитохрома 6дб21563], которсе восстановит недостающее в генеалогической связи звено (табл. 9.6). Вопросы выявления очень отдаленных взаимосвязей обсуждаются в разд. 9.6. [c.224]

    В 1945 г. Шредингер написал книгу Что такое жизнь с точки зрения физики , оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Первая из них — термодинамические основы жизни. На первый взгляд имеется решительное противоречие между эволюцией изолированной физической системы к состоянию с максимальной энтропией, т. е. неупорядоченностью (второе начало термодинамики), и биологической эволюцией, идущей от простого к сложному. Шредингер говорил, что организм питается отрицательной энтропие1и>. Это означает, что организмы и биосфера в целом не изолированные, но открытые системы, обменивающиеся с окружающей средой и веществом, и энергие . Неравновесное состояние открытой системы поддерживается оттоком энтропии в окружающую среду. Вторая проблема — общие структурные особенности органиа-мов. По словам Шредингера, организм есть апериодический кристалл, т. е. высокоупорядоченная система, подобная твердому телу, но лишенная периодичности в расположении клеток, молекул, атомов Это утверждение справедливо для строения организмов, клеток и биологических макромолекул (белки, нуклеиновые кислоты). Как мы увидим, понятие об апериодическом кристалле важно для рассмотрения явлений жизни на основе теории информации. Третья проблема — соответствие биологических явлений законам квантовой механики. Обсуждая результаты радиобиологических исследований, проведенных Тимофеевым-Ресовским, Циммером и Дельбрюком, Шредингер отмечает, квантовую природу радиационного мутагенеза. В то же время применения квантовой механики в биологии не тривиальны, так как организмы принципиально макроскопичны. Шредингер задает вопрос Почему атомы малы Очевидно, что этот вопрос лишен смысла, если не указано, по сравнению с чем малы атомы. Они малы по сравнению с нашими мерами длины — метром, сантиметром. Но эти меры определяются размерами человеческого тела. Следовательно, говорит Шредингер, вопрос следует переформулировать почему атомы много меньше организмов, иными словами, почему организмы построены из большого числа атомов Действительно, число атомов в наименьшей бактериальной клетке [c.12]


Библиография для Эволюция физическая: [c.344]    [c.41]    [c.86]   
Смотреть страницы где упоминается термин Эволюция физическая: [c.27]    [c.216]    [c.384]    [c.13]    [c.26]    [c.206]    [c.287]    [c.176]    [c.32]    [c.307]    [c.89]    [c.206]   
Образование структур при необратимых процессах Введение в теорию диссипативных структур (1979) -- [ c.15 , c.179 ]




ПОИСК







© 2025 chem21.info Реклама на сайте