Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура белка первичная третичная

    Со структурной точки зрения у белков различают первичную, вторичную, третичную и четвертичную структуры. Под первичной структурой, как и в случае пептидов, понимается точная последовательность отдельных аминокислотных остатков в макромолекуле. Вторичная структура определяется тем, что вследствие образования внутримолекулярных водородных связей макромолекулы предпочитают находиться в определенных конформациях (чаще всего это а-спираль — белковая цепь свернута в правовинтовую спираль, а расположенные друг [c.192]


    Белки, их химические и физико-химические свойства. Методы выделения и очистки белков классические —диализ, высаживание из растворов современные — распределительное и ионообменное хроматографирование, хроматографирование па молекулярных ситах, электрофорез. Индивидуальность белков. Цветные реакции белков биуретовая, ксантопротеиновая, нингидринная, реакция Миллона. Первичная, вторичная, третичная и четвертичная структуры белков, факторы, опре- [c.248]

    Структура белка. Современные экспериментальные методы позволили установить структуру природных белков. Различают первичную, вторичную, третичную и четвертичную структуру белка. [c.448]

    У ряда белковых соединений несколько сложных полипептидных цепей белка могут агрегироваться вместе, создавая более сложный комплекс определённого строения, называемый четвертичной структурой белка. Каждая полипептидная цепь, образующая четвертичную структуру, называется субъединицей и сохраняет свойственные ей первичную, вторичную и третичную структуры, однако биологическая роль комплекса в целом отличается от биологической роли субъединиц вне комплекса. Фиксация четвертичной структуры обеспечивается водородными связями и гидрофобными взаимодействиями между субъединицами. Например, молекула гемоглобина - белка с четвертичной структурой - состоит из четырёх субъединиц, окружающих гем (простетическую железосодержащую группу - железопорфирин) между субъединицами нет ковалентной СВЯЗИ, однако тетрамер представляет собой единое целое, в котором субъединицы тесно связаны и ведут себя в растворе как одна молекула. Наличие четвертичной структуры характерно также для других металлопротеинов и для иммуноглобулинов. При формировании четвертичной структуры белка образующийся комплекс может содержать, помимо субъединиц полипептидной структуры, и субъединицы иной полимерной природы, а также соединения других классов. [c.71]

    В 1903 г. Э. Фишером высказана пептидная теория, давшая ключ к тайне строения белка. Фишер предположил, что белки представляют собой полимеры аминокислот, соединенных пептидной связью. Идея о том, что белки — это полимерные образования, высказывалась уже в 70—80-е годы XIX в. Р. Хертом и А. Я. Данилевским. Современные исследования позволяют различигь в сфуктуре белка первичную, вторичную, третичную и четвертичную структуры. [c.258]


    Развитие новых экспериментальных методов Исследования в органической химии обусловило успехи в изучении структуры белка. В настоящее время различают первичную, вторичную и третичную структуры белковой молекулы. [c.352]

    Для более глубокого понимания законов образования третичной структуры следует подчеркнуть, что полипептидная цепь не свертывается произвольно с образованием хаотичного (статистического) клубка. Анфинсен с сотр. [14] показал, что пространственная структура белков задана их первичной структурой. Иными словами, последовательность аминокислотных остатков в полимерной цепи кодирует строго определенный тип вторичной, третичной и высших структур белка. [c.12]

    Какие соединения называют белками Что понимают под первичной, вторичной, третичной и четвертичной структурами белка Как определяется первичная структура белка  [c.215]

    Отношение аминокислот к нагреванию. Медные соли а-аминокислот как хелат-пые соединения. Бетаины. Пептидный синтез. Первичная, вторичная, третичная и четвертичная структуры белка. [c.251]

    Вся структурная организация белков (четвертичная, третичная, вторичная) может быть разрушена внешними воздействиями до первичной структуры полипептида - процесс денатурации. Денатурация белков происходит под действием экстремальных значений pH растворов, УФ-света, рентгеновских лучей, высоких давлений, повышенной температуры, физических воздействий (например, ультразвука). [c.273]

    Хотя дисульфидные связи частично обусловливают вторичную и третичную структуры белков, определение их локализации является частью изучения первичной структуры. [c.279]

    Другая сторона вопроса заключается в малой (относительно) прочности химических фрагментов клеток, извлекаемых из нее после разрушения клеточной оболочки. В этом нет ничего удивительного структуры динамические по своему существу вовсе и не должны быть прочными в статических условиях. Субклеточные структуры — митохондрии — самообновляются за короткий срок, составляющий приблизительно 10 суток. Высшие структуры белков (четвертичная, третичная) разрушаются легче, чем первичная цепь распад белковой части ферментов типа металлопротеидов совершается легче, чем разрушение гема, и т. п. Возможно, что это связано с их функциями, однако несомненно, что на всех уровнях развития биологические структуры не являются статическими. Вопрос этот сложен, но один из его аспектов сейчас более или менее ясен. Дело в том, что динамические структуры — детище минимум двух противоположных процессов —и выключение одного из них приводит к разрушению и самой структуры. Старая истина о необходимости упражнений (т. е. нагрузок) для поддержания жизнедеятельности любого органа выражает именно эту закономерность. Успехи космической медицины недавно принесли очень яркую иллюстрацию того же правила. Снятие гравитационной нагрузки вызывает вымывание кальция из организма, т. е. процесс постепенного рассасывания костяка даже эта, казалось бы столь прочная конструкция, в действительности является динамической структурой, связанной с регулированием положения организма в гравитационном поле. Динамические структуры не обязательно связаны с регулированием. Фонтан несомненно представляет собой динамическую структуру и его форма зависит от соотношения сил давления в струе воды и гравитационного поля, однако форма в этом случае не управляет потоком. Структура не имеет обратных связей со средой и не является аналогом клетки. Пламя костра в большей степени напоминает о том, что характерно для жизни и недаром еще Гераклит утверждал, что жизнь есть вечно живой огонь. Пламя создает диффузионный поток в окружающей среде, поток усиливает горение, но слишком энергичное вторжение масс холодного воздуха задерживает горение, т. е. здесь налицо признаки обратной связи, а следовательно, и авторегулирования. Для формирования устойчивой структуры и аппарата регулирования важно, чтобы возникающая динамическая структура могла влиять на потоки, ее порождающие. Статистическая интерпретация этого утверждения связана с допущением, что функции распределения [c.173]

    Согласно классификации белковых структур, насыщенные водородными связя-ми регулярные участки а-спирали и -структуры принадлежат ко вторичной структуре белка. Первичная структура представляет собой аминокислотную последовательность белка, а третичная — соответствует набору взаимодействующих между собой регулярных конформаций.  [c.202]

    Описывать структуры белков, различая первичную, вторичную и третичную структуры. [c.465]

    Объясните, что подразумевается под первичной, вторичной и третичной структурами белков  [c.467]

    Первичная структура белка, т. е. последовательность аминокислотных остатков в полипептидных цепях, уже обсуждалась в разд. 14.3. Термин вторичная структура используют для обозначения тех простейших способов, при помощи которых полипептидные цепи скручиваются или складываются в молекулах белков. Наиболее важные вторичные структуры —а-спираль и два вида структуры, которую называют структурой типа складчатого слоя. (Третичная структура включает вторичные структуры и те фрагменты полипептидной цепи, которые соединяют один участок вторичной структурой с другим четвертичная струк- [c.428]


    Гидролиз белков, по существу, сводится к гидролизу полипептид-ных связей, К этому же сводится и переваривание белков. При пищеварении белковые молекулы гидр<злизуются до аминокислот, которые, будучи хорошо растворимы в водной среде, проникают в кровь и поступают во все ткани и кл(тки организма. Здесь наибольшая часть аминокислот расходуется на синтез белков различных органов и тканей, часть - на синтез гормонов, ферментов и других биологически важных веществ, а остальные лужат как энергетический материал. Развитие новых экспериментальных методов исследования в органической химии обусловило успехи в изучении структуры белка, В настоящее время раапичают первичную, вторичную и третичную структуры белковой молекулы. [c.420]

    Свою биологическую функцию белки выполняют, только если сохраняются вторичная и третичная структуры. Разрушение третичной и вторичной структур называется денатурацией белка. При денатурации сохраняется только первичная структура белка, т. е. пептидная цепь. Денатурация белков мох<ет произойти под действием химических веществ (кислот, щелочей, спиртов, ацетона), при нагревании, повышепии давления, радио-акгнвном облучении. [c.449]

    Под третичной структурой белка подразумевают пространственную ориентацию полипептидной спирали или способ укладки полипептидной цепи в определенном объеме. Поскольку ни первичная структура, ни типы спиралей или сочетания спиральных и линейных участков полипептидной [c.63]

    Применительно к белкам проблема самосборки является кардинальной. Генетически кодируется биосинтез (гл. 8), т. е. формирование первичной структуры белка. Однако биологически функциональна нативная пространственная структура белковой молекулы, возникающая в результате самосборки. Естественный отбор белков идет по пространственным — третичным и четвертичным — структурам. Молекулярная биология, молекулярная генетика не имели бы смысла, если бы между генетически предопределенной первичной структурой белка и его пространственным строением не было однозначного или вырожденного соответствия (см. 7.1). [c.108]

    В настоящее время крайняя точка зрения, что все предопределено хромосомой, не слишком популярна. Позиция заключается в том, что ДНК детерминирует первичную аминокислотную последовательность белка, и уже эта первичная структура определяет упаковку полипептидной цепи и, следовательно, вторичную и третичную структуры белка и, наконец, его четвертичную структуру, а также ассоциацию с образованием [c.332]

    История исследований белков, по сравнению с другими классами природных соединений, наиболее богата событиями и открытиями, поскольку эти вещества вездесущи в живой природе, очень многообразны и наиболее сложны по структуре. Кроме того, их сложность и большие молекулярные размеры сочетаются с низкой устойчивостью и трудностью индивидуального выделения. Но к настоящему времени многие барьеры на этом пути преодолены. Достаточно быстро и надежно хроматографически определяется аминокислотный состав белков и последовательность их соединения между собой рентгеноструктурный анализ позволяет установить пространственную структуру тех белковых молекул, которые удается получить в виде кристаллов различными вариантами метода ЯМР успешно исследуется поведение белков в растворах, в процессах комплексообразования, т.е. в ситуации, близкой к той, которая имеет место в живой клетке. В настоящее время принято различать четыре структурных уровня в архитектуре белковых молекул первичная,вторичная,третичная и четвертичная структуры белков. [c.94]

    Последовательность соединения аминокислотных остатков в полипептидной цепи получила название первичной структуры белка. Белковая молекула может состоять из одной или нескольких полипептидных цепей, каждая из которых содержит различ-ное число аминокислотных остатков. Учитывая число их возможных комбинаций, разнообразие белков почти безгранично, но не все из них существуют в природе. Общее число различных типов белков у всех видов живых организмов составляет величину порядка 10 °—10 . Для белков, строение которых отличается исключительной сложностью, кроме первичной структуры различают и более высокие уровни структурной организации вторичную, третичную, а иногда и четвертичную структуры. [c.13]

    Одна из наиболее плодотворных гипотез о структуре белка была впервые сформулирована Линдерстром-Лангом [24]. Согласно этой концепции, существуют три типа структуры белка — первичная, вторичная и третичная. Первичная структура белка — это последовательность ковалентно связанных аминокислотных звеньев в полипептидной цепи молекулы белка (т. е. ковалентная структура) вторичная структура белка — конформация отдельных полипептидных цепей, которая обычно стабилизируется водородными связями третичная структура белка характеризует упаковку полипептидных цепей в макромолекуле нативного белка относительно друг друга, т. е. изгибы и скручивания этих цепей, зафиксированные дисульфидными и различными другими межмолекуляр-ными связями и взаимодействиями. Эта концепция строения белка была принята специалистами по химии белка и широко используется при обсуждении реакционной способности макромолекул белков в зависимости [c.329]

    Дальнейшее скручивание вторичной структуры определяет внешнюю форму молекулы белка, которая называется третичной структурой. Она стабилизируется за счет взаимодействия тех функциональных групп, которые не участвуют в образовашта полипептидной цепи первичной структуры белка. [c.432]

    Ферменты — очень сложные органические молекулы, представляющие собой глобулярные белки. Их каталитические центры состоят их ряда атомных групп, природа и взаимное расположение которых в пространстве строго детерминировано, что, собственно, и определяет каталитическую активность фермента, Все структурные и пространственные особенности каталитического центра заданы как последовательностью аминокислотных остатков полипептидной цепи данного белка (первичной структурой), так и упаковкой этой цепи Б фиксированную конформацию белковой глобулы (ее вторичной и третичной структурами Поэтому для химиков нет смысла пытаться построить искусственный структурный аналог такой чудовищно сложной конструкции, добиваясь сходства со свойствами оригинала. Не говоря уже о практически непреодолимых трудностях подобной задачи, она и смысла большого не имеет (если только мы не хотим создать искусственную жизнь). Дело в том, что каждый фермент решает узко специализированную задачу, а эта специализация лишь изредка совпадает с задачами человеческой химии. Смысл всей Проблемы не в этом, а в том, чтобы обеспечить дизайн квазиферментов под реальные задачи (ну, например, расщеплять высшие парафины до низших, т.е. делать бензин из мазута), т. е. не копировать или моделировать живые ферменты, а научится делать ферменте-подобные катализаторы на заказ (не копировать природу, а учиться у нес, воспринять ее методологию, а не результаты )- Кроме того, ферменты как катализаторы для лабораторного или про- [c.477]

    Линдерштрем-Ланг подразделил (1952) изучение структуры белков на три уровня можно изучать первичную структуру — последовательность аминокислот вторичную структуру — конформацию и третичную структуру характер расположения отдельных участков цепи даю-щии пространственную картину, которая присуща глобулярным белкам. Дисульфидные связи играют основную роль в поддержании третичной структуры. Техника эксперимента может быть иллюстрирована ра ми Кендрью2. по -изучению мио глобина -кашалота (1-9(58—1960). [c.710]

    Первичная структура), а также взаимодействиями с др. фрагментами цепи в рамках третичной структуры белка. Стабильность В. с. зависит от обра.зования кооперативной системы водородных свя.зей и от стерич. факторов. Упорядоченные виды В. с.— а-снираль, (3-структура, (3-изгиб, способ укладки полипептидной цепи в коллагене и др. [c.109]

    Линдерштрем-Ланг подразделил изучение структуры белка на 3 раздела изучение первичной, вторичной и третичной структур. [c.535]

    По рекомендации Лнндерстрема — Ланга были введены термины первичная, вторичная и третичная структура , характеризующие уровни структурной организации белков. Первичная структура белка дает сведения о числе и последовательности связанных друг с другом пептидной связью аминокислотных остатков. Вторичная структура описывает конформацию полипептидной цепи, возникающую при образовании водородных мостиков между карбоксильными кислородными атомами и атомами амидного азота в составе скелета молекулы. Под третичной структурой понимают трехмерную укладку полипептидной цепи, вызванную внутримолекулярным взаимодействием боковых цепей. [c.363]

    Есть указания на принцига1альную возможность анализа структуры кристалла белка с помощью электронного иэлучения, а также посредством метода нейтронного рассеяния [162]. В будущем, вероятно, приобретут значение математические методы, которые позволят осуществлять на ЭВМ расчет третичной структуры на основе данных о первичной структуре [163]. Первые попытки, в основном в применении к спиральным белкам (миоглобин), привели к интересным результатам [164]. Хеглер и Хониг [165] рассчитали на примере полипептидной цепи, составленной из глицина и аланина, условия, необходимые для образования компактной глобулярной структуры белка. [c.384]

    Шесть уровней структурной организации белков. Согласно Линдерстрем — Лангу [176], можно выделить четыре уровня структурной организации белков первичный, вторичный, третичный и четвертичный. Эти термины означают соответственно аминокислот- ую последовательность, упорядоченное строение основной цепи полипептида, трехмерную структуру глобулярного белка и структуры белковых агрегатов. На основании имеющихся у нас теперь знаний мы можем добавить еще два уровня сверхвторичные структуры для обозначения энергетически предпочтительных агрегатов вторичной структуры и домены для обозначения тех частей, которые представляют собой достаточно обособленные глобулярные области. Схема структурной организации приведена на рис. 5.1. [c.82]

    По современным представлениям, третичная структура белка после завершения его синтеза в рибосомах (см. главу 14) формируется совершенно автоматически, самопроизвольно и полностью предопределяется первичной структурой. Основной движущей силой в возникновении трехмерной структуры является взаимодействие радикалов аминокислот с молекулами воды. При этом неполярные гидрофобные радикалы аминокислот как бы погружаются внутрь белковой молекулы, образуя там сухие зоны, в то время как полярные радикалы оказываются ориентированными в сторону воды. В какой-то момент возникает термодинамически наиболее выгодная стабильная конформация молекулы. В такой форме белковая молекула характеризуется минимальной свободной энергией. Молекулы белков в водных растворах обычно принимают ряд стабильных конформаций, индуцируемых не только изменениями pH и температуры, но и низкомолекулярными соединениями. Различают две основные формы конформаций Т-форму (от англ. tensed—напряженная) и R-форму (от англ. relaxed—рас- [c.66]

    Под денатурацией понимают изменение пространственной структуры белков и, как следствие, уменьшение или полное подавление функциональной активности, растворимости и других биологических и физико-химических свойств. Следует различать денатурацию и деградацию белков. При деградации происходит фрагментация первичной структуры и образование фрагментов белковой макромолекулы. Денатурация не сопровождается фрагментацией, однако может происходить разрыв дисульфидных мостиков, а также слабых водородных, гидрофобньгх и электростатических связей. В результате изменениям подвергается четвертичная (при ее наличии), третичная и в меньшей степени вторичная структуры. [c.53]


Смотреть страницы где упоминается термин Структура белка первичная третичная: [c.171]    [c.361]    [c.151]    [c.429]    [c.588]    [c.71]    [c.507]    [c.281]    [c.220]    [c.100]    [c.537]   
Органическая химия 1973г (1973) -- [ c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Белок белки структура

Белок третичная

Первичная структура белка

Структура белка

Третичная структура белка



© 2025 chem21.info Реклама на сайте