Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белок третичная

    Третичная структура белковой молекулы образуется при свертывании поли-пептидной цепи в компактную трехмерную систему (в случае ферментов это, как правило, сферическая глобула). При рассмотрении сил, определяющих свертывание полипептидной цепи (цепей), прежде всего укажем на следующее фундаментальное свойство белков полипептидные цепи стремятся свернуться так, чтобы во внут- [c.11]


    При нагревании белков выше температур, присущих живым организмам, либо при их помещении в необычные кислотные или основные условия белки постепенно утрачивают характерную для них третичную или вторичную структуру. В этом случае белок теряет свою биологическую активность, и говорят, что он денатурируется. Если денатурация протекает при очень мягких условиях, она часто бывает обратимой, т.е. при возврате к нормальным условиям биологическая активность белка [c.449]

    Кроме полосы поглощения карбонильной группы, первичные и вторичные амиды имеют характеристические полосы, обусловленные колебаниями ЫН. Эти полосы в совокупности с первой полосой обычно вполне характеризуют амидную группировку. У первичных амидов имеются две формы деформационных колебаний ЫН, соответствующие антисимметричным и симметричным колебаниям водородных атомов, в то время как у вторичных амидов обычно имеется только одиночная полоса. Образование водородной связи приводит снова к значительным смещениям частот в спектре вещества в твердом состоянии, а для концентрированных растворов часто могут наблюдаться полосы колебаний одновременно как свободных, так и связанных групп ЫН. Положение полос, относящихся к колебаниям связанных групп ЫН, меняется также в зависимости от природы образующихся водородных связей имеются, например, различия между частотами колебаний связанных групп ЫН вторичных амидов в цис- и г/ анс-формах. В спектрах многих вторичных амидов вторая полоса поглощения ЫН находится при меньщих частотах, а у более сложных веществ, таких, как полипептиды и протеины, в этой области имеется несколько полос поглощения. Например, дикетопиперазин в твердом состоянии имеет пять полос, и все они, по-ви-димому, связаны с валентными колебаниями ЫН. Интерпретация этих сложных полос рассматривается в разделе, посвященном полипептидам и белкам. Третичные амиды, разумеется, не поглощают в этой области. [c.244]

    Для более глубокого понимания законов образования третичной структуры следует подчеркнуть, что полипептидная цепь не свертывается произвольно с образованием хаотичного (статистического) клубка. Анфинсен с сотр. [14] показал, что пространственная структура белков задана их первичной структурой. Иными словами, последовательность аминокислотных остатков в полимерной цепи кодирует строго определенный тип вторичной, третичной и высших структур белка. [c.12]


    Между отдельными группами вторичной структуры белков могут также образовываться внутримолекулярные водородные связи, в результате чего отдельные участки спирали сближаются, молекулы изгибаются и свертываются в клубок иди складываются - формируется третичная структура белка. В ее образовании большую роль играют также межмолекулярные взаимодействия полярных групп аминокислот, которые локализуются на внешней поверхности молекул и образуют водородные связи с водой. [c.271]

    Изучить структуру белка на самом простом уровне — значит определить его первичную структуру, т. е. последовательность аминокислотных остатков в полипептидной цепи, а также природу и положение поперечных связей. Вторичная структура белка, т. е. наличие и характер спирализации полипептидной цепи, в значительной степени зависит от первичной структуры. Она, кроме того, зависит от pH и ионной силы раствора, а также от тех свойств среды, которые влияют на водородные связи и гидратацию белка. Третичная структура белка возникает в результате дальнейшего изгибания и скручивания полипептидной цепи, уже имеющей вторичную структуру. В некоторых случаях вторичная и третичная структуры всецело определяются первичной структурой белка. Если такие белки подвергать воздействию повышенной температуры или обработать мочевиной, кислотой, щелочью или другими агентами, которые нарушают вторичную и третичную структуру, не затрагивая первичной, то возможно самопроизвольное восстановление их конформации. Примером подобных белков может служить фермент рибонуклеаза. В этом случае последовательность аминокислот в полипептидной цепи определяет даже положение дисульфидных мостиков, так что если после воздействия восстанавливающими агентами провести окисление в мягких условиях, то-образование поперечных дисульфидных связей происходит в тех же местах, где они были раньше. Другие ферменты необратимо денатурируются даже в относительно мягких условиях. В настоящее время не ясно, каким образом столь лабильная и высокоспецифичная структура, как третичная, возникает во время синтеза ферментного белка на поверхности рибосомы. [c.99]

    Разрыв гидрофобных связей сопровождается изменениями объема от —6 до —20 см моль. Поэтому у белков, третичная и четвертичная структура которых стабилизирована главным образом гидрофобными взаимодействиями, влияние давления на третичную и четвертичную структуру может быть весьма значительным. Для полипептидной цепи с молекулярным весом 15 000 (около 100 аминокислотных остатков), в которой 25 гидрофобных остатков скрыты в глубине молекулы, ДУ при развертывании цепи, т. е. при разрушении третичной структуры, составит приблизительно — 250 см /моль (если предположить, что третичная структура почти всецело стабилизирована гидрофобны.ми взаимодействиями и что обнажение каждого гидрофобного остатка, приводящее к контакту его с водной фазой, сопровождается изменением объема —10 см /моль). [c.316]

    Во многих белках третичная структура усилена химическими — дисульфидными — связями, соединяющими два далеких друг от друга, если считать вдоль цепи, звена. Такие белки можно превратить в единичные спирали лишь после предварительного восстановления дисульфидных связей под действием специальных химических агентов [51]. [c.84]

    Таким образом, эффекты фиксации третичной структуры макромолекул белка обусловливаются теми же факторами, которые определяют вторичную структуру полипептидной цепи. [c.349]

    Белки, третичная структура — см. Белки, структура молекулы. [c.16]

    При описании молекулы белка прежде всего должна быть установлена последовательность аминокислотных остатков вдоль полипептидной цепи. Задача определения молекулярной конформации обычно распадается на две части. Вначале устанавливается природа спиральной конформации, характеризующей различные сегменты полипептидной цепи эта структура называется вторичной структурой белка. Третичная структура описывает способ, при помощи которого последовательность спиральных и неспиральных цепей складывается в очень компактную частицу, характерную для молекул глобулярных белков. [c.135]

    Третичная структура белков [c.347]

    В активных центрах ферментов в рамках относительно жесткой третичной структуры белка взаимодействующие функциональные группы уже в исходном состоянии реакции в гораздо большей степени сближены и сориентированы, чем в большинстве неферментативных внутримолекулярных процессов. [c.66]

    Денатурация (разд. 25.2)-потеря биологической активности белком вследствие разрушения его третичной структуры при нагревании, воздействии кислот или оснований или при каком-нибудь ином воздействии. [c.465]


    Третичная структура белка (разд. 25.2) общая форма белковой молекулы, точнее способ укладки или свертывания отдельных участков белковой цепи. [c.466]

    Описывать структуры белков, различая первичную, вторичную и третичную структуры. [c.465]

    В период 1946—1960 гг. английскому ученому Дж. Д. Кендру и его сотрудникам удалось точно установить структуру глобулярного белка миоглобина. Миоглобин, обнаруженный в тканях мышц, представляет собой белок, очень похожий на гемоглобин, но имеющий только одну полипептидиую цепь в молекуле (молекулярный вес 17 ООО). Как показал рентгеноструктурный анализ кристаллов миоглобина, молекула этого белка содержит полипептидиую цепь, которая не вся является единой спиралью, а содержит восемь коротких сегментов, имеющих конформацию альфа-спирали, связанных неспиральными участками. Такая особенность трехмерной структуры полипептидной цепи — расположение в пространстве участков с правильной (повторяющейся) структурой (вторичной структурой) — называется третичной структурой белка. Третичная структура, как и вторичная, определяется последовательностью аминокислот (первичной структурой). [c.683]

    Объясните, что подразумевается под первичной, вторичной и третичной структурами белков  [c.467]

    Таким образом, образование сернистых соединений можно понимать как вторичный процесс, не связанный с нефтеобразова-нием и, так сказать, параллельный ему. Высказывались и противоположные гипотезы, согласно которым сера является в нефтях унаследованным компонентом и что первоначально образовавшиеся нефти содержат серу как обязательный компонент, исчезающий впоследствии на длинном пути ее превращения. Из этого как будто следует, что серой должны быть богаты геологические молодые нефти, более или менее близкие к исходному веществу нефти, тогда как нефти древние, метановые, могут серы и не содержать. Это соображение плохо вяжется с тем, что очень многие третичные нефти практически серы не содержат, тогда как иногда древние нефти, наоборот, богаты серой. Примерами первых могут служить нефти Баку, Грозного и ряда других месторождений, примерами вторых могут служить сернистые нефти Второго Баку. Вместе с тем исключениями крупного масштаба являются кайнозойские нефти Калифорнии, Мексики и другие, содержащие много серы и бессернистые палеозойские нефти северо-восточных штатов США. Связь между серой и углеводородами нефти часто понималась таким образом, что сера имеет белковое происхождение и должна принимать участие-в тех процессах, которые переводят живое вещество в нефть.. Между техм хорошо известно, что разложение белка связано с выделением серы в виде сероводорода, не принимающего участие в последующих превращениях органического вещества. Ввиду того, что сероводород минерального происхонодения может внедряться в углеводороды, проходя через стадию элементарной серы, нет никакой необходимости отводить белковой сере заметную роль. Все подобные гипотезы отличаются тем, что не объясняют, почему осернение нефти не является обязательным процессом, поскольку в природе имеются значительные месторождения бес-сернистой нефти. Кроме того, в подавляющем большинстве случаев сернистость нефти есть явление региональное, охватывающее громадные области, что говорит о какой-то общей причине явления. Факт восстановления сульфатов микроорганизмами есть. [c.179]

    К другой группе — сферопротеинам (они называются также глобулярными белками) — относятся белки, третичная структура которых напоминает сферические объекты. Они встречаются во всех видах тканей и имеют самое разное назначение. Так, многие из них являются ферментами, другие — антителами. В крови (а также в мышцах, молоке и яйцах) присутствуют альбумины и глобулины. В ядрах клеток содержатся гисто-ны. Тромбин участвует в превращении растворенного в крови [c.194]

    В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов. Высокая химическая специфичность ферментов связана отчасти с уникальной макроструктурой этих полимеров. Сложность общей структуры белков можно оценить на примере фермента рибоиуклеазы (рис. 25-12). В то время как вторичная структура белков определяется только водородными связями, многочисленные изгибы полипептидной цепи, придающие глобулярным белкам третичную структуру, зависят не только от пептидных связей и водородных связей между амидными группами, но и от других типов связей, а именно а) дисульфидных связей в цистине б) ионных связей, в которых участвуют дополнительные аминогруппы или карбоксильные группы в) водородных связей и г) гидрофобных взаимодействий (рис. 25-13). [c.410]

    Техническое значение имеет экстрагирование жирных кислот из водных растворов производными фурана [69] или экстрагирование неорганических кислот из гидролизатов белков третичными аминами, например Диоктилметиламином [ 1341. [c.405]

    Первым белком, третичная структура которого была выяснена Дж. Кендрью на основании рентгеноструктурного анализа, оказался мпо-глобпн кашалота. Это сравнительно небольшой белок с мол. м. 16700, содержащий 153 аминокислотных остатка (полностью выяснена первичная структура), представленный одной полипептидной цепью. Основная функция миоглобина - перенос кислорода в мышцах. Полипептидная цепь мпо-глобпиа (рис. 1.20) представлена в виде изогнутой трубки, компактно уложенной вокруг гема (небелковый компонент, содержащий железо см. главу 2). [c.65]

    Третичная структура. Так назьгааемые боковые радикалы (К) аминокислот в полипептидной цепи способны к дополнительным внутримолекулярньпи взаимодействиям, которые препятствуют а-спирализации и образованию /3-структур, в результате чего белки приобретают глобулярную форму (отношение длины к ширине молекулы меньше 10) У фибриллярных белков такое соотношение больше 10 Если кератин, коллаген, синтетические полипептиды относятся к фибриллярным, то ферменты являются глобулярными белками Третичная структура белков образуется за счет водородных связей -ОН, -МНг, -СОО групп боковых радикалов, ионных связей между -КН4 и -СОО группами, 884 [c.884]

    В последние годы возникло представление о том, что комплемеитарная структура активного центра не предсуществует в молекуле Ф. заранее, а образуется при сближении молекул субстрата и Ф. в результате взаимного их влияния друг на друга (гипотеза, индуцированного контакта Кощ-лаида). Теория активного центра Ф. развивается в направлении нек-рого расширения этого понятия, поскольку оказалось, что многие факты механизма-действия Ф. нельзя объяснить участием в реакциях, ограниченного числа функциональных групп и приходится признать необходимым какое-то участие, элементов высших структур белка (третичной, иногда> четвертичной) за пределами активного центра. [c.210]

    Дисульфидные мостиковые связи —8—8— создают третичную структуру белков. Третичная структура — это функционально необходимое взаимное расположение в пространстве элементов вторичной структуры белков — спиралей и слоев, образованных полипептид ными цепями. Дисульфидные мостики образуются из сульфгидрильных групп —8—Н серосодержа-ш ей аминокислоты — цистеина. [c.486]

    Третичная структура белков предопределяет особенности взаимного расположения полипептидных цепей в фибриллах и (или) глобулярных структурах. Для каждого вида белка характерна определенная третичная структура. Третичная структура белков стабилизируется различными видами межмолекулярных контактов водородных, диполь-дипольных, солевых, дисульфидных, амидных, сложноэфирных связей. Существенное значение в формировании и фиксации третичных структур ифают гидрофобные взаимодействия в водно-белковых системах. [c.347]

    Огромное многообразие структурных и функциональных свойств белков обусловлено, таким образом, большим количеством известных органических структур. В воде, как реакционной среде, можно иметь аминокислоты как неполярные (конформационнолабильные или жесткие), так и неполярные (связанные водородными связями) или ионные (сольватированные) как ароматические, так и алифатические аминокислоты, обладающие как восстанавливаемыми, так и окисляемыми группами. Таким образом, почти вся энциклопедия органохнмических реакций может быть закодирована в полипептидной цепи и ее третичной структуре. Наконец, поскольку все аминокислоты существуют в ь (либо 5)-конфигурации, понятно, что хиральность играет существенную роль в упорядочении структуры. [c.16]

    Еще один вариант такого подхода предложен Уайтсайдом и сотр. [16, 17]. Он создал катализатор асимметрического гидрирования на основе ахирального дифосфинродиевого(I) комплекса, введенного в специфический центр фермента. В этом случае третичная структура белка обеспечивает хиральность катализатора, необходимую для энантиоселективного гидрирования. [c.102]

    Наряду с катализом за счет свободной энергии сорбции (см. 1—4 этой главы) ферментативные реакции находят источник ускорения в том, что молекула субстрата подвергается химической атаке не одной каталитической группой (как это происходит в гомогенно-каталитических реакциях второго порядка), а сразу несколькими. Это связано с тем, что третичная структура белка позволяет сосредоточить в активном центре фермента значительное число электрофильных и нуклеофильных групп, таких как имидазольная, карбоксильная, сульфгид-рильная, аммонийная, фенольная и др. (см. гл. I), которые, как известно из гомогенного катализа, представляют собой общекислотные и общеосновные катализаторы. Именно поэтому в промежуточных фермент-субстратных комплексах в принципе возможна атака сорбированной субстратной молекулы по механизмам общего кислотноосновного катализа. [c.61]

    Широкоизвестное поверхностно-активное вещество додецилсульфат натрия Hз( H2)пSOaNa (ДСН) образует сферы, содержащие от 50 до 100 молекул. Потенциал между мицеллой и раствором составляет 50—100 мВ, и важнейшими факторами, обеспечивающими стабильность мицелл, оказываются силы электростатических и гидрофобных взаимодействий.. ДСН часто используют для денатурации белков, у которых аналогичные электростатические и гидрофобные взаимодействия участвуют в формировании третичной структуры. [c.285]

    В обоих белках (гемоглобине и миоглобине) гем прочно связан с белковой частью (глобином) с помощью 80 гидрофобных взаимодействий и одной координационной связью между имидазольным кольцом так называемого проксимального гистидина и атомом железа. Несмотря на многочисленные различия в их аминокислотных последовательностях, миоглобин и гемоглобино-вые субъединицы имеют сходную третичную структуру, включающую восемь спиральных участков. Гем вклинивается в щель между двумя спиральными участками кислород связывается по одну сторону порфирина, в то время как гистидиновый остаток координируется по другую. По-видимому, уникальное свойство гемоглобина связывать кислород зависит от структурных особенностей всей молекулы гемоглобина или миоглобина. [c.360]

    Для проявления биологической активности некоторые белки должны сначала образовать макрокомплекс, состоящий из нескольких третичных структур белковых субъединиц, которые связаны вторичными валентными силами (ионное притяжение, водородные связи). Подобные способы пространственной организации нескольких полипептидных субъединиц - это четвертичная структура белка, которая определяет степень ассоциации третичных структур в биологически активном материале. Например, белком с четвертичной структурой является гемоглобин, который состоит из четырех субъединиц (клубков) миогло-бина - дэух молекул а-гемоглобина, каждая из которых содержит гем. [c.272]

    Вся структурная организация белков четвертичная, третичная, вторичная) может быть разрушена внешнидш воздействиями до первичной структуры полипептида - процесс денатурации. Денатурация белков происходит под действием экстремальных значегоп pH растворов, УФ-света, рентгеновских лучей, высоких давлений, повышенной температуры, физических воздействий (например, ультразвука). [c.273]

    Наиболее важная информация о строении молекулы химотрипсина (молекулярная масса 25 ООО) была получена с помощью рентгеност-зуктурных исследований последних лет, проведенных Блоу с сотр. 14, 17—19]. Как итог своих исследований авторы представили трехмерную модель молекулы химотрипсина (см. рис. 3). В согласии с ранними общими представлениями о строении белков было найдено, что все заряженные группы в молекуле этого фермента направлены в сторону водного растворителя (за исключением трех, которые выполняют специфические функции либо в механизме активации зимогена, либо в механизме действия активного центра). Особенности расположения аминокислотных остатков с гидрофобными боковыми цепями внутри белковой глобулы также согласуются с ранними представлениями о важной роли гидрофобных взаимодействий в стабилизации третичной структуры белков (см. гл. I). [c.127]


Смотреть страницы где упоминается термин Белок третичная: [c.171]    [c.99]    [c.95]    [c.75]    [c.243]    [c.74]    [c.34]    [c.371]    [c.206]    [c.290]    [c.449]    [c.482]   
Биологическая химия Изд.3 (1998) -- [ c.63 , c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Белки вторичная и третичная структура

Белки вторичная, третичная

Белки вторичная, третичная четвертичная структуры

Белки связь первичной, вторичной и третичной структур

Белки третичная структура, методы

Белки, биологические функции третичная

Вторичная и третичная структура белковой субъединицы

Кекул третичная белка

Структура белка первичная третичная

Третичная структура белка



© 2025 chem21.info Реклама на сайте