Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электростатическая сильных электролитов

    Истинная степень диссоциации сильных электролитов в растворах любой концентрации равна 100%. Однако вследствие электростатического притяжения противоположно заряженных ионов, которое особенно значительно в концентрированных растворах, активность ионов снижается и сильный электролит ведет себя так, как если бы он находился в состоянии неполной диссоциации. Поэтому диссоциацию сильных электролитов принято количественно характеризовать кажущейся степенью диссоциации. [c.139]


    Таким образом, ионы, несущие одинаковый заряд, расположены друг от друга дальше, чем разноименные, вследствие чего в рассматриваемой системе силы притяжения превалируют над силами отталкивания. С повышением концентрации раствора ионы будут находиться ближе друг к другу и сила взаимодействия их будет усиливаться. Вследствие этого при пропускании электрического тока через сильный электролит все ионы подвергаются электростатическому торможению и тем в большей степени, чем выше концентрация электролита, что приводит к уменьшению скорости движения ионов. При уменьшении концентрации электро- [c.170]

    Слабые места теории Аррениуса заставляли ученых искать., новые основы теории сильных электролитов, и уже в 1894 г. Ван-Лаар указал на необходимость учитывать электростатические силы в электролите, а Сезерленд (1902), [c.395]

    На рис. 2.18 представлена полярографическая волна. При низких значениях потенциала (участок А), величина которого не достаточна для того, чтобы на рабочем микроэлектроде происходила электрохимическая реакция, через ячейку проходит очень незначительный остаточный ток, обусловленный, прежде всего, током заряжения двойного электрического слоя и присутствием в растворе электрохимически более активных, чем анализируемое вещество, примесей. При увеличении потенциала электрохимически активное вещество (называемое деполяризатором) вступает в электрохимическую реакцию на электроде и ток в результате этого резко возрастает (участок В). Это так называемый фарадеевский ток. С ростом потенциала ток возрастает до некоторого предельного значения, оставаясь затем постоянным (участок С). Предельный ток обусловлен тем, что в данной области потенциалов практически весь деполяризатор из приэлектродного слоя исчерпан в результате электрохимической реакции, а обедненный слой обогащается за счет диффузии деполяризатора из объема раствора. Скорость диффузии в этих условиях контролирует скорость электрохимического процесса в целом. Такой ток называют предельным диффузионным. Для того чтобы исключить электростатическое перемещение деполяризатора (миграцию) в поле электродов и понизить сопротивление в ячейке, измерения проводят в присутствии большого избытка сильного электролита, называемого фоном. Являясь электрохимически индифферентным, вещество фонового раствора может вступать в химические реакции (часто это реакции комплексообразования) с определяемым веществом. Иногда фоновый электролит одновременно играет роль буферного раствора. Например, при полярографическом определении ионов 0(1 +, Си +, N +1 o + в качестве фона используют аммиачный буфер- [c.139]


    В теории электролитической диссоциации Аррениуса предполагалось, что ионы в растворах находятся в состоянии беспорядочного движения (подобно газообразному состоянию). Это позволило применить законы, характеризующие газообразное состояние к электролитам. Однако в предположении о беспорядочном распределении ионов в растворе не учитывалось электростатическое взаимодействие между ионами, которое проявляется на достаточно больших расстояниях. В сильных электролитах, например, действие между ионами настолько велико, что в концентрированных растворах возникает тенденция к упорядоченному распределению, аналогичному ионным кристаллам (где каждый ион окружен ионами противоположного знака). Дальнейшие исследования показали, что в реальных растворах средней концентрации распределение ионов в электролите является промежуточным между беспорядочным и полностью упорядоченным. Электростатические силы стремятся создать такое распределение, при котором каждый ион окружен исключительно ионами противоположного знака, но этому противодействует хаотическое движение ионов, приводящее к беспорядочному распределению. В конечном итоге, около каждого иона образуется ионная атмосфера, в которой преобладают ионы противоположного (по сравнению с центральным ионом) знака. [c.60]

    Недостатки теории Аррениуса заставили ученых искать новую теорию сильных электролитов. Уже в 1894 г. Ван-Лаар указал на необходимость учитывать электростатические силы в электролите. Сезерленд (1902), Ганч (1906) и Бьеррум (1906) выдвинули гипотезу о полной диссоциации сильных электролитов. В дальнейшем Бьеррум, Мильнер (1912) и Гош (1918) подтвердили эту ги- [c.61]

    Ионно-электростатическое взаимодействие в черных углеводородных пленках специально не рассматривалось. Это, очевидно, вызвано как тем, что влияние электростатического взаимодействия на устойчивость обычно невелико, так и тем, что теория ДЛФО применима при не очень сильном перекрытии диффузных слоев. В черных углеводородных пленках ситуация как раз противоположна этому. Толщина их так мала, что диффузные слои перекрываются полностью. Другими словами, в черной пленке не успевает возникнуть обкладка диффузного двойного слоя. Если электролит А В растворим как в водной, так и в органической фазе, то условием равновесия будет равенство электрохимических потенциалов в разных фазах (р )  [c.133]

    Как отмечалось в начале этой главы, коллоидные частицы остаются во взвешенном состоянии неопределенно долгое время благодаря своему чрезвычайно малому размеру. Конечные скорости осаждения частицы приобретают только в том случае, если происходит их агрегация. Будучи взвешены в чистой воде, они не могут агломерировать из-за взаимодействия между сильно диффундированными двойными электростатическими слоями. Однако если в суспензию добавить электролит, двойные электростатические слои сжимаются при добавлении достаточного количества электролита коллоидные частицы могут настолько сблизиться, что под влиянием сил притяжения произойдет их слияние в более крупные агрегаты. Это явление известно под названием флокуляции, а наименьшая концентрация электролита, при которой она происходит, называется порогом флокуляции. [c.155]

    Для того чтобы понять физический смысл фг-потенциала, рассмотрим вкратце строение двойного слоя [46]. Как уже указывалось, на границе раздела металл — электролит возникает электрический слой, образованный отрицательными или положительными зарядами, имеющимися на поверхности металла, и ионами противоположного знака, располагающимися вблизи электрода в растворе. Не следует, однако, думать, что все ионы обкладки двойного слоя одинаково сильно связаны с поверхностью электрода. Благодаря наличию кинетического движения ионов, с одной стороны, и электростатического взаимодействия между ионами и электродом, —с другой стороны, получается определенное распределение ионов вблизи поверхности электрода. Часть ионов прочно связана с поверхностью, мало подвижна и расположена на близком расстоянии от поверхности (радиус иона). Эта часть ионов образует так называемый плотный или гельмгольцевский слой. Другая часть ионов гораздо слабее связана с поверхностью электрода, более подвижна и простирается на расстояние, превышающее радиус иона. Она образует так называемый диффузный слой, в котором имеется определенное распределе- [c.28]

    В разбавленных растворах сильных электролитов и ионов в небольшой степени могут образоваться также свободные комплексы, незаряженные или с незначительным зарядом. В растворах истинных электролитов это ионные пары, удерживаемые в основном электростатическим притяжением, тогда как в растворах потенциальных электролитов— ионные пары и ковалентные молекулы или только последние. Образование ионных пар или ковалентных молекул сопровождается сокращением числа носителей заряда и закон действующих масс справедлив для обоих процессов. Поэтому они одинаково влияют на зависимость проводимости от концентрации электролита. Следовательно, по измерениям зависимости проводимости от концентрации невозможно определить, каким явлением —образованием ковалентных молекул или ионных пар — обусловлено снижение в электролите числа возможных носителей заряда. Трудно ответить на этот вопрос и при помощи методов, основанных на других свойствах растворов (например, осмотических и (потенцио-.метрических параметрах),, которые также зависят от общего электростатического взаимодействия ионов. Однако в ряде случаев два типа ионной ассоциации можно различить путем измерения оптических параметров, поскольку ковалентные связи заметно изменяют оптические свойства растворов. [c.347]


    Влияние высокой напряженности поля было обнаружено до разработки электростатической теории сильных электролитов. Теория объяснила факт, установленный экспериментально. Опыты по определению электропроводности при напряженности поля порядка 2 10 в см требуют соблюдения ряда предосторожностей. Огромные токи, протекающие в электролите, должны вызывать повыщение температуры, что недопустимо. [c.132]

    Учитывая выводы электростатической теории сильных электролитов и результаты проверки ее, можно несколько уточнить классическое определение степени диссоциации. В растворе могут существовать свободные ионы, ионы, связанные друг с другом в пары, и недиссоциированные молекулы с ковалентной связью. Появление ионных пар более вероятно в крепких растворах. Можно себе представить раствор, в котором нет молекул с ковалентной связью, но в котором существуют пары ионов, прочно удерживаемых в непосредственной близости друг к другу. Такие пары могут образовываться и разрушаться, т. е. они находятся в равновесии со свободными ионами. Про подобный электролит можно сказать, что он полностью ионизирован, но не полностью диссоциирован. Если, наряду с ионными парами, существуют в растворе и недиссоциированные молекулы. [c.128]

    Недостатки теории Аррениуса заставляли ученых искать новые основы теории сильных электролитов, и уже в 1894 г. Ван-Лаар указал на необходимость учитывать электростатические силы в электролите, а Сезерленд (1902), Ганч (1906) и Бьеррум (1906) выдвинули гипотезу о полной диссоциации (ионизации) сильных электролитов. В дальнейшем Бьеррум, Мильнер (1912) и Гош (1918) пытались на основе этой гипотезы создать новую теорию сильных электролитов, но безуспешно. Основы электростатической теории электролитов были заложены несколько позднее (1923) работами Дебая и Гюккеля. [c.372]

    Коагуляция гидрофобных золей электролитами. Находящийся в коллоидной системе в качестве третьего компонента ионный стабилизатор (растворимый в воде электролит) своим присутствием препятствует процессу коагуляции, т. е. сообщает золю определенную устойчивость. Стабилизирующее действие-ионогенной группы имеет двоякий характер и связано с возникновением двойного электрического слоя вокруг ядра коллоидной частицы. Противоионы, образующие наружный диффузный слой, сильно гидратированы, что обеспечивает их связь с дисперсионной средой. Те же противоионы с другой стороны связаны электростатическими силами с ионами, прочно адсорбированными ядром. Таким образом, ионный стабилизатор создает непрерывный переход от нерастворимого ядра к дисперсионной среде. Внешняя сильно гидратированная ионная атмосфера вокруг частицы является важным фактором устойчивости золей. [c.375]

    В растворах сильных электролитов (даже в разбавленных растворах) электростатическое взаимодействие между ионами велико и их нужно рассматривать как неидеальные растворы и использовать метод активности. Так, сильный электролит Mv J,Av полностью диссоциирует на ионы  [c.245]

    Влияние растворителя на диссоциацию [5]. Природа растворителя часто оказывает существенное влияние а степень диссоциации данного вещества и, следовательно, должна быть учтена при решении вопроса, будет ли раствор обладать свойствами сильного или слабого электролита. Были проведены опыты е растворами азотнокислого тетраизоамиламмония в ряде смесей воды и диоксана (см. стр. 79). Если растворитель содержит значительный процент воды, эта система ведет себя как сильный электролит, "однако, когда в растворителе имеется относительно большое количество диоксана, раствор приобретает типичные свойства слабого электролита. В этом случае (как и в других аналогичных случаях, когда растворенное вещество состоит из частиц, удерживаемых между собой связями почти исключительно гетерополярного характера) тем специфическим свойством растворителя, от которого зависит диссоциация, является, повидимому, диэлектрическая постоянная (см. гл. II и III). Чем выше диэлектрическая постоянная среды, тем меньше взаимное электростатическое притяжение ионов и, следовательно, тем больше вероятность их существования в свободном состоянии. Так как диэлектрическая постоянная воды при 25° равняется 78,6, а диоксана — около 2,2, то приведенные выше факты легко поддаются объяснению. [c.39]

    Чем выше значение е растворителя, тем более ослабляется электростатическое притяжение разноименно заряженных ионов. В зависимости от природы растворителя одно и то же вещество может вести себя и как сильный ачектролиг (Na l в воде), и как слабый электролит (Na l в бензоле). [c.184]

    II. Для выяснения влияния на устойчивость концентрированных эмульсий электростатического отталкивания двойных диффузных слоев [1] в качестве эмульгатора исследовался сильный коллоидный электролит — бутил-нафталинсульфонат натрия (некаль НБ). Он хорошо растворяется в воде и ксилоле, его водные растворы обладают высокой солюбилизующей способностью. Эти свойства некаля НБ, аналогичные НПАВ, обусловливают квазиспонтанное эмульгирование на границе раздела ксилол/вода и образование многослойных защитных пленок из капель МЭ. [c.270]

    Слабый электролит в растворе находится в основном в-виде недиссоциированных ковалентносвязанных молекул, и лишь небольшая его часть, соответствующая степени диссоциации, образует ионы. Степень диссоциации слабого электролита мала даже в наиболее разбавленных растворах и резко снижается при повышении концентрации (например,, в 0,001 м растворе уксусной кислоты при 25 °С степень дис- социации равна 0,12, в 0,1 м растворе — 0,014). В растворах сильных электролитов диссоциация полная или почти не отличается от 1, а относительное изменение степени диссоциации при разбавлении раствора невелико. С другой стороны, поскольку в растворах слабых электролитов число ионов значительно ниже из-за малой степени диссоциации по сравнению с числом ионов в растворах сильных электролитов равной концентрации, электростатическое взаимодействие между ионами и его изменение при варьировании концентрации гораздо ниже в растворах слабых, чем в растворах сильных электролитов. Следовательно, зависимость отроводи-мости слабых электролитов от концентрации и температуры раствора определяется главным образом изменением степени диссоциации при варьировании указанных факторов, а электростатическое взаимодействие ионов имеет небольшое значение. Проводимость же разбавленных растворов сильных электролитов вследствие электростатического взаимодействия ионов, в основном зависит от концентрации электролита, а изменение степени диссоциации небольшого числа недиссо-циированных молекул вносит в значение проводимости не более как несущественную поправку. Однако и в растворах слабых электролитов нельзя пренебречь образованием ионных пар, удерживаемых электростатическими силами, хотя их число незначительно по сравнению с недиссоциированными ковалентно связанными молекулами. Эти два процесса невозможно различить по данным измерений проводимости. [c.405]

    Влияние добавленных электролитов по-разному сказывается на адсорбции полюлектролитов. Во первых, из-за экранирования заряда полиэлектролита они изменяют вклад электростатической компоненты энергии адсорбции с ростом ионной силы раствора конформация ПЭ в поверхностном слое все в большей мере будет приближаться к конформации неионного полимера. Во-вторых, добавленный электролит подавляет взаимное отталкивание сегментов полиэлектролита, что способствует образованию толстого адсорбционного слоя. В-третьих, когда сегменты связаны с поверхностью только электростатически, энергия (сила) связи макроиона с адсорбентом может быть сильно уменьшена при введении электролита в пределе может происходить даже десорбция ПЭ, т. е. ионы электролита как бы вытесняют из адсорбционного слоя полиэлектролит [60]. В-четвертых, если одноименно заряженный полиэлектролит не адсорбируется из-за того, что химическое сродство сегментов к адсорбенту недостаточно для преодоления электрических сил отталкивания, то добавление электролита может способствовать адсорбции полиэлектролита вследствие экранирования зарядов и изменения вклада электрической составляющей в энергию адсорбции сегмента х - Согласно теории полиэлектролит ведет себя при адсорбции как неионный полимер лишь в концентрированных растворах электролитов (порядка 1—5 моль/л), что во много раз больше, чем требуется [c.50]

    Коагуляция гидрофобных золей электролитами. Находящийся в коллоидной системе в качестве третьего компонента ионный стабилизатор (растворимый в воде электролит) своим присутствием препятствует процессу коагуляции, т. е. сообщает золю определенную устойчивость. Стабилизующее действие ионогенной группы имеет двоякий характер и связано с возникновением двойного электрического слоя вокруг ядра коллоидной частицы. Противоионы, образующие наружный диффузный слой, сильно гидратированы, что обеспечивает их связь с дисперсионной средой. Те же противоионы с другой стороны связаны электростатическими силами с ионами, прочно адсорбированными ядром. Таким образом, ионный стабилизатор создает непрерывный переход от нерастворимого ядра к дисперсионной среде. Внешняя сильно гидратированная ионная атмосфера вокруг частицы является важньий фактором устойчивости змей, препятствуя слипанию коллоидных частиц. Строение диффузного слоя обусловливает возникновение электрокинетического потенциала, проявляющегося при перемещении частиц. Все остовы мицелл (гранулы), находящиеся в золе данного вещества, имеют заряд одного и того же знака (например, все гранулы в золе АзаЗ  [c.306]

    Другой класс электролитов, называемых сильными, характеризуется тем, что поведение их растворов не подчиняется простым соотношениям которые были описаны выше и справедливы лишь для слабых электроли тов. Как будет показано дальше, по суш еству сильные электролиты полностью диссоциированы. В случае слабых электролитов свойства раство ров определяются равновесием диссоциации молекул, а- не взаимодейст вием ионов друг с другом. Наоборот, в растворах сильных электр митов где а равна единице, физика явления определяется электростатическим взаи одействием йежду ионами. [c.143]


Смотреть страницы где упоминается термин Электростатическая сильных электролитов: [c.339]    [c.124]    [c.46]   
Явления переноса в водных растворах (1976) -- [ c.462 ]




ПОИСК





Смотрите так же термины и статьи:

Электролиты сильные



© 2025 chem21.info Реклама на сайте