Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электромагнитное излучение также излучение, рентгеновское

    Длины волн электромагнитного излучения изменяются в очень щи-)оких пределах, поэтому для их измерения используют разные единицы. 3 области рентгеновского излучения, а также в ультрафиолетовой и ви- [c.365]

    Земля купается в свете Солнца, и этот свет приносит не только тепло, но и энергию, необходимую всем живым организмам. Из З-Ю" кДж-м 2 световой энергии, ежедневно падающей на Землю. [1, 2], 30 кДж улавливается в процессах фотосинтеза [3]. В верхних слоях стратосферы свет высокоэнергетической части спектра взаимодействует с кислородом, в результате чего образуется защитная оболочка озона. Свет, проникающий сквозь атмосферу, позволяет нам видеть все, что нас окружает, придает предметам разный цвет. Свет управляет цветением растений и прорастанием семян и спор. В биохимических лабораториях свет и другие виды электромагнитного излучения, охватывающие широкий диапазон энергий, используются в экспериментальных целях. Рентгеновские, ультрафиолетовые и инфракрасные лучи, а также ультракороткие волны помогают исследовать молекулы, из которых мы состоим. Свет буквальна пронизывает все стороны жизни человека, при этом исключительно важным является его взаимодействие с биомолекулами. Данная глава написана как краткое введение в предмет в ней, в частности, приведен список источников для дальнейшего чтения. [c.5]


    Эта энергия может быть получена самыми разнообразными путями нагреванием системы, в которой находятся рассматриваемые атомы за счет перераспределения энергии между частицами (термическое возбуждение) в результате поглощения атомами соответствующих квантов электромагнитного излучения (фотовозбуждение) или действия жестких излучений — рентгеновского или гам-ма-излучения, а также воздействия быстрых частиц — р- или а-частиц (возникающих при радиоактивном распаде), электронов, протонов, позитронов, разогнанных до больших скоростей в специальных ускорителях. Возбужденные состояния атомов играют особенно [c.52]

    Стойкость к радиационному воздействию. Оценка стойкости к радиационному воздействию потоков элементарных частиц (электронов, протонов, нейтронов и др.), а также коротковолновых электромагнитных излучений у- и рентгеновские лучи) имеет существенное значение для пленок, используемых в зоне излучений ядерных реакторов, ускорителей заряженных частиц, рентгеновских установок, а также предназначенных для работы в космических условиях [31, с. 249—252]. [c.194]

    Введение. Поглощение проникающего электромагнитного излучения (у или рентгеновского) или Р-лучей часто используется для измерения плотности газо-жидкостных смесей, текущих в канал,е. Действительное ослабление пучка радиации при пересечении канала является в основном функцией плотности жидкости, текущей внутри канала. Однако и распределение фаз в потоке и химический состав смеси также должны приниматься в расчет. [c.226]

    Кроме теплового излучения, тела могут испускать лучистую энергию других видов. Бомбардировка вещества электронами дает излучение, которое мы называем рентгеновскими лучами. Выдерживание вещества под облучением одного вида часто приводит к тому, что оно дает другое или вторичное излучение например, некоторые минералы флуоресцируют в ультрафиолетовом свете. В действительности существует целый спектр электромагнитного излучения, различные части которого получили название, отражающее способ их получения или некоторое характерное свойство. Все виды электромагнитного излучения имеют одинаковую скорость распространения, но отличаются длиной волны и происхождением, При поглощении всех видов излучения выделяется тепло. Однако, только одно электромагнитное излучение, возникающее благодаря нагретому состоянию излучающего тела, мы называем тепловым излучением. Часть этого теплового излучения мы называем также видимым светом, но большая часть его, однако, лежит за пределами спектра видимого света и обычно включается в понятие об инфракрасном излучении, В табл. 28, 1 приводятся примерные пределы длин волн некоторых видов излучения. [c.384]


    Спектральные методы дают широкие возможности для наблюдения и исследования соответствующих аналитических сигналов в различных областях спектра электромагнитного излучения— это у-лучи, рентгеновское излучение, ультрафиолетовое (УФ), оптическое и инфракрасное излучение, а также микроволновое и радиоволновое. Энергия квантов перечисленных видов излучения охватывает очень широкий диапазон от 10 до 10 эВ, соответствующий диапазону частот от до 10 Гц. [c.7]

    Радиационно-химические реакции протекают под действием высоких энергий в результате прохождения ионизирующего излучения через вещество. Инициаторами процессов служат ускоренные электроны, нейтроны, катионы, анионы и другие частицы (корпускулярное излучение), а также рентгеновские и у-лучи (электромагнитное излучение). Разложение химических соединений, происходящие в результате поглощения энергии ионизирующего излучения, называется радиолизом. [c.143]

    Эта энергия может быть получена самыми разнообразными путями нагреванием системы, в которой находятся рассматриваемые атомы за счет перераспределения энергии между частицами (термическое возбуждение) в результате поглощения атомами соответствующих квантов электромагнитного излучения (фотовозбуждение), или действия жестких излучений — рентгеновского или гамма-излучения, а также воздействия быстрых частиц — или а-частиц (возникающих при радиоактивном распаде), электронов, протонов, позитронов, разогнанных до больших скоростей в специальных ускорителях. Возбужденные состояния атомов играют особенно большую роль в химических процессах, протекающих под действием света (фотохимических процессах) и под действием проникающей радиации (радиационно-химических процессах). [c.47]

    Мы специально выделили здесь события, приведшие к осознанию электромагнитной природы света, так как ученые второй половины XX в. воспринимают уже как часть своего мировоззрения тот факт, что свет есть форма электромагнитного излучения. Мы знаем также, что радиоволны, инфракрасное излучение, рентгеновские и космические лучи, так же как свет и ультрафиолетовое излучение, являются электромагнитными волнами и различаются лишь диапазонами частот. Наиболее значительным изменением представлений об электромагнитном излучении, характерных для XIX в., является осознание наличия наряду с волновыми свойствами света также и корпускулярных свойств, причем энергия этих частиц света, или фотонов (е), и частота (v) излучения волны связаны соотношением e = /iv (см. разд. 1.2). [c.28]

    Под излучением высоких энергий понимается коротковолновое электромагнитное излучение с длиной волны, не превышающей длину волны рентгеновского излучения, а также электронное, протонное, нейтронное и другие излучения. Излучение такого уровня энергии вызывает ионизацию в облученном материале, которая может приводить к глубоким изменениям в его структуре. [c.97]

    Таким образом, эмиссионный рентгеновский спектр представляет собой непрерывный фон, перекрытый линиями характеристического излучения. Характеристическое рентгеновское излучение наблюдается не только при бомбардировке электронами, оно возникает также при облучении поверхности электромагнитным излучением большой энергии, достаточной для выбивания внутренних электронов из атомов. Излучение непрерывного спектра при этом не происходит, и характеристический спектр, полученный таким способом, называется флуоресцентным или вторичным. [c.120]

    Как видно из табл. 20, все халькогениды цинка, кадмия и ртути являются полупроводниками. Халькогениды цинка и. кадмия обладают высокой чувствительностью к электромагнитным излучениям, видимому и ультрафиолетовому свету, рентгеновским и гамма лучам, а также к корпускулярной радиации (а и Р). Это позволило применить их при изготовлении фотосопротивлений и фотоэлементов, фоточувствительных слоев в передающих телевизионных трубках, в дозиметрах, в счетчиках. и т.. п. [42. 262].- Селенид и теллурид ртути применяются при изготовлении приборов для измерения напряженности магнитного поля [215]. [c.118]

    Как известно из физики, все тела, встречающиеся в природе, могут излучать энергию различных видов. Носителями лучистой энергии являются электромагнитные колебания с длиной волн от долей микрометра (например, гамма-лучи, рентгеновские) до многих километров (например, радиоволны), распространяющиеся в вакууме со скоростью света (3-10 м/с). В общем случае интенсивность излучения зависит от природы тела, его температуры, состояния поверхности, длины волны, а у газов — также от давления и толщины слоя. Лучи с длиной волны в диапазоне 0,8— 800 мкм (инфракрасные), возникновение которых определяется температурой и оптическими свойствами излучающего тела, называются тепловыми, а явление их распространения — тепловым излучением. [c.304]


    Порядок распределения электронов по оболочкам не изменяется до тех пор, пока атом не испытывает воздействий, при которых его внутренняя энергия увеличивается, например, при соударениях с другими движуш,имися атомами, с ионами или электронами за счет кинетической энергии этих частиц, а также под действием электромагнитных излучений, например света или рентгеновского излучения. [c.166]

    Особенно широко их применяют при определении плотности и толщины различных материалов, в промышленной и медицинской радиографии, а также для определения состава материалов путем измерения поглощения и методом возбуждения флуоресценции. В настоящее время для получения электромагнитного излучения в указанной области энергий почти везде используют обычные рентгеновские аппараты. низкой энергии также можно [c.47]

    Химическое изменение молекул, участвующих в первичном акте взаимодействия с фотоном, играет, очевидно, сравнительно ничтожную роль, и, таким образом, химическое действие электромагнитных излучений высокой энергии почти полностью осуществляется быстрыми электронами. Последние могут быть введены в облучаемую среду также и другими способами, например путем использования препаратов, излучающих р-частицы, или ускорителей электронов. Существуют коренные различия между, действием ультрафиолетовых лучей, с одной стороны, и рентгеновского и -излучений — с другой. В первом случае осуществляется специфическое поглощение фотонов молекулами, [c.16]

    При пероксидной вулканизации энергия для ее протекания подводится к резиновой смеси извне —нагреванием. Носителем сшивающего действия служат образующиеся при термолизе пероксида свободные радикалы. В случае радиационной вулканизации оба этих фактора совмещаются в излучении частиц высокой энергии. Поэтому в принципе радиационная вулканизация не требует ни обогрева резиновой смеси, ни наличия в ней специального вулканизующего агента. Для радиационной вулканизации в основном используют электромагнитное излучение высокой энергии. Только -излучение может служить универсальным вулканизующим агентом для полимеров всех видов, в том числе и для фторкаучуков. Жесткое рентгеновское излучение также может использоваться для вулканизации сравнительно тонкостенных изделий. [c.83]

    К излучениям высокой энергии, которые способны вызывать химические превращения эластомеров, относятся электромагнитные излучения — рентгеновские, а также -лучи, образующиеся при распаде ядер радиоактивных элементов потоки нейтральных частиц—быстрые и медленные нейтроны потоки заряженных частиц — быстрые электроны, а-частицы, протоны и другие продукты ядерных реакций. [c.152]

    Изучалось рассеяние двух видов электромагнитного излучения видимого света (длина волны X = 4000- 6000 А) и рентгеновских лучей ( t= 1 -f-2 А). Отличаясь по длинам волн в тысячи раз, эти два вида излучений позволяют получать более надежные данные (проверяя друг друга), а также удачно дополняют друг друга, поскольку видимый свет легче дает информацию о неоднородностях с размерами в сотни — тысячи ангстрем, а рентгеновские лучи — о неоднородностях меньших размеров — десятки-сотни ангстрем. [c.287]

    Прежде всего стал вопрос об определении числа электронов в том или ином атоме. Впервые это число для легких атомов было определено Томсоном путем изучения интенсивности рассеянных рентгеновских лучей тем или иным веществом. Опираясь на законы классической электродинамики, а также электромагнитную теорию светового излучения, Томсон вывел формулу, связывающую интенсивность рассеянны веществом рентгеновских лучей I с интенсивностью /о падающего на вещество пуч а этих лучей 1—Мо коэффициент пропорциональности к оказался величиной, зависящей не только от значений универсальных постоянных, но и еще от числа атомов в 1 см , а также от числа электронов в самом атоме. Применимость этого метода определения числа электронов только для легких атомов обусловлена тем, что при выводе формулы Томсону пришлось сделать допущение о слабой связи электронов в атоме и о том, что эти электроны выполняют гармонические колебания с той же частотой, что в падающее на них рентгеновское излучение, а потому обусловливают его рассеяние. Это допущение нельзя сделать в случае рассеяния рентгеновских лучей тяжелыми атомами. [c.14]

    Здесь имеются в виду методы, которые основываются на явлениях фотоэффекта, получаемого при использовании монохроматического электромагнитного излучения, и вторичной электронной эмиссии. Собственно фотоэлектронной спектроскопией (ФЭС) называют метод, в котором вещество облучают в вакуумной УФ области электромагнитного спектра. Приоритет открытия явления эмиссии фотоэлектронов в газах под действием УФ облучения, положившего начало развитию метода ФЭС, принадлежит Ф. И. Вилесову (СССР). В рентгеноэлектронной спектроскопии (РЭС, или ЭСХА, что означает электронная спектроскопия для химического анализа) используют монохроматическое рентгеновское излучение. Создателем этого метода применительно к изучению поверхности твердых тел является шведский ученый К. Зигбан. Для возбуждения эмисии электропов может использоваться также электронный пучок, тогда говорят о методе индуцированной электронной эмиссии спектроскопии .  [c.134]

    Когда было установлено, что существуют и другие виды электромагнитного излучения, распространяющиеся со скоростью света, стало-ясно, что свет не уникальное явление природы, а лишь видимое проявление гораздо более общего эффекта, к которому относятся также инфракрасное излучение (открытое Гершелем в 1800г.), электрическое излучение (открытое Герцем в 1887 г.) и рентгеновское излучение (открытое Рентгеном в 1896 г.). Все эти виды излучения относятся к той или иной части электромагнитного спектра (рис. 2.14). Электромагнитный спектр непрерывен и простирается от области чрезвычайно коротких длин волн и высоких частот, соответствующей космическим лучам, до области чрезвычайно длинных и низкочастотных электрических волн. Все виды излучения отличаются только длиной волны X, т.е. расстоянием между двумя последовательными максимумами волнового процесса. Любое электромагнитное излучение распространяется с одинаковой скоростью, которая в вакууме составляет 3,00-10 м/с (обозначается с), и проявляет волновые свойства. В спектре электромагнитного излучения принято выделять разлитаые области, однако между ними не существует четких границ правда, видимая часть спектра (380—760 нм) имеет довольно определенные границы, но это обусловлено ограниченной способностью человеческого глаза к восприятию излучения. Для обнаружения излучения в различных областях электромагнитного спектра созданы специальные приборы, называемые спектроскопами, спектрометрами или спектрографами в зависимости от того, каким образом в них производится регистрация излучения. [c.33]

    Но кванты электромагнитного излучения возникают не только при переходе электронов на дискретные атомные уровни, но и при торможении электронов. Пример такого излучения торможения мы имеем при генерации белого рентгеновского излучения при ударе электронов об антикатод рентгеновской трубки. Это торможение можно уподобить переходу электрона с одного недискретного (свободного) энергетического уровня на другой, также недискретный (свободный) уровень. Электрон, движущийся в хаосе микрополей плазмы, не может не попадать на отдельных участках своего пути в тормозящее поле. Торможение вызовет и неизбежное излучение. Значение разности энергий обоих свободных уровней, между которыми происходит переход электрона, а следовательно, и энергия излучаемого кванта могут быть любыми. Спектр излучения может простираться сколь угодно далеко в сторону как длинных, так и коротких волн. [c.385]

    Но вот произошло открытие рентгеновских лучей и радиоактивности. В 1895 г. Вильгельм Рентген (1845-1923) проводил опыты с сильно ваку-умированными круксовыми трубками (см. рис. 1-11), что позволяло катодным лучам соударяться с анодом без препятствий, создаваемых молекулами газа. Рентген обнаружил, что при этих условиях анод испускает новое излучение, обладающее большой проникающей способностью. Это излучение, названное им х-лучами (впоследствии его стали также называть рентгеновскими лучами), легко проходит через бумагу, дерево и мышечные ткани, но поглощается более тяжелыми веществами, например костными тканями и металлами. Рентген обнаружил, что х-лучи не отклоняются в электрическом и магнитном полях и, следовательно, не являются пучками заряженных частиц. Другие ученые предположили, что эти лучи могут представлять собой электромагнитное излучение, подобное свету, но с меньшей длиной волны. Немецкий физик Макс фон Лауэ доказал эту гипотезу спустя 18 лет, когда ему удалось наблюдать дифракцию рентгеновских лучей на кристаллах. [c.329]

    ФОТОН — элементарная частица с массой покоя, равной нулю, вследствие чего Ф. всегда движется со скоростью света. Спнн Ф. равен 1. Ф. представляет собой порцию электромагнитного излучения, например, видимого света, рентгеновского или -излучения. Ф. называют также квантами — световыми квантами, рентгеновскими квантами или у-квантами. Ф. могут испускаться или поглощаться любой системой, содержащей электрические заряды или по которой проходит ток. Ф. с высокой энергией (7-кванты) испускаются при распадах атомных ядер и элементарных частиц, и могут вызывать расщепление атомных ядер и образование элементарных частиц. Понятие Ф. введено в 1899 г. М. Планком для объяснения распределения энергии в спектре излучения абсолютно черного тела. Существование Ф. означает, что электромагнитные волны с частотой V излучаются и поглощаются только определенными порциями (квантами) с энергией, равной hv (где /г — постоянная Планка). [c.268]

    Широко используются в химии различные формы взаимодействия вещества с электромагнитным излучением рассеяние света при нефелометрии, определение показателя преломления, оптического вращения. Особенно часто для характеристики соединений используются спектры поглощения в различных областях электромагнитных колебаний. Поглощение в области видимого или ультрафиолетового спектра характеризует электронные свойства молекул. Р1нфракрасные спектры отражают колебания ядер. Наконец, дифракция рентгеновских лучей открывает возможность устанавливать геометрию молекул, чему служат также электронография и нейтронография. Дополнительную информацию о строении молекул может дать резонансная 7-спектроскопия (эффект Мессбауэра). [c.22]

    Ядерные процессы, как правило, сопровождаются выделением ( выбрасыванием ) различных частиц (электронов, нейтронов, а-ча-стиц и др.), а также электромагнитным излучением (у-лучи и лучи типа рентгеновских). При этом выделяется большое количество энергии — в форме кинетической энергии продуктов ядерной реакции (элементарных частиц, осколков ядер и т. п.), движущихся с огромной скоростью и часто, кроме того, в виде указанных-выше излучений (иногда—только в виде излучений), а также энергии отдачи. Так, энергетический эффект обычных химических реакций на Авогадрово число (6-10 ) реагирующих частиц большей частью лежит в пределах 20—200 ккал. В то же время энергия, выделяющаяся при большинстве ядерных реакций, превышает 10° эв на одно ядерное превращение. На Авогадрово число превращений это дает 2,3-10 ккал и более, т. е. в сотни тысяч, а во многих случаях — и в миллионы раз больше, чем при обычных химических реакциях. [c.372]

    ИОНИЗАЦИИ ПОТЕНЦИАЛ, см. Потенциал ионизации. ИОНИЗЙРУЮЩИЕ ИЗЛУЧЕНИЯ, потоки фотонов или частиц, взаимод. к-рых со средой приводит к ионизации ее атомов или молекул. Различают фотонное (электромагнитное) и корпускулярное И.и. К фотонному И.и. относят вакуумное УФ и характеристическое рентгеновское излучения, а также излучения, возникающие при радиоактивном распаде и др. ядерных р-циях (гл. обр. 7-излучение) и при торможении заряженных частиц в электрич. или магн. поле - тормозное рентгеновское излучение, синхротронное излучение. К корпускулярному И. и. отиосят потоки а- и Р-частиц, ускоренных ионов и электронов, нейтронов, осколков деления тяжелых ядер и др. Заряженные частицы ионизируют атомы или молекулы среды непосредственно при столкновении с ними (первичная ионизация). Если выбиваемые при этом электроны обладают достаточной кинетич. энергией, они также могут ионизировать атомы или молекулы среды при столкновениях (вторичная ионизация) такие электроны наз. 5-электрона.ми. Фотонное излучение может ионизировать среду как непосредственно (прямая ионизация), так и через генерированные в среде электроны (косвенная ионизация) вклад каждого из этих путей ионизации определяется энергией квантов и атомным составом среды. Потоки нейтронов ионизируют среду лишь косвенно, преим. ядрами отдачи. [c.254]

    В обзоре обсуждаются также принципиально новые недавно открытые возможности дальнейшего развития реакции Трофимова-Гусаровой, заключающиеся в успешном применении ионизирующей радиации (электромагнитное излучение рентгеновского и g-диaпaзoнoв) для активации элементного фосфора и для управления его реакционной способностью путем контролируемого процесса биографического и наведенного дефектообразования в его структуре 28-30 [c.162]

    Помимо того, что поглощение может сопровождаться флуоресценцией (разд. 8.3), взаимодействие рентгеновского излучения с атомами также может привести и к рассеянию, которое может быть упругим (эффект Рэлея) или неупругим (эффект Комптона). При упругом рассеянии электроны атома, вовлеченного в процесс, ускоряются падающим рентгеновским излучением и сами становятся источником излучения, имеющего такие же точно энергию и длину волны, что и падающее рентгеновское излучение. Б отличие от этого, эффект Комптона отражает корпускулярную природу электромагнитного излучения, и его можно рассматривать как столкновение между протоном и электроном, которое приводит к потере энергии и увеличению длины волны рентгеновского излучения в соответствии с законами сохранения энергии и количества движения. С счастью, неупругое рассеяние играет незначительную роль для таких длин волн, как СиКа (1,5418 А) или МоКа (0,7107 А), которые широко используются в рентгеновских экспериментах. Этот эффект, тем не менее, приводит к относительно высокому фоновому сигналу рассеяния. В процессе упругого (когерентного) рассеяния ускоренные электроны приводят к возникновению рассеянного излучения, испускаемого во всех направлениях. [c.389]

    Изложенные выще выводы получены путем обобщения экспериментальных данных по испускаемому разнообразными небесными объектами электромагнитному излучению —от рентгеновских лучей (с длиной волны порядка м) до видимого света и электрических волн в диапазоне до 10 м,— а также на основе свёдений, полученных в опытах с атомными ядрами, и с учетом теоретических гипотез, опирающихся на законы физики. В общей картине мироздания есть области, детали которых еще не вполне ясны, однако не вызывает сомнения тот факт, что основными компонентами в эволюции космоса являются атомные ядра, которые синтезируются и расщепляются вновь и вновь, и этот процесс бесконечен. [c.21]

    Рентгеновы лучи (известные также под названием Х-лучей) возникают при столкновении электронов, имеющих большие скорости, или фотонов электромагнитного излучения большой энергии с мишенью, обычно в виде твердого тела. Энергия столкновения достаточна для того, чтобы выбивать планетарные электроны из атомов анода. На освободившиеся места переходят электроны с болге высоких энергетических уровней, и при этом происходит рентгеновское излучение. Ввиду того что в процессе столкновения электронов с анодом затрачиваются большие количества энергии, возбуждаются главным образом электроны, ближайшие к ядру. Так, может быть выбит электрон с уровня К, а его место может занять электрон из оболочки Ь, что сопровождается испусканием кванта излучения. Поскольку эти внутренние электроны атомов не принимают участия в химических реакциях (за исключением более легких элементов), свойства рентгеновых лучей, испускаемых элементами, не зависят от сочетания атомов в химическом соединении или от физического состояния вещества. Длины волн рентгеновых лучей, [c.113]

    По энергии возбуждающего электромагнитного излучения различают ультрафиолетовую фотоэлектронную спектроскопию (УФЭС) и рентгеновскую фотоэлектронную спектроскопию (РФЭС). Последнюю называют также электронной спектроскопией для химического анализа (ЭСХА), что обусловлено такой возможностью ее применения. При возбуждении ультрафиолетовыми лучами (/гу<40 эВ) испускаются только валентные электроны. Данные, получаемые этим методом, специфичны для системы связывающих электронов, часто делокализованных, и лишь в некоторых случаях —для отдельного атома. [c.40]

    Спектр видимого света составляет лишь небольшую часть полного спект-ра электромагнитных во.лн. Обычные рентгеновские лучи имеют длину волны, равную приблизительно 1 А. Излучение с более короткими длинами волн 1(0,1 0,01 0,001 А) — это гамма-лучи, образующиеся при радиоактивном распаде, а также под действием космических лучей (гл. XXXIII). Световое излучение в ультрафиолетовой области не воспринимается глазом это излучение характеризуется несколько более короткими длинами волн, чем длина волны фиолетового света, а инфракрасное излучение характеризуется несколько более длинными волнами, чем волны красного света. За этой областью идут области микроволнового излучения, представляющего собой радиоволны длиной приблизительно 1 см. [c.138]

    Спектральный диапазон, изучаемый оптикой, охватывает УФ-область в диапазоне длин волн X от 3-.10 до 4-10 см, видимую (воспринимаемую глазом человека) область в диапазоне А от 4-10 до 8-10 см, и ИК-область в диапазоне от 8-10 до 10 2 см. Частоты оптич. диапазона спектра электромагнитных волн лежат в интервале от 10 до Ю гц. С коротковолновой стороны этот диапазон граничит с рентгеновским излучением (X > 5-10 см), а с длинноволновой стороны — с микроволновым диапазоном (к < 10 см). УФ-область спектра принято разделять на диапазон вакуумного ультрафиолета (к = 5-10 —1,7-10 см) и нормального УФ-излучения (к= 1,7-10 —4-10 сл). ИК-диапазон также разделяют на близкую область (к < 25-10 см) и далекую область(А > 25Л0 см). [c.245]

    Ионизирующим (пропикающим) излучением, или радиацией, принято называть коротковолновое электромагнитное излучение — рентгеновские и 7-лучи, высоко-энергетичпые заряженные частицы — электроны, про-топы, дейтоны, а-частицы и ядра отдачи, а также быстрые нейтроны — частицы, не имеющие заряда. Поскольку энергия этих излучений значительно превышает энергию, необходимую для ионизации атомов или молекул вещества и колеблющуюся от 5 до 25 э в, в процессе прохождения излучения через вещество образуются ионы — отсюда и название ионизирующие излучения . Химические [c.9]

    ФОТОН — элементарная частица с массой покоя, равной пулю. Вследствие этого Ф. всегда движется со скоростью света. Обычно обозначается у. Спин Ф. равен 1. Ф. представляет собой порцию электромагнитного излучения произвольной части спектра, напр, видимого света, рентгеновского или у-излуче-ния. Ф. наз. также квантами, в частности, световыми квантами, рентгеновскими квантами и у-кван-тами. Ф. могут исиускаться и поглощаться любыми системами, содержащими электрич. заряды или токи. Ф. радиочастотного и оптич. диапазона испускаются и поглощаются атомами и молекулами Ф. с высокой энергией (у-кванты) испускаются при распадах ядер атомов и элементарных частиц и могут вызывать расщепления ядер атомов и образование элементарных частиц. Понятие Ф. было введено в 1899 М. План-ком для объяснения раснределения энергии в спектре излучения абсолютно черного тела. Существование Ф. означает, что электромагнитные волны с частотой V излучаются и поглощаются только порциями (квантами) с энергией Лу (Л — иостоянная Планка). В 1905 А. Эйнштейн показал, что Ф. распространяются также подобно частицам с импульсом к 1с (с — скорость света). Появление в физике Ф. в качестве элементарной частицы отражает наличие корпускулярных свойств электромагнитного излучения, проявляющихся тем ярче, чем выше частота (энергия) фотонов. [c.273]

    Характер распределения Р.д. в объеме твердого тела зависит от вида применяемого излучеиияь Так, при действии легкого электромагнитного излучения (рентгеновские лучи, у иванты), а также электронов Р. д. распределяются равномерно по всему облучаемому объему вещества. Использование для облучения тяжелых заряженных частиц (протоны, а-частицы, ионы азота и кислорода, продукты деления и т. д.) приводит к локализации Р. д., гл. обр. вдоль пути частицы. Прохождение заряженной частицы или электромагнитного излучения через вещество обычно сопровождается возбуждением электронов и ионизацией значительного числа атомов или ионов, образующих решетку. [c.217]

    РАДИОАКТИВНОСТИ ИЗМЕРЕНИЯ — измерения, имеющие целью определение активности радиоактивных препаратов. Обычно измеряют или абсолютную активность препарата, т. е. число актов распада в единицу времени (практич. единицей абс, активности является кюри), или же количество испускаемых препаратом частиц, регистрируемых счетной установкой в единицу времени (выражаемое числом импульсов в единицу времени) последняя величина при прочих равных условиях обычно пропорциональна абс. активности препарата. Следует иметь в виду, НТО акт а- или -распада может сопровождаться также у- или рентгеновским излзгчением. Поэтому в принципе измерение активности одного и того же радиоактивного изотопа возможно как по его корпускулярному (а- или -), так и по электромагнитному излучению. В химич. практике чаще всего производят измерения активности радиоактивных изотопов по их а-, - и 7-излучению. [c.225]

    В общем случае экзотермические реакции разложения твердых веществ очень чувствительны к присутствию катионных или анионных примесей, а также к следам воды (рис. 17), природе и давлению инертного газа [16], к состоянию кристаллизации и степени дисперсности образцов, к действию электромагнитного излучения (ультрафиолет, гамма- или рентгеновские лучи), к облучению потоком электронов или других частиц. Впрочем, некоторые из таких веществ разлагаются лишь при бомбардировке пучком частиц или фотолитически. [c.95]

    Спектральные методы дают широкие возможности для изучения соответствующих аналитических сигналов в различных областях спектра электромагнитного излучения это "у-лучи, рентгеновское излучение, ультрафиолетовое (УФ), оптическое и инфракрасное (ИК) излучение, а также микроволновое и ра-диоволновое. [c.163]

    Существенно также то, что ионизирующее действие квантов электромагнитного излучения гораздо больше зависит от химического состава основания люминофора, чем действие заряженных частиц. Электроннопреобразуемая доля Ма рентгеновского излучения в первичных актах взаимодействия его с люминофором при достаточно высокой энергии квантов определяется приближенным уравнением [c.49]


Смотреть страницы где упоминается термин Электромагнитное излучение также излучение, рентгеновское: [c.126]    [c.16]    [c.560]    [c.497]   
Введение в радиационную химию (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Рентгеновское излучение

Рентгеновское излучение также

Электромагнитное излучение



© 2025 chem21.info Реклама на сайте