Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зеемана эффект электронный

    Метод ЭПР основан на эффекте Зеемана и открыт в 1944 г. Е. К. Завойским. В этом методе рассматривается расщепление энергетических уровней, возникающих в результате воздействия магнитного поля на вещество, содержащее атомы с неспаренными электронами (точнее — электроны с нескомпенсированным магнитным моментом). Если такое вещество поместить в магнитное поле и подвергнуть воздействию переменного электромагнитного поля перпендикулярно статическому, то при определенных частотах происходит резонансное поглощение энергии образцом. Энергия взаимодействия неспаренных электронов с полем равна [c.60]


    В последнее время магнитные методы снова получают широкое распространение в связи с развитием динамического метода измерения парамагнетизма — метода электронного парамагнитного резонанса (ЭПР). В магнитном поле энергетический уровень неспаренного электрона расщепляется на два подуровня — эффект Зеемана. Эти подуровни отвечают разной ориентации спина электрона. Разность энергии этих двух состояний равна где — напряженность постоянного магнитного поля g — фактор спектроскопического расщепления, который для свободного электрона равен 2,0023 р — магнетон Бора. [c.23]

    Электронный парамагнитный резонанс представляет собой явление поглощения излучения микроволновой частоты молекулами, ионами или атомами, обладающими электронами с неспаренными спинами. Называют это явление по-разному электронный парамагнитный резонанс (ЭПР) , электронный спиновый резонанс и электронный магнитный резонанс . Все эти три термина эквивалентны и подчеркивают различные аспекты одного и того же явления. ЯМР и ЭПР характеризуются общими моментами, и это должно помочь понять суть метода ЭПР. В спектроскопии ЯМР два различных энергетических состояния (если I = 7г) возникают из-за различного расположения магнитных моментов относительно приложенного поля, а переходы между ними происходят в результате поглощения радиочастотного излучения. В ЭПР различные энергетические состояния обусловлены взаимодействием спинового момента неспаренного электрона (характеризуемого т = /2 для свободного электрона) с магнитным полем — так называемый электронный эффект Зеемана. Зеемановский гамильтониан, описывающий взаимодействие электрона с магнитным полем, дается выражением [c.5]

    Таким образом, теперь ясно видна необходимость использования трех квантовых чисел для описания энергии электрона. Каждое новое квантовое число вводилось для удовлетворения требований эксперимента. Однако даже с этими тремя квантовыми числами невозможно было полностью объяснить линейчатые спектры. Например, действие слабого магнитного поля приводит к так называемому аномальному эффекту Зеемана, который нельзя было понять на основе модели Бора — Зоммерфельда. Кроме того, у атома Бора и его вариантов было множество других недостатков. Одним из них, и, по-видимому, наиболее существенным, была невозможность применения теории Бора к более сложным атомам. Приложение ее к спектру даже такого простого атома, как атом гелия, приводило к полной неудаче, и все попытки понять основы периодической системы в рамках модели Бора были безуспешны. Это показывает, что все вышеизложенное верно только для одноэлектронной системы. Такое ограничение не имеет смысла, и поэтому очевидна необходимость найти что-то лучшее. [c.37]


    Первый член описывает расщепление в нулевом поле, следующие два члена—влияние магнитного поля на спиновую мультиплетность, остающуюся после расщепления в нулевом поле члены с Ац и являются мерой сверхтонкого расщепления параллельно и перпендикулярно главной оси, а Q —мерой небольших изменений в спектре, вызванных ядерным квадрупольным взаимодействием. Все эти эффекты обсуждались в гл. 9. Последний член учитывает тот факт, что ядерный магнитный момент может непосредственно взаимодействовать с внешним полем Яд = Нц /, где у — гиромагнитное отношение ядра, а Р — ядерный магнетон Бора. Он описывает ядерный эффект Зеемана, который вызывает переходы в ЯМР. Зеемановское ядерное взаимодействие может влиять на спектр парамагнитного резонанса только в том случае, когда неспаренные электроны взаимодействуют с ядром в ядерном сверхтонком или квадрупольном взаимодействиях. Если даже такое взаимодействие и реализуется, то его величина пренебрежимо мала по сравнению с величинами других эффектов. [c.219]

    Внеш электроны А. определяют и магн. св-ва в-ва. В А. с заполненными внеш. оболочками его магн. момент, как и полный момент импульса (мех. момент), равен нулю. А. с частично заполненными внеш. оболочками обладают, как правило, постоянными магн. моментами, отличными от нуля такие в-ва парамагнитны (см. Парамагнетики). Во внеш. магн. поле все уровни энергии А., для к-рых магн. момент не равен нулю, расщепляются (см. Зеемана эффект). Все А. обладают диамагнетизмом, к-рый обусловлен возникновением у них индуцированного магн. момента под действием внеш. магн. поля (см. Диэлектрики). [c.216]

    Спектры атомов проявляют тонкую структуру, которая не может быть объяснена при помощи только что обсуждавшейся теории. Например, некоторые линии могут быть разрешены в близко расположенные мультиплеты в присутствии магнитного поля (эффект Зеемана) или электрического поля (эффект Штарка). Эта тонкая структура была объяснена в 1925 г. Гаудсмитом и Уленбеком влиянием собственного магнитного момента электрона, который не зависит от его орбитального момента. Позднее Дирак применил теорию относительности к квантовой механике и показал, что действительно можно теоретически обосновать собственный угловой момент электрона. Термин спин электрона применяется, но было бы неправильно думать, что собственные магнитные эффекты электрона обусловлены вращением массы вокруг оси. Собственный угловой момент электрона может быть рассмотрен в известном смысле аналогично орбитальному угловому моменту. Величину 5 полного спина можно выразить как [c.391]

    Эффект Зеемана на электронных и колебательных линиях монокристаллов солей неодима и празеодима. [c.198]

    В магнитном поле энергетический уровень неспаренного электрона расщепляется на два подуровня (эффект Зеемана). Эти подуровни соответствуют разной ориентации спина электрона. Разность энергии этих двух состояний равна рЯ,з, где Н — напряженность постоянного магнитного поля g — фактор спектроскопического расщепления, который для свободного электрона равен 2,0023 р — магнетон Бора. [c.22]

    При переходе к области поглощения в эксперименте по эффекту Фарадея необходимо учитывать эффект Зеемана — расщепление спектральных линий испускания и поглощения в магнитном поле. Согласно упрощенной схеме эффекта Зеемана влияние магнитного поля в направлении г состоит в том, что колеблющиеся в плоскости ху электроны можно рассматривать как вращающиеся по и против часовой стрелки ( рис. Х1У.4). Однако сила Лоренца = = —е[уХВ] = — [гХВ] будет изменять частоту вращения электронов. Для левого круга частота увеличивается, поскольку сила / л направлена в центр (правило правой руки) и [c.253]

    Эффект Зеемана для нескольких электронов с учетом спина электрона имеет более сложный характер ( аномальный или сложный эффект Зеемана). Его рассмотрение следует проводить на основе квантовой механики. [c.254]

    Величина А определяется вырождением основного или возбужденного электронного состояния, т. е. связана с эффектом Зеемана первого порядка. Коэффициент В существует для любого перехода и не зависит от вырождения, так как определяется смешением электронных состояний в магнитном поле. Эта величина включает только недиагональные элементы матрицы оператора магнитного дипольного момента. Коэффициент С не равен нулю только при вырождении основного электронного состояния, особенно для нечетного числа электронов в молекуле. Этот терм определяет зависимость МКД от температуры, поскольку заселенность расщепленных в магнитном поле уровней будет различной. [c.258]

    РАДИОСПЕКТРОСКОПИЯ — область физики, изучающая электромагнитные спектры веществ в диапазоне радиоволн и микроволн с частотой от нескольких до 3 IQi Гц. Наибольшее значение в химии получили методы магнитной Р. ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР). Оба метода основаны на эффекте Зеемана — расщеплении спектральных линий микрочастиц или их систем на составляющие в магнитном поле. Например, если поместить вещество, в состав которого входит водород, в магнитное поле с напряженностью Я = 10 ООО а, ядра водорода, протоны, приобретают способность поглощать электромагнитные колебания длиной волны около 7 м, т. е. длиной ультракоротких радиоволн (частота 42,6 МГц). Причем эта длина различна для разных водородосодержащих веществ (т. наз. химический сдвиг частоты), что дает возможность делать выводы о строении молекул. Электроны в этом же магнитном поле поглощают микроволны длиной [c.209]


    Наличие двух ориентаций магнитного момента электрона относительно направления магнитного поля (по направлению и против), определяемых двумя возможными значениями спинового квантового числа ( + 1/1 —1/2), приводит к расщеплению энергетического уровня неспаренного электрона при наложении постоянного магнитного поля на два подуровня (эффект Зеемана), расстояние между которыми определяется соотношением  [c.223]

    Бора на несколько подуровней, лежащих очень близко друг к другу. При этом было получено приемлемое совпадение с экспериментально найденной тонкой структурой спектра водорода. Было обнаружено, что под действием магнитного поля спектральные линии расщепляются еще больше. Этот эффект, известный под названием эффекта Зеемана, иллюстрируется рис. 1-13, где изображено расщепление основного натриевого дублета. Для объяснения наблюдаемого явления потребовалось введение третьего квантового числа т, названного магнитным квантовым числом. Для описания положения электрона в пространстве нужно три координаты. Это как раз проявляется в трех степенях свободы и требует трех квантовых чисел для описания энергии электрона. Без пространственной ориентации расположение орбитальной плоскости электрона полностью произвольно, а третья степень свободы является вырожденной. Однако при наличии внешнего поля орбитальная плоскость электрона прецессирует вокруг направления поля, и потому вырождение будет сниматься. Третье квантовое условие подобно моменту количества движения имеет вид [c.37]

    Наличием собственных магнитных полей атома водорода удалось объяснить расщепление спектральных линий в магнитном поле (эффект Зеемана) и в электрическом поле (эффект Штарка). Для объяснения более тонких спектральных явлений введено еще одно квантовое число — спиновое квантовое число 5. Спин, или вращение электрона относительно собственной оси, может быть левым и правым [c.37]

    Эффект резонанса. Спектроскопия магнитного резонанса изучает переходы магнитных диполей между энергетическими уровнями, возникающими (в отличие от оптической спектроскопии) только при взаимодействии магнитного момента электрона или соответственно ядра с постоянным магнитным полем (эффект Зеемана). [c.248]

    После Бора многие ученые пытались усовершенствовать его теорию. Но все эти усовершенствования предлагались исходя из законов классической физики. Так, в 1916 г. немецкий физик А. Зоммерфельд предположил, что электрон может двигаться не только по круговым, но и по эллиптическим орбитам. Объединенная теория Бора-Зоммерфельда объясняла эффект Зеемана, но и эта теория тоже оказалась бессильной в объяснении некоторых вопросов строения атома. [c.40]

    При действии внешнего магнитного поля на магнитный момент ядра его энергетические уровни, как и у электрона,, расщепляются, т. е. возникает эффект Зеемана, проявляющийся в спектре так называемого ядерного магнитного резонанса (ЯМР). В данном параграфе явление ЯМР мы принимать во внимание не будем. [c.105]

    Происхождение названий аномальный и нормальный эффекты Зеемана относится к периоду, когда представления об электронном спине еще не были введены в квантовую механику. Поскольку зеемановский триплет, как это легко показать, может быть объяснен и в рамках описания с набором обычных квантовых чисел п, [c.83]

    Р1/2 (Е = 16 972 см 1). Переход электрона из состояния 5 в состояния Рз/2 и Р1/2 дает поэтому две линии, лежащие в спектре на очень близком расстоянии— 26 см 1. Это знаменитая двойная желтая линия натрия. Она и указывает на дублетность терма Изучение спектра позволяет таким образом определять мультиплетность термов. Еще более полные сведения об электронных конфигурациях дает изучение расщепления спектральных линий в магнитном и электрическом полях (эффекты Зеемана и Штарка). [c.42]

    Примером наиболее простого случая является атом водорода. Так же как н для электрона, для протона (/ = имеет место эффект Зеемана. Поэтому его магнитный момент во внешнем магнитном поле может ориентироваться в 2/ + 1 = 2 направлениях, характеризуемых значениями т, = = При взаимодействии с обеими компонентами ядерного магнитного момента зеемановский уровень неспаренного электрона расщепляется на два других уровня. С учетом зеемановского терма ядра энергия электронного уровня определяется выражением [c.267]

    Внеш. магн. поле влияет на выход продуктов р-ции, скорость элементарных процессов взаимод. парамагнитных частиц (рекомбинации радикалов, аннигиляции триплетно-возбужденных молекул, тушения триплетных молекул радикалами и т.п.), интенсивность флуоресценции и хеми-люминесценции, темновую и фотопроводимость мол. кристаллов и орг. полупроводников. Магн. изотопный эффект сопровождается разделением магн. и немагн. изотопов (напр., С и С, о и О). Хим. поляризация электронов и ядер проявляется в спектрах ЭПР и ЯМР продуктов р-ций (радикалов и молекул), при этом положит, поляризация приводит к аномально сильным линиям поглощения, а отрицательная-к линиям эмиссии. В последнем случае создается инверсная населенность зеемановских уровней электронов или ядер (см. Зеемана эффект. Лазер). Когда химически индуцированная отрицат. поляризация ядер достигает значит, величины, превосходящей порог генерации, происходит самовозбуждение радиочастотного излучения и хим. система становится мол. квантовым генератором-хим. радиочастотным мазером. Внеш. высокочастотное резонансное поле стимулирует изменение спина и, следовательно, выхода продукта р-ции или интенсивности люминесценции. Это позволяет регистрировать спектры ЭПР короткоживущих пар парамагнитных частиц по изменению выхода электронов, дырок, возбужденных молекул. На этом принципе основан новый метод магн. резонанса-двойной магн. резонанс (ДМР). [c.624]

    Измepeшiя магн. восприимчивости М, по ее отклику на внеш. магн. поле дают важные сведения о диа- и парамагнетизме М,, а расщепление ее энергетич. уровней в магн. поле-о том, какими особенностями строения М. определяется ее магн. момент и магн. восприимчивость (см. Зеемана эффект). Парамагнитные М,, обладающие постоянным магн. моментом, к-рый обусловлен наличием у этих М, неспаренных электронов, исследуют методом ЭПР. М. с магн. моментами, обусловленными спином ядер и меняющимися в зависимости от экранирования этих ядер электронами, исследуют методом ЯМР- Спектры ЭПР дают сведения, напр,, о короткоживущих соед. радикального типа, а спектры ЯМР-о взаимном расположении атомов в М. и их ближайшем окружении, возможных перемещениях атомов или групп атомов (напр,, миграции заместителя вокруг ароматич. кольца), изомерии и т.п. [c.109]

    Физика явления. В отсутствие постоянного магн. поля Н магн. моменты неспаренных электронов направлены произвольно, состояние системы таких частиц вырождено по энергаи. При наложении поля Н проекции магн. моментов на направление поля принимают определенные значения и вырождение снимается (см. Зеемана эффект), т. е. происходит расщепление уровня энергии электронов Ед. Расстояние между возникшими подуровнями зависит от напряженности поля Н и равно ] - = Д = g igH (рис. 1), где - фактор спектроскопич. расщепления (см. ниже), - магнетон Бора, равный 9,274 Дж/Тл в системе единиц СИ вместо Н следует использовать магн. индукцию В - ЦоЯ, где - магн. проницаемость своб. пространства, равная 1,257 10 Гн/м. Распределение электронов по подуровням подчиняется закону Больцмана, согласно к-рому отношение заселенностей подуровней определяется выражением щ/п2 = ехр ( АЕ/кТ), где к - постоянная Больцмана, Т - абс. т-ра. Если на образец подействовать переменным магн. полем с частотой V, такой, что /IV = g x H (й - постоянная Планка), и направленным перпевдикулярно Н, то индуцируются переходы между соседними подуровнями, причем переходы с поглощением и испу- [c.447]

    С позиций квантово-механической модели состояния спина (электронного и ядерного) и магнитного момента /1 квантованы. В отсутствие внешнего магнигного поля состояния частицы, характеризующиеся спиновыми квантовыми числами /2, вырождены, т. е. имеют одно и то же значение энергии. При помещении частицы (рис. 11.84) в постоянное магнитное попе Щ вырождение снимается и энергии уровней с т, = +у и И, = "Я оказываются неравными. Это выражается в расщеплении уровней энергии в магнитном ноле (эффект Зеемана). Дпя электрона состояние с и , = -X (состояние Р) отвечает более низкому значению энергии, чем [c.343]

    Прямые наблюдения эффекта Зеемана сложных молекул из-за больщой ширины полос в электронном спектое практически невозможны. Метод МКД позволяет определить электронные переходы в магнитном поле, поскольку они имеют различную круговую поляризацию (см. рис. ХП1.6). При использовании МКД изучается сумма полос поглощения, сдвинутых на небольшую величину, но имеющих разный знак Деа=е/+(—8г). Информация об электронных переходах в эффекте Фарадея в форме МКД и в эффекте Зеемана в принципе одинакова. [c.260]

    Голландские физики Г. Е. Уленбек и С. А. Гоудсмит пришли к выводу (1925), что электрон обладает особыми свойствами, которые связаны с наличием у него спина (S — spin). Открытие спина как неотъемлемого физического свойства электрона оказало огромное влияние на последующее развитие физики атома, углубило понимание магнетизма вещества, позволило объяснить тонкую структуру спектра, эффект Зеемана и другие явления. [c.63]

    Поскольку энергия электронов в атоме водорода определяется величиной и и не зависит от остальных квантовых чисел, то, очевидно, может быть несколько состояний электрона с одинаковой энергией. Такие состояния являются вырожденными. Вырождение исчезает при воздействии на электрон в атоме внешнего электрического или магнитного поля. Электрон в состояниях с одними и теми же значениями л, но различными числами /Я/ или т, по-разному взаимодействует с внешним полем, в результате энергии электрона в этих состояниях становятся неодинаковыми. Этим объясняется расщеа,пение спектральных линий при помещении источника излучения в электрическое или магнитное поле (эффекты Штарка и Зеемана). [c.30]

    Последние два типа спектров исследуют, помещая атомы или молекулы, содержащие неспаренные электроны или ядра с магнитными моментами, во внешнее магнитное поле. Их можно назвать уровнями магнитной структуры. Расщепление уровней в видимой и УФ-области под денстржем магнитного поля называют эффектом Зеемана. [c.217]

    Теперь на.м понятно происхождение аномального эффекта Зеемана. Когда атом и.меет спин, мы рассматриваем его в тер.мннах квантовых чисел S, I я j (для одного электрона) полный угловой момент получается путе.м комбинанни спинового и орбитального моментов (рис. 14.17). Если магнитные моменты имеют ту же самую связь с угловым моментом независимо от того, являются опи орбитальными пли спиновыми, то результирующий магнитный момент должен совпадать по направлению с результирующим полным угловым моментом. Поскольку, однако.спиновый магнитный момент аномален, результирующий магнитный. момент не сов- [c.502]


Смотреть страницы где упоминается термин Зеемана эффект электронный: [c.627]    [c.143]    [c.80]    [c.83]    [c.127]    [c.58]    [c.42]    [c.39]    [c.57]    [c.92]    [c.83]    [c.92]    [c.37]    [c.81]    [c.501]    [c.502]   
Квантовая механика молекул (1972) -- [ c.21 , c.24 , c.274 , c.290 , c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Зеемана

Зеемана эффект



© 2025 chem21.info Реклама на сайте