Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностно-активные вещества строение двойного электрического

    Строение двойного электрического слоя в условиях специфической адсорбции. Адсорбция — концентрирование вещества из объема фаз на поверхности раздела между ними — может быть вызвана как электростатическими силами, так и силами межмолекулярного взаимодействия и химическими. Адсорбцию, вызванную силами неэлектростатического происхождения, принято называть специфической. Вещества, способные адсорбироваться на границе раздела фаз, называются поверхностно-активными (ПАВ). К ним относятся большинство анионов, некоторые катионы и многие молекулярные соединения. Специфическая адсорбция ПАВ, содержащегося в электролите, влияет на структуру двойного слоя и величину ф1 потенциала (рис. 172). Кривая 1 на рис. 172 соответствует распределению потенциала в двойном электрическом слое в отсутствие ПАВ в растворе. Если раствор содержит вещества, дающие при диссоциации поверхностно-активные катионы, то за счет специфической адсорбции поверхностью металла катионы будут входить в плотную часть двойного слоя, увеличивая ее положительный заряд (кривая 2). В условиях, способствующих усилению адсорбции (например, увеличение концентрации адсорбата), в плотной части может оказаться избыточное количество положительных зарядов по сравнению с отрицательным зарядом металла (кривая 3). По кривым распределения по- [c.474]


    Значительный интерес представляет изучение влияния, оказываемого поверхностно активными веществами на величину емкости и строение двойного электрического слоя. Детально этот вопрос был рассмотрен А. Н Фрумкиным. Учитывая взаимодействие между адсорбированными частицами, "А Н. Фрумкин, рассматривал границу между электродом и раствором как два параллельных конденсатора между обкладками одного из них находятся частицы органического вещества, между обкладками другого — молекулы растворителя (воды). Исходя из этого, было получено выражение для величины дифференциальной емкости  [c.51]

    Рассмотрим строение двойных электрических слоев в разных точках электрокапиллярной кривой при отсутствии и в присутствии в растворе поверхностно-активных молекул (рис. 84, / и II). Точка f соответствует потенциалу нулевого заряда в присутствии поверхностно-активных молекул в растворе. Она расположена при том же потенциале, что и точка Ь на кривой 1, в которой поверхность ртути заряжена положительно. Разность потенциалов ф — ф равна адсорбционному Ч-потенциалу. Положительное значение адсорбционного 1з1-потенциала указывает на то, что молекулы органического вещества обращены к поверхности ртути положительным концом диполя. Другие органические вещества могут быть обращены к поверхности ртути отрицательным концом диполя, что приведет к сдвигу максимума электрокапиллярной кривой в сторону отрицательных потенциалов. [c.306]

    Адсорбция поверхностно-активных веществ происходит при значениях потенциалов, лежащих в определенной области. При любом потенциале в этой области, кроме точки нулевого заряда, двойной электрический слой создается за счет сил электростатического Притяжения противоионов и сил адсорбции. Поэтому такой слой имеет сложное строение. Область потенциалов, в которой наблюдается адсорбция поверхностно-активных веществ, определяется сравнением электрокапиллярных кривых, снятых для чистого раствора и для раствора с добавкой адсорбирующихся веществ. Таким образом, по изменению формы электрокапиллярных кривых и величине потенциала нулевого заряда можно судить о строении двойного электрического слоя. [c.172]

    При выводе уравнения (У.31) влияние строения двойного электрического слоя не учитывалось. Следовательно, оно является справедливым для растворов достаточно концентрированных (свыше 0,1 М) или содержащих значительный избыток индифферентного электролита при отсутствии поверхностно-активных веществ и при заметном удалении потенциала электрода от потенциала нулевого заряда. [c.135]


    Простейшей моделью, описывающей строение двойного электрического слоя в присутствии поверхностно-активных органических соединений, является модель двух параллельных конденсаторов (А. Н. Фрумкин, Б. Б. Дамаскин). Согласно этой модели заряд поверхности электрода аддитивно складывается из заряда свободной поверхности и заряда поверхности, полностью покрытой органическим веществом  [c.199]

    Наибольшей диффузностью двойной слой обладает вблизи точки нулевого заряда. Метод измерения емкости двойного слоя позволяет исследовать изменения, происходящие в двойном электрическом слое, в частности кинетику адсорбции поверхностно активных веществ, деформацию ионов под влиянием электрического поля, изменение толщины двойного слоя при адсорбции атомов и молекул. Сравнительное изучение поведения ряда металлов в водных растворах показало, что строение ионного двойного слоя относительно мало зависит от природы металла. Вместе с тем определение значения емкости двойного слоя помогает судить о строении и истинной поверхности металлического электрода. Измерения емкости в разбавленных растворах позволили, например, непосредственно проверить на опыте теорию диффузионного строения двойного слоя и определить величину потенциала l3], создаваемого частью двойного слоя, находящейся на расстоянии одного ионного радиуса от поверхности электрода. [c.225]

    Изучение кинетики адсорбции поверхностно активных веществ при достаточной скорости электродной реакции показывает, что концентрирование различных веществ на электродах, а значит, и состояние адсорбционного слоя очень сильно зависят от конкретных условий электролиза, свойств металла и раствора и, следовательно, от строения двойного электрического слоя (потенциала ионного слоя). [c.354]

    Поскольку строение двойного электрического слоя существенно зависит от концентрации электролита и присутствия в нем поверхностно активных веществ, они будут влиять также на характер и форму электрокапиллярной кривой (рис. 76, б). [c.182]

    Влияние поверхностно-активных веществ на катодную поляризацию связано с адсорбцией частиц добавки поверхностью катода. Иногда это явление можно истолковать, исходя из положений теории замедленного разряда, учитывая при этом изменения строения двойного электрического слоя и величины фх-по- [c.339]

    Значительный интерес представляет влияние, которое оказывают поверхностно-активные органические вещества на строение двойного электрического слоя и на форму электрокапиллярных кривых. Впервые этот вопрос был разобран Фрумкиным в 1926 г. Сущность теории Фрумкина сводится к следующему. [c.244]

Рис. 40. Строение двойного электрического слоя по Штерну. Молекулярная картина (наверху) и изменение потенциала с расстоянием (внизу) для растворов поверхностно-инактивных веществ (а) и растворов, содержащих поверхностно-активные Рис. 40. <a href="/info/602564">Строение двойного электрического слоя</a> по Штерну. <a href="/info/375219">Молекулярная картина</a> (наверху) и <a href="/info/73942">изменение потенциала</a> с расстоянием (внизу) для растворов <a href="/info/6185">поверхностно-инактивных веществ</a> (а) и растворов, содержащих поверхностно-активные
    Зависимость энергии активации от потенциала диффузионной части двойного слоя указывает на связь скорости электродного процесса не только со смещением потенциала металла от равновесного значения, но и со строением двойного электрического слоя. Величина в существенной мере определяется концентрацией раствора и наличием в нем поверхностно-активных веществ, способных адсорбироваться на электроде. При достаточно большой концентрации раствора и соответственно малой величине размытой части двойного слоя значение потенциала 1151 может быть принято равным нулю. В этом случае при замене потенциала ф величиной Афэ выражение для скорости электродного процесса (например, анодного окисления) приобретает вид [c.18]

    Скорость электродного процесса определяется не просто сдвигом потенциала от равновесного значения, но и строением двойного электрического слоя. На это указывает то, что энергия активации зависит от потенциала размытой части двойного слоя фь Последний зависит, в свою очередь, от концентрации раствора и от присутствия в нем поверхностно-активных веществ, адсорбирующихся на электроде. Если концентрация раствора достаточно велика, то размытая часть двойного слоя становится ничтожно малой и Фа Ф (т- е. ф1 0). В таком случае уравнения (IX, 9) и (IX, 10) упрощаются (ф[ выпадает). [c.400]

    Особенно сложное строение имеют слои нефти, контактирующие с горными породами пласта, так как взаимодействие поверхностно-активных веществ с минералами очень многообразно. Замечено, например, что реагенты, применяемые во флотационной технике, могут закрепляться на поверхности минерала как в форме обычных трехмерных пленок, образующих самостоятельную фазу на поверхности минеральных частиц, так и в виде поверхностных соединений, не имеющих определенного состава и не образующих отдельной самостоятельной фазы. Наконец, реагенты могут концентрироваться в диффузионной части двойного электрического слоя, а не на поверхности раздела фаз. Поверхностно-активные компоненты, по-видимому, всегда концентрируются не только на поверхности, но и в трехмерном объеме вблизи поверхности раздела. [c.173]


    Изменения в строении двойного электрического слоя не влияют на равновесный потенциал, если остаются постоянными химические потенциалы веществ, участвующих в электродной реакции внутри фаз. Например, при добавлении к раствору поверхностно-активного вещества появляется новый адсорбционный двойной электрический слой и соотвеитвующий скачок потенциала. [c.300]

    Электрокапиллярная кривая при отсутствии в растворе поверхностно-активных веществ, например, в растворе Ка2504 представлена на рис. 83 (кривая /). Ионы Ка+ и ЗО не адсорбируются специфически на ртути. В присутствии специфически адсорбирующегося аниона, например, при добавлении К1 к раствору Ыа2304 вид электрокапиллярной кривой изменяется (кривая 2). Строение двойных электрических слоев, соответствующих точкам на кривых рис. 83,/, представлено на рис. 83, II. В точке на кривой 2 (см. рис. 83) имеется максимум, который соответствует потенциалу нулевого заряда. Точка ц сдвинута в сторону отрицательных потенциалов на величину ф — ф по сравнению с точкой Ь и расположена при том же потенциале, что и точка с на кривой 1. Поэтому в точке g на поверхности ртути имеется адсорбционный двойной электрический слой из специфически адсорбированных анионов и притянутых к ним катионов К+, а поверхность ртути не заряжена. Разность потенциалов нулевого заряда для кривых 1 я 2 равна адсорбционному 11)1-потенциалу 1з1 = ф —ф . Правее точки на кривой 2 на поверхности ртути появляется отрицательный заряд и в точке (1 кривые [c.304]

    Сущность работы. Знание зависимости поверхностного натяжения на границе раствор — металл от приложенного напряжения иоз воляет судить о строении двойного электрического слоя. Для исследования применяют метод электрокапиллярных кривых. Ето сущность состоит в постепенной поляризации ртутного катода и измерении поверхностного натяжения на границе раствор — ртуть. При катодной иоляризации ртути ее положительный заряд постепенно уменьшается, а поверхностное натяжение возрастает. При заряде, равном нулю, иоверхностное натяжение достигает максимума. Форма получаемой электрокапилляр-ной кривой и потенциал нулевого заряда, при котором поверхностное натяжение достигает максимальното значения, определяется составом раствора, наличием в нем поверхностно-активных веществ и, следовательно, природой и строением двойного электрического слоя. [c.184]

    При электролитическом рафинировании в электролиты добавляют поверхностно-активные и ко.ллоидные вещества для получения плотных или блестящих осадков. Эти добавки адсорбируются на поверхности растущих кристаллов металла и приводят к образованию осадков. На поверхности анода могут адсорбироваться поверх-ностно-активные, коллоидные вещества, а также дипольные и нейтральные молекулы, которые способны поляризоваться под влиянием электрического поля на границе металл — раствор. Они приводят к изменению строения двойного электрического слоя и могут интенсифицировать процессы, протекающие по электрохимическому механизму. [c.171]

    Адсорбция поверхностно-активных молекул на электроде, помимо увеличения толщины двойного электрического слоя (I, вызывает также некоторое уменьшение диэлектрической постоянной Д что приводит к дополнительному снижению емкости двойного слоя. На кривых зависимости С от ф область адсорбции поверхностно-активных веществ лежит вблизи ф нулевого заряда, потенциалы ф1 и фг (см. рис. 16 и 17) являются потенциалами десорбции поверхностно-активных молекул фа — потенциал десорбции поверхностно-активных анионов, фк — катионов (см. рис. 17), значения ф1 и фк, а также фг и фа могут быть и не близки. На кривой С — ф при потенциалах, равных Ф1 и ф2, наблюдаются пики, соответствующие резкому возрастанию емкости. Причина появления пиков в области потенциалов десорбции заключается в резком изл1енении строения двойного электрического слоя на межфазовой границе при замене адсорбированной органической молекулы или иона на более полярные молекулы растворителя — воды. [c.35]

    На неременнотоковых полярограммах, как уже было сказано, помимо пиков окисления-восстановления, регистрируются и ад-сорбционно-десорбционные пики, так как этот метод более чувствителен к адсорбционным процессам по сравнению с классической полярографией. В литературе последних лет этому вопросу посвящено большое количество статей, в большинстве которых рассматриваются различные теоретические закономерности, которым подчиняются адсорбционно-десорбционные пики. Техринг с сотр. [19—21] вывел уравнение, описывающее зависимость пика адсорбции от концентрации органического вещества и времени, строения органической молекулы, pH и других факторов. Проведенные исследования позволили ему высказать предположения о строении двойного электрического слоя в случае адсорбции, объяснить уменьшение пиков кадмия и меди под влиянием поверхностно-активных веществ. [c.152]

    Взгляды Лайонса в какой-то мере отражают некоторые особенности, свойственные процессам катодного выделения металлов. Несомненно, что известная роль в этих процессах должна быть отведена особенностям электронного строения ионов. В то же время теория Лайонса не истолковывает полностью природу процессов электроосаждения металлов. Прежде всего это связано с отсутствием надежных данных о строении ионов в растворе и на поверхности электрода, что заставляет прибегать к помощи гипотетических структур. Далее, теория Лайонса, даже при использовании подобных структур, не в состоянии объяснить некоторые опытные закономерности, относящиеся, нацример, к выделению металлов платиновой группы. В его теории не учитывается влияние величины потенциала электрода и строения двойного электрического слоя на процесс электроосаждения металла. Наконец, она не может объяснить ту роль, какую играют в этом процессе состав раствора и особенно поверхностно-активные вещества. Дальнейшее развитие представлений о роли структуры разряжающихся металлических ионов при электроосаждении металлов было дано Вылчеком (1957 г.). [c.438]

    К стабилизаторам относятся две группы вош еств а) неорганич. электролиты и б) органич. поверхностно-активные вещества. Электролиты приводят к возникновению на частицах одноименных электрич. зарядов, взаимное отталкивание к-рых преобладает над силами сцепления частпц. Основное значение в такой ионной стабилизации имеет величина электрокинетич. потенциала поверхности, зависящая от строения двойного электрического слоя, образовавшегося вокруг частиц. Адсорбционные слои поверхностно-активных веществ, снижая поверхностное натяжение на границе раздела частица — среда, связывают часть дисперсионной среды и образуют вокруг частицы защитную сольватную (в водной среде — гидратную) оболочку. В этом случае С. д. с. возникает как результат лио-филизации поверхности частиц. В эмульсиях, т. е. системах, состоящих из двух жидких фаз, может быть [c.506]

    Тсрможение процесса анодного растворения металла при пассивировании в определенной степени может быть вызвано специфической и электростатической адсорбцией ионов, изменяющих величину ifi -потенциала и образующих поверхностные комплексы, оказывающие определенное влияние на скорость анодного растворения. Однако решающую роль играет изменение строения двойного электрического слоя на поверхности металла и непосредственно на границе металл — раствор. При этом, если происходит образование прочной связи адсорбированного (хемосорбирован-ного вещества с металлом на всей поверхности, то скорость процесса сильно замедляется. По такому механизму происходит пассивирование платины в растворах НС1, причем при адсорбции кислорода в раствор вытесняется эквивалентное число адсорбированных ионов хлора, что и вызывает снижение плотности тока анодного растворения платины по экспоненциальному закону (адсорбционно-электрохимический механизм Б. В. Эршлера). Очевидно, что при пассивировании возможно и неполное покрытие поверхности металла кислородом с образованием поверхностных соединений. В этом случае замедление скорости анодного процесса связано с блокировкой части активной поверхности. [c.353]

    Значительное влияние на поляризацию при электролитическом осаждении металлов оказывают поверхностно-активные вещества, присзггствующие в небольших количествах в электролите и способные адсорбироваться поверхностью катода (рис. 149). Действие ПАВ заключается в их влиянии на строение двойного электрического слоя и величину 1-потенциала (см. с. 336), а также в том, что они вызывают блокирование поверхности электрода. [c.338]

    Данные Скорчелетти и Титовой (фиг. 133) показывают, что усиление действия поверхностно-активных элементов коррозионной среды путем введения в раствор поверхностно-активного вещества вначале несколько сокращает время до коррозионного растрескивания, а затем резко увеличивает его. Авторы связывают полученный минимум на кривой коррозионного растрескивания со снижением поверхностной энергии металла при адсорбции аниона. Дальнейшую защиту металла авторы объясняют либо изменением строения двойного электрического слоя — уменьшением заряда поверхности металла, либо закрытием всей поверхности адсорбционным слоем, препятствующим окислению. [c.165]

    Советским электрохимикам удалось создать тонкую экспериментальную методику исследования электродных процессов оо-строение поляризационных кривых в стационарных и нестационарных условиях, метод с использованием переменных токов, ос-циллографический метод, позволяющий установить временную зависимость потенциала электрода при пропускании тока постоянной силы, метод меченых атомов и др. Новые инструментальные методы раскрыли перед исследавателями более широкие горизонты. Так, было показано, что основным фактором, определяющим возникновение скачка потенциала на границе между металлом и раствором, является двойной электрический слой из зарядов металла и ионов раствора. Было найдено, что на условия появления и величину скачка потенциала между металлом и раствором большое влияние оказывает адсорбция и ориентация дипольных молекул. Сопоставление данных, полученных при изучении электрокапиллярных я влений, пролило яркий свет на роль поверхностно активных и коллоидных веществ, адсорбирующихся на поверхности электродов. [c.3]

    Причина этого, по-видимому, заключается в следующем. В растворе кислоты ионную часть двойного слоя стального электрода образуют ионы S0 . Если в кислоту введены ионы Вг , строение двойного слоя будет иным. Можно предполагать, что количество анионов Вг в ионной части двойного слоя будет больше, чем ионов SOJ , из-за большей поверхностной активности 13г . Их будет больше и в слзп1ае последующей адсорбции катионов органических веществ (например, катионов нонилпиридиния). Выше было показано, что органические ингибиторы могут выталкиваться из двойного слоя электрическим полем, которое создается катионами металла, [c.147]


Смотреть страницы где упоминается термин Поверхностно-активные вещества строение двойного электрического: [c.419]   
Теоретическая электрохимия (1959) -- [ c.0 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вещества строение

Двойной электрический

Поверхностная активность

Поверхностно-активные вещества

Поверхностно-активные вещества и их строение



© 2025 chem21.info Реклама на сайте