Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Десорберы в производстве

    МПа (в зависимости от схемы производства). Образовавшиеся в результате хемосорбции карбонаты и бикарбонаты разлагаются в десорбере с выделением диоксида углерода при нагревании потока до 120°С. [c.49]

    Очистка циркуляционного водородсодержащего газа, а также углеводородсодержащего газа от сероводорода происходит в колоннах (абсорберах) 10— 15%-ным моноэтаноламином. В колонну углеводородный газ поступает снизу из сепараторов. Навстречу ему, противотоком, движется раствор моноэтаноламина. Очищенный газ поступает в каплеотбойник, а затем в компрессор и далее после дросселирования до 0,4 МПа выводится из установки. Десорбция сероводорода из насыщенного им раствора моноэтаноламина происходит в десорбере. После десорбере сероводород вместе с парами воды поступает в холодильник, сепаратор, а затем газ направляется в производство серной кислоты или на факел. - [c.267]


    На рис. 6.9 дана схема обезвреживания сульфидсодержащих технологических конденсатов методом десорбции углеводородным газом. Конденсат нагревается до температуры 95—98 С, при которой основная масса гидросульфида аммония разлагается на свободный сероводород и аммиак. Процесс проводят при давлении 0,02—0,03 МПа, расходе углеводородного газа 100 м на 1 м конденсата. Сероводород и аммиак уносятся током газа из десорбера и направляются на моноэтаноламиновую очистку. Сероводород используют в производстве серной кислоты, аммиак — как удобрение для сельского хозяйства. Очищенный конденсат сбрасывается в I систему канализации. [c.569]

    Газы с верха десорберов подаются на установки Клауса для производства серы. [c.52]

    Кислые газы после десорберов в количестве около 4 тыс. м /ч с содержанием HaS и СОг соответственно до 80 и 5—11% (об.) направляются на установки Клауса для производства элементной серы. [c.238]

    Насыщенный раствор, содержащий углекислоту в количестве 80-100 г/л, нагревается в рекуперативных теплообменниках и двумя потоками направляется в десорбер. Теплота на десорбцию подается через паровой кипятильник. Чистый раствор отбирают в нижней части десорбера, грубо регенерированный - из середины колонны. После охлаждения эти потоки направляются обратно в абсорбер. Десорбция происходит при температуре 380-390 К. Организация схемы регенерация с рециклом позволяет в чистом виде выделить примесь и исключить постоянное потребление сорбента (только на компенсацию потерь). Чистый СО2 используют в других производствах (карбамида, твердой углекислоты и др.). [c.406]

    В производствах хлорорганических продуктов эксплуатация массообменных аппаратов для проведения процессов в системах газ-жидкость -ректификационных колонн, абсорберов и десорберов, закалочных и отпарных колонн - серьезно осложняется, когда на переработку подаются технологические потоки, содержащие малолетучие и нелетучие загрязнения, кокс и продукты осмоления, которые обладают способностью осаждаться на массообменных элементах контактных устройств, снижая эффективность их работы и укорачивая продолжительность межремонтного пробега оборудования. Проблема переработки загрязненных технологических потоков чрезвычайно осложняет эксплуатацию узлов технологических схем, непосредственно связанных с первичным охлаждением (закалкой) горячих реакционных масс, поступающих из химических реакторов синтеза, переработкой (регенерацией) закалочной жидкости, выделением высококипящих отходов на концах технологических схем хлорорганических производств. [c.5]


    Конечная концентрация бензольных углеводородов в поглотительном масле обусловливает его расход (который, в свою очередь, влияет на размеры как абсорбера, так и десорбера), а также часть энергетических затрат, связанных с перекачиванием жидкости и ее регенерацией. Поэтому А выбирают, исходя и.з оптимального расхода поглотителя [3). Для коксохимических производств расход поглотительного каменноугольного масла /. принимают в 1,5 раза больше минимального . ц [4 . В этом случае конечную концентрацию определяют из уравнения материального баланса, используя данные по равновесию (см. рнс. 5.2 и 5.3)  [c.193]

    Десорбер разделен глухой тарелкой на две секции. Из верхней секции кислый газ направляется на производство серы. [c.207]

    При пуске установки необходимо тщательно проверить герметичность оборудования, убедиться в отсутствии трещин, пробок из льда или другой застывающей жидкости. В других случаях из-за открытого байпаса, неисправного обратного клапана в системе низкого давления может подняться недопустимо высокое давление или переполнение аппарата жидкостью. Примером может служить связь абсорбера с десорбером на установке очистки газа от сероводорода. Давление в абсорбере 7,5 МПа, а в десорбере - 0,1 МПа. При отключении электроэнергии остановятся насосы, подающие раствор амина из десорбера в абсорбер. Следовательно, при неисправном редуцирующем клапане весь раствор из абсорбера перейдет в десорбер, затем начнется интенсивный переток газа, в результате чего по линии кислого газа на установку производства серы пойдет жидкая фаза - раствор амина и природный газ. В этом случае неизбежны серьезные аварии разрушение футеровки камеры сгорания вследствие высокой температуры горения природного газа и решетки котла-утилизатора. Даже незначительное попадание водного раствора амина на керамику защитных втулок приводит к их растрескиванию. Поступление газа из абсорбера в десорбер может привести к взрыву десорбера, так как он не рассчитан на высокое давление. [c.353]

    Принципиальная схема абсорбционно-десорбционных установок на всех сероуглеродных производствах одинакова и включает абсорберы (скрубберы), в которых происходит поглощение сероуглерода, и десорбер, где из насыщенного масла отгоняется сероуглерод. Аппаратурное оформление установок может быть различно. На рис. 62 приведена наиболее простая схема. [c.165]

    При охлаждении реакторной смеси аммиак вступает в реакцию с сероводородом, образуя сульфид аммония, который при дальнейшем охлаждении может выпасть в осадок в аппарате воздушного охлаждения. Для избежания этого нежелательного процесса и вывода из системы балансового количества аммиака сульфид аммония перед воздушным холодильником растворяется в подаваемой в систему промывной воде. Затем в сепараторе низкого давления этот кислый раствор выводится из системы на отпарку, при которой можно снова получить сероводород и аммиак. С повышением количества сероводорода в ВСГ эффективность процесса гидрокрекинга снижается, поэтому на современных установках его непрерывно удаляют перед циркуляционным компрессором в аминовом абсорбере. В качестве регенерируемого абсорбента сероводорода используют водные растворы моноэтаноламина (МЭА), диэтаноламина (ДЭА), метилдиэтаноламина (МДЭА) разной концентрации. Насыщенный аминовый раствор при регенерации в десорбере методом отпарки выделяет поглощенный сероводород, который утилизируется на установках производства серной кислоты или получения элементарной серы методом Клауса. [c.855]

    Максимальной абсорбционной способностью по отношению к СО обладает моноэтаноламин. Равновесная растворимость СО зависит от давления газа, температуры абсорбции и концентрации раствора. Обычно используются растворы МЭА 15—20%-й концентрации. Абсорбция протекает при 40—45 °С и давлении 1,5—3,0 МПа (в зависимости от схемы производства). Образовавшиеся в результате хемосорбции карбонаты и бикарбонаты разлагаются в десорбере с вьщелением СО при нагревании потока до 120 °С. [c.99]

    Метанол-сырец подается в десорбер 2 для удаления легкокипящих компонентов (отдувку) и частично соединений железа. На отдувку подают продувочный газ из производства метанола давление продувочных газов на входе в десорбер 0,2 МПа, температура 25—30 °С, расход газа 0,3 м кг. Для уменьшения потерь метанола с продувочными газами предусмотрена отмывка метанола конденсатом в колонне 3. Конденсат подается на верх колонны 3 из сборника 4. Для концентрирования раствора метанола предусматривается его циркуляция. Вода, содержащая 10—15% (масс.) СНзОН, используется в производстве метанола на стадии предварительной ректификации. [c.226]

    Меры профилактики. При производстве И. основным требованием является обеспечение автоматизации и механизации технологических процессов и оборудования, в частности, сорберов, десорберов, нутч-фильтров, а также обеспечение непрерывности всего процесса извлечения И. из буровых вод механизация работ по погрузке и упаковке готового продукта и дистанционное управление процессом. Работа с И. должна проводиться в герметизированных системах. Необходимо применить местную вытяжную вентиляцию в зоне, где работающие могут вдыхать попавшие туда вследствие утечки пары И. Нельзя полагаться на то, что раздражающее действие И., которое вместе с тем служит предупреждением об опасности, может исключить возможность ингаляции в количествах, превышающих допустимые. [c.443]


    С верха десорбера в цех производства серной кислоты уходит сероводород чистотой 95—98%. [c.110]

    В десорбере К-4 при давлении 0,14 МПа (1,4 кгс/см ) и температуре низа 125—130 °С осуществляется регенерация насыщенного сероводородом раствора МЭА. Продукт низа колонны подогревается с помощью теплообменника Т-5. Выделившийся сероводород и водяные па-(о ры, пройдя холодильник-конденсатор ХК-2, поступают 1/3 в сепаратор С-3. Сероводород с верха сепаратора С-3 при давлении до 0,1 МПа (1 кгс/см ) выводится на установку производства серной кислоты или свободной серы. Водяной конденсат с низа сепаратора С-3 насосом Н-6 5 подается на орошение К-4, а избыток его сбрасывается в канализацию. [c.17]

    Давление после экспансии определяют для нормальных производств венных условий, за исключением третьего варианта (для десорбера первой ступени). Для этого случая применяют формулу (15), так как состав газа после экспансии здесь известен заранее, [c.302]

    Оба абсорбента не поглощают органические сернистые соединения типа меркаптанов, дисульфиды, тиофен и т. д. Регенерация алкацид- и бенфилд-растворов осуществляется раздельно. Верхний продукт алкацид-десорбера состоит в основном из H2S, а бенфилд-десорбера — из СО2. Для повышения эффекта отгонки в алкацид-десорбере парогазовая смесь (вьшар) из бенфилд-десорбера направляется дополнительно в алкацид-десорбер. Смешанный вьшар образуется при 0,15—0,16 МПа и направляется на установку производства серы. [c.177]

    Технологический процесс получения ацетилена этим способом основан на термоокислительном пиролизе метана с кислородом (соотношение кислорода и метана должно быть в пределах 0,58— 0,62) в реакторах при 1400—1500 °С и избыточном давлении. Процесс состоит из следующих стадий подогрева метана и кислорода пиролиза метана и закалки пирогаза очистки пирогазов от сажл в скрубберах или электрофильтрах компримирования пирогаза до давления 0,8—1,2 МПа и абсорбции ацетилена и его гомологов селективным растворителем (метилпирролидоном, диметилформ-амидом) фракционной десорбции газов в десорбере первой ступени (при давлении 20 кПа) и второй ступени (при вакууме 80 кПа) с выделением при 80—90 °С чистого ацетилена и нагреве с водяным паром (ПО—116°С) фракции высших гомологов ацетилена регенерации растворителя (удаления твердых продуктов полимеризации гомологов ацетилена) сжигания отходов производства в печи (сажи из сажеотстойников продуктов "полимеризации, выделенных при регенерации растворителя высших гомологов ацетилена, полученных на второй ступени фракционной десорбции). [c.28]

    II - сепаратор сероводорода 12 - паровой подогреватель 13 - десорбер МЭА 14, 17 - емкости МЭА 15 - абсорбер 16 - отстойник раствора МЭА 18 - абсорбер для осушки газа 19 - поршневой компрессор 20 - сепаратор-отстойник 21 - насос для подачи активатора 22 - емкость активатора 23 каплеуловитель / - сырье после отстоя II - активатор III - диэтиленгликоль IV - свежий водород V - бензин VI - компонент зимнего дизельного топлива VII - сероводород на установку производства Hj SO4 VIII- газ в топливную сеть /Л" - моноэтанол-амин - диэтиленгликоль на регенерацию. [c.125]

    Процесс поглощения проводят при 40—45°С. Образовавшиеся в результате абсорбции карбонаты и гидрокарбонаты разлагаются в десорбере с выделением СО2 нагренанием до 120°С. Этот абсорб-ционно-десорбционный процесс (см. рис. И) применяется также в производстве диоксида углерода (сухого льда) из топочных газов. В качестве поглотителей СО2 также могут применяться органические вещества метанол, пропиленкарбонат С4Н6О3, сульфо-лан 4H8SO2. [c.87]

    Метан и кислород подогревают до 600 С в трубчатых печах 1 и 2, обогреваемых газом, соответственно, и поступают в реактор 3. Из реактора пирогаз с температурой после закалки водой 80°С проходит полый, орошаемый водой, скруббер 4 и мокрый электрофильтр 5, в которых из газа осаждаются сажа и смола. Затем пирогаз охлаждается водой в холодильнике непосредственного смешения 6, промывается в форабсорбере 7 небольшим количеством диметилформамида (ДМФА) и поступает в газгольдер 8. Вода, стекающая из реактора 3, скруббера 4 и электрофильтра 5, содержащая сажу, поступает в отстойник 9, из которого водный слой возвращается в реактор для закалки, а собранная сажа с примесью смолы направляется на сжигание. Газ из газгольдера 8 сжимается в компрессоре 10 до давления 1 МПа и подается в абсорбер 11, где из него ДМФА извлекается ацетилен. Непоглощенный газ, состоящий из водорода, метана и оксидов углерода, поступает в скруббер 12, орошаемый водой, в котором из газа улавливается унесенный газом ДМФА. Оставшийся газ используют как топливо или в качестве синтез-газа. Раствор ацетилена в ДМФА из абсорбера 11 проходит дроссель 13, где давление снижается до 0,15 МПа, и поступает в десорбер 14. Десорбированный из раствора ацетилен промывается в скруббере /5 водой и выводится с установки. Основным аппаратом в производстве ацетилена окислительным пиролизом метана является реактор. [c.256]

    Очистка газов от двуокиси углерода как в аммиачном, так и в метанольном вариантах осуществляется чаще всего абсорбцией монозта-ноламином (МЭА). Поглощается СС>2 в абсорбере 12 12-15 ным раствором МЭА. Насыщенный раствор регенерирует в десорбере /4 при П5-120°С. Парогазовая смесь при 100-Ю5°С поступает в скруббер-ох-ладитель 1де конденсируется избыток водяного пара охлаадение проводится циркулирующим конденсатом. При производстве метанола выделенная подается в поток природного газа перед сатурационной башней /. Материальный баланс паро-кислородо-углекислотной конверсии представлен в табл. 19, а состав газа на различных участках схемы производства aм шaкa - в табл, 20. [c.242]

    Углеводородный газ очищается от сероводорода раствором МЭА и используется в качестве технологического топлива. Насыщенный кислыми газами раствор МЭА дегазируется при пониженном давлении и направляется надесорбцию в отгонную колонну (десорбер). Температурный режим в колонне поддерживается циркулирующим через термосифонный паровой рибойлер раствором МЭА. Выделившийся из раствора МЭА сероводород направляют в процесс Клауса для производства элементарной серы, а часть его — на установку утилизации кислого гудрона и производства серной кислоты и олеума. Для предотвращения вспенивания раствора МЭА на тарелках абсорберов в систему подается анти-вспениватель. [c.211]

    Смесь кислых газов, паров воды и углеводородов выходит с верха десорбера 7, охлаждается в воздушном и водяном холодильниках 8 и 9, после чего двухфазная смесь поступает в емкость-сепаратор 10, где вода отделяется от кислых и углеводородных газов вода из емкости 10 подается в качестве орошения на верхнюю тарелку десорбера, для предотвращения уноса моноэтаноламина с верхним продуктом, а кислые газы направляются на установку по производству серы. Регенерированный раствор алканоламина после охлаждения в рекуперативном теплообменнике 6, в воздуш ном и водяном холодильниках 5 и 4 подается в абсорбер 1 с темпе ратурой 35— 45 °С (на схеме не показан узел очистки растворителя от механических примесей и нерегенерируемых высокомолекуляр ных соединений). Технологические показатели процесса приве дены в табл. 111.3. [c.145]

    Широкая фракция углеводородов Сз+высшие (ШФУ) конденсируется в воздущном (или водяном) холодильнике 7 н пЪступает в рефлюксную емкость 9, из которой часть ШФУ подают в качестве орощения на верхнюю тарелку десорбера 3, а избыток направляют на газофракционирующую установку для производства индивидуальных углеводородов или соответствующих фракций сжиженных газов. Тепло в нижнюю часть десорбера 3 подводят замечет циркуляции абсорбента, стекающего с нижней тарелки десорбера, через подогреватель 10. Регенерированный абсорбент выводят с низа десорбера 3, охлаждают в рекуперативных теплообменниках 4 и 5 и в холодильниках 6 и 8, после чего подают в абсорбер 1 и абсорбционно-отпарную колонну 2. [c.204]

    Узел деэтанизации. Важным элементом схемы абсорбционного процесса разделения нефтяных и природных газов является узел деэтанизации насыщенного абсорбента. От эффективной работы этого узла зависит глубина извлечения легких нежелательных углеводородов (метана и др.) из сырьевых потоков, содержание которых регламентируется в товарных продуктах ГПЗ. При производстве пропана и более тяжелых углеводородов количество этана ограничивается, например, в сырьевом потоке десорбера из-за того, что повышенное его содержание приводит к необходимости ужесточения условий конденсации широкой фракции углеводородов (Сз+высшие). получаемой С всрха десорбера, а при отсутствии такой возможности возникает проблема компримирования и смешения этой продукции с сырым газом с целью повторного извлечения ее в абсорбере, т. е. возникает необходимость рекомпрессии и реабсорбции несконденсировавшихся углеводородов. При повышенном содержании этана в сырьевом потоке десорбера ухудшается качество пропановой (пропан-бутановой) [c.226]

    Возврат рецикл) части компонентов возможен после системы разделения Р (схема 7). Это — фракционный рецикл (возвращается фракция потока), который широко применяется для более полного использования сырья. В синтезе аммиака в реакторе превращается около 20% азотоводородной смеси. После отделения продукта непрореагировавшие азот и водород возвращают в реактор, таким образом достигается полное превращение исходного вещества. Фракционный рецикл применяют также для полного использования вспомогательных материалов. В том же производстве аммиака азотоводородная смесь получается с большим содержанием СО2. Его абсорбируют раствором моноэтано-ламина (МЭА), который быстро насыщается диоксидом углерода. Насыщенный раствор МЭА рециркулирует через десорбер, где отделяется от СО2, и восстановленным возвращается в абсорбер. К фракционному рециклу можно отнести схему 8. Свежая смесь нафевается в теплообменнике теплотой выходящего из реактора потока. Рециркулирует тепловая фракция потока (а не компонентная, как в схеме 7). [c.236]

    Регенерация с рециклом заключается в регенерации вспомогательного материала после его использования с последующим возвращением в процесс. Например, в схеме очистки азотоводородной смеси от СО2 в производстве аммиака используют поглотитель - моноэтаноламин (МЭА). После абсорбции СО2 раствором МЭА последний подогревают и направляют в десорбер (рис. 5.32). В нем выделяется СО2 и регенерированный раствор возвращают на абсорбцию. [c.301]

    Из десорбера первой ступени вода поступает в десорбер второй ступени, где давление снижается примерно до 1,18-10 Па (1,2 кг / м ). Здесь дополнительно выделяются растворенные газы. В воде же в зависимости от температуры остается 0,8—1,5 г/л СО2. Экспан-зерный газ после второй ступени десорбции содержит (при наличии промежуточной десорбции) до 98—99% СО2, остальную часть составляет главным образом водород. После дополнительной очистки от водорода экспанзерный газ может быть использован в производстве карбамида. [c.120]

    Подвод тепла в десорбер может осуществляться через огневые нодогревателн котельного типа, трубчатые печп плп паровые пспарнтелн. Способ подвода тепла в каждом конкретном случае решается отдельно, с учетом конкретных условий производства. [c.82]

    В течение пятиминутного периода дегидрирования контактная масса охлаждается на 10—15 °С, причем на катализаторе отлагается значительное количество кокса. Контактный газ из реактора 5 поступает на охлаждение (до 40 °С) в скруббер 7, охлаждаемый холодным маслом, циркулирующим в системе скруббер 7 — насос 9 — водяной холодильник 8. Охлажденный контактный газ после скруббера 7 поступает в турбовакуум- компрессор 10, создающий вакуум в батарее реакторов и сжимающий газ от абсолютного давления 0,08 МПа до 1,2 МПа, а затем в абсорбер 11 для отделения от легкой фракции (Сь С% На и др.). Абсорбентом служат углеводороды С5 и выше, являющиеся побочным продуктом производства. Неабсорбиро-ванная легкая фракция используется в качестве топливного газа. Насыщенный углеводородами Сз и С4 абсорбент насосом 12 подается через теплообменник 14 в десорбер 16. Отгонка фракции Сз—С4 осуществляется за счет нагрева абсорбента в кипятильнике 18. Абсорбент из десорбера 16 насосом 13 подается через теплообменник 14 и водяной холодильник 15 на орошение абсорбера И. Подпитка абсорбента производится у всасывающей линии насоса 13. [c.49]

    Н, в котором извлекается диоксид углерода. Из абсорбера 8 очищенный газ уходит потребителю. Насыщенный абсорбент из абсорбера 1 перегекает в колонну дросселирования, в которой происходит ступенчатое дросселирование поступающего на верх колонны абсорбента. На первой ступени дросселирования выделяется метан, который сжимается компрессором 6 и направляется в абсорбер на очистку. Из нсрхней секции абсорбент перетекает в среднюю, в которой давление ниже, чем в верхней, из средней секции выделившийся газ компрессором 7 подается в верхнюю секцию. Из средней секции абсорбент перетекает в нижнюю секцию, в которой из него выделяется кислый газ, поступающий на производство серы. Частично регенерированный абсорбент с низа колонны 2 подается на окончательную регенерацию в десорбер 3 через теплообменник 4 и паровой подогреватель 5. Из десорбера 3 регенерированный абсорбент насосом прокачивается через теплообменник 4 и направляется на орошение абсорбера 1 на верхнюю тарелку. [c.205]

    Имеются определенные успехи в исследовании и разработке конкретных хемодесорбционных процессов. Так, организовано опытно-промышленное производство [283] ортотолуиловой кислоты на установке непрерывного действия, содержащей реактор-десорбер. При реакции окисления ортоксилола образуются ортотолуиловая кислота и вода. Вода десорбируется избытком газа, преимущественно азотом. [c.220]

    Газ крекинга, содержащий сероводород, из газосепаратора 14 (см. рис. 34) проходит в нижнюю часть абсорбера 23. На верх абсорбера для поглощения из газа сероводорода подают холодный 15%-ный водный раствор монозтаноламина (МЭА). Насыщенный сероводородом раствор МЭА выходит с низа абсорбера, нагревается в теплообменнике 20 до 80 °С и поступает в де-сорбер 24. Низ десорбера подогревается теплоносителем (в данном случае используется тяжелый газойль) до 120 °С. Сероводород, выделенный из МЭА, уходит с верха десорбера. В дальнейшем он используется для производства элементарной серы или серной кислоты. Регенерированный раствор МЭА с низа десорбера 24 проходит теплообменник 20, где отдает тепло отработанному раствору МЭА, охлаждается в холодильнике 21 оборотной водой и подается на верх абсорбера 23. Цикл движения раствора монозтаноламина повторяется. [c.108]

    Наибольшей коррозии на УОЛНПЗ подвергается оборудование установок МЭА очистки газов (коррозионное растрескивание, общая и локальная коррозия десорберов и теплообменников), оборудование установок газофракционирования (коррозионное растрескивание отстойников вследствие попадания щелочи и общая коррозия газофракционирующего оборудования), конденсационно-холодильная аппаратура со стороны оборотной воды, оборудование катализаторного производства (в кислых средах общая коррозия и коррозионное растрескивание). [c.48]

    Дополнительное преимущество применения предварительного десорбера состоит в том, что из конечного десорбера вы-аОдит газ, содержащий до 99% СО2 (который можно использо-зать для производства мочевины или сухого льда). При более высоком давлении в предварительном десорбере (например, [c.285]

    Помимо этих способов уменьшения потерь водорода, все чаще применяется двух- и даже трехступенчатое снижение давления воды после абсорбции СО2. О первом из этих методов уже упоминалось (стр. 285). При трехсгупенчатом снижении давления происходит более четкое разделение компонентов газа, унесенных водой. Снижение давления в две или в три ступени, правда, усложняется необходимостью подвода к турбине энергии, затрачиваемой на нагнетание воды, однако при таком разделении возможна небольшая экономия водорода, стоимость производства которого всегда имеет большое значение на азотных заводах. Концентрация СО2 возрастает и потери водорода значительно уменьшаются даже в случае простого двухступенчатого снижения давления, когда часть газа, обогащенного водородом, по выходе из расположенного после водяной турбины десорбера поступает в другой дегазатор, находящийся наверху регенерационной башни. При этом и промежуточное и конечное давление (близкое к атмосферному) устанавливаются яочти самопроизвольно, но не на оптимальном уровне. [c.294]


Смотреть страницы где упоминается термин Десорберы в производстве: [c.155]    [c.101]    [c.322]    [c.203]    [c.246]    [c.36]    [c.24]   
Коррозия и защита химической аппаратуры Том 5 (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Десорбер

Десорберы в производстве бутадиена

Десорберы в производстве изопрена

СМОЛЯК. Мате штичес кое описание тарельчатнх десорберов аымиачно-содового производства



© 2024 chem21.info Реклама на сайте