Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контактные аппараты охлаждением

    Абсорберы устанавливаются последовательно после контактного аппарата. Охлажденный в теплообменнике газ проходит через экономайзер, где дополнительно охлаждается и поступает в олеумный абсорбер, а затем в моногидратный абсорбер. Эти два аппарата служат для поглощения серного ангидрида и получения моногидрата и олеума (см. рис. 2.1). [c.115]

    Контактное отделение состоит из трубчатого теплообменника 6 для подогрева реакционных газов и охлаждения частично контактированного газа контактного аппарата 7 и трубчатого теплообменника-холодильника 8 для охлаждения серного ангидрида после контактного аппарата. Охлажденный после контактного аппарата газ поступает в абсорбционное отделение цеха. [c.155]


    Реакция идет с большим выделением теплоты и, следовательно, в значительной степени зависит от температурного режима. Большое количество теплоты должно быть выведено из контактного аппарата, с тем чтобы не сильно ухудшалась степень превращения. Для решения этой проблемы предлагались различные варианты, которые в конечном счете свелись к различным модификациям процесса Клауса, отличающимся различным применением реактора Клауса, подогревом газов перед отдельными ступенями контактного аппарата, охлаждением за контактным аппаратом и выделением серы. [c.199]

    Основные стадии процесса следующие получение диоксида серы в результате сжигания в топке сероводородного газа охлаждение полученного диоксида углерода в котле-утилизаторе с получением водяного пара окисление диоксида серы до триоксида в контактном аппарате, загруженном ванадиевым катализатором конденсация триоксида серы и паров воды с образованием серной кислоты улавливание тумана и капель серной кислоты в электрофильтре. Технологическая схема установки представлена на рис. ХП-5. [c.113]

    Под каждым слоем катализатора находится слой кварца, а между слоями катализатора — трубчатые теплообменники с горизонтально расположенными трубками. Сернистый газ, поступающий на контактирование, сначала нагревается в межтрубном пространстве наружного теплообменника. Далее газ последовательно проходит через внутренние теплообменники контактного аппарата, нагревается до 440° С и через верхний штуцер попадает на первый слой катализатора, где реагирует около 70% всего сернистого газа. Для охлаждения смеси после первого слоя катализатора дополнительно вводят холодный газ. [c.195]

    Часто из-за неоднородности условий протекания процесса в реальных условиях не достигаются расчетные показатели, потому что при проектировании контактных аппаратов не уделялось достаточного внимания вопросам равномерного подвода реагирующих веществ, смешения потоков на входе в реакционный объем, нагрева и охлаждения, засыпки катализатора и т. п. Создание однородных условий работы приобретает решающее значение при проектировании реакторов большой мощности. Без всестороннего исследования реакторов с помощью математической модели и машинного эксперимента невозможно надежно и однозначно определить влияние неоднородностей на эффективность работы реакторов, установить требования, ограничивающие отклонения от однородных условий в допустимых пределах. [c.15]


    На рис. Х У1П-2 схематично изображен контактный аппарат е так называемым турбулентным слоем, являющимся разновидностью противоточного трехфазного нсевдоожижения и получившим промышленное применение. Псевдоожиженный восходящим потоком газа слой частиц низкой плотности (обычно, шары — полые из полиэтилена или сплошные из вспененного полистирола) орошается нисходящим потоком жидкости. Установки подобного типа используются в промышленности для жидкостной абсорбции из газовых смесей, мокрой очистки запыленных газов, а также их охлаждения и осушки. [c.658]

    Создание контактных аппаратов большой единичной мощности делает актуальным исследование причин, приводящих к снижению выхода продукта по сравнению с теоретически возможным. При проектировании таких аппаратов большое значение приобретают вопросы равномерного подвода реагирующих веществ, смешения потоков на входе в реакционный объем, нагрева и охлаждения, формирования структуры слоя и т. д., т. е. создания однородных условий работы. Исследование математических моделей открывает возможность определить влияние неоднородностей на эффективность работы реактора, установить требования, ограничивающие отклонения от однородных условий в допустимых пределах. [c.57]

    Примерный режим работы контактного аппарата приведен на диаграмме рис. 51. Как видно из диаграммы, промежуточные теплообменники одновременно с подогревом газа, поступающего на первую и вторую стадии контактирования, служат для охлаждения конвертированного газа между слоями с целью приближения температуры в слоях катализатора к оптимальной, соответствующей наибольшей скорости реакции. Для ванадиевых катализаторов при энергии активации = 90 кДж/моль ЗОз и протекании процесса в кинетической области [c.135]

    Газ после внешнего теплообменника поступает в теплообменники контактного аппарата. При этом происходит охлаждение газа, выходящего из каждого слоя, и нагрев свежего газа, поступающего в первый слой до температуры зажигания. [c.91]

    Наконец, особенностью "мокрого катализа" оказывается получение после контактного аппарата в паровой фазе смеси серного ангидрида и водяного пара. При охлаждении газовой смеси конденсируется серная кислота в виде мелкодисперсного тумана. При охлаждении через стенку или при смешении с холодным воздухом в туман переходит все количество образующейся кислоты. Возможным и реализованным решением оказалось охлаждение газов циркулирующей серной кислотой. Образующаяся при конденсации кислота растворяется в циркулирующем продукте (преимущественно). Правда, и в этих условиях вместе с газом выносится 30-35 % кислоты в виде тумана, который и улавливается в электрофильтре. [c.178]

    Какой концентрации (в процентах) должна была бы получиться серная кислота в результате прохождения через контактный аппарат смеси, получающейся при сжигании сероводорода в избытке воздуха и охлаждении продуктов реакции, при условии, что химические превращения протекают полностью  [c.71]

    По условию задачи в контактный аппарат подали 600 смеси моноксида углерода и водяного пара в соотношении 1 5, т. е. в 600 смеси содержалось 100 л моноксида углерода и 500 водяного пара. При охлаждении парогазовой смеси водяной пар конденсируется, и из 600 смеси в газообразном состоянии остается только 160 л газов. После окончания реакции между моноксидом углерода и водяным паром объем несконденсированных при нормальных условиях газов увеличился за счет образования водорода, так как моноксид углерода переходит в диоксид. По условию задачи после прохождения газа через контактный аппарат и конденсации водяного пара объем смеси газов составлял 160 м , т. е. увеличился на 60 м (160 — 100 = 60) за счет образования водорода. Из уравнения реакции моноксида углерода с водяным паром видно, что 60 водорода образовались при окислении водой 60 моноксида углерода. Выходит, что из 100 Л взятого для реакции моноксида углерода прореагировали 60 и степень превращения моноксида углерода составляет 60%. [c.84]

    Математическое описание полочного контактного аппарата с охлаждением реакционной смеси в промежуточных теплообменниках (рис. 2, а) имеет следующий вид  [c.77]

    Результаты решения представлены в табл. 5 и на рис. 4. Здесь же дан оптимальный режим контактного аппарата с промежуточными теплообменниками. Замена охлаждения реакционной смеси после первого слоя в теплообменнике разбавлением холодным газом позволяет уменьшить необходимую поверхность охлаждения, но время контакта при зтом увеличивается. [c.84]


    Газовая смесь нри температуре начала реакции входит в контактный аппарат, имеющий несколько полок с катализатором. На каждой полке реакция протекает адиабатически, причем разогрев не должен превышать 10° С. Между полками добавляется холодная газовая смесь, имеющая температуру 35° С. Охлажденные на 10° С реакционные газы поступают на следующую полку. Расчет ведем на число полок 5, 7 и 12 в двух температурных интервалах 160—170 и 170—180° С. [c.165]

    Выходящий из печи газ перед подачей в контактный аппарат охлаждается в холодильнике 9 до температуры 450 С, Окисление ЗОг в 50з происходит в контактном аппарате 10 на четырех слоях катализатора - 205). Для снятия тепла реакции в контактном аппарате перед вторым и третьим слоем вмонтированы теплообменники, а перед четвертым слоем катализатора охлаждение смеси газов осуществляется разбавлением ее холодным осушенным воздухом. [c.59]

    На рис. 53 показан контактный аппарат с неподвижным слоем катализатора. 1, расположенным на четырех полках. Контактный аппарат- это вертикальный стальной цилиндр 1, футерованный внутри огнеупорным и кислотостойким кирпичом б. По высоте аппарата расположены четыре металлических решетки 5, на которых размещен катализатор. Смесь SO с воздухом, подогретая до температуры 440-450 "С, поступает в аппарат сверху продукты реакции в виде газообразной смеси выходят снизу аппарата и поступают на дальнейшую переработку. Проходя через первый слой катализатора, окисляется до 60- 8(]% (o6.)S02 вследствие выделения-тепла реакции температура газа повышается до 550 - 600 °С. После первой ступени газ охлаждается осушенным холодным воздухом до 460 - 480 °С и поступает на вторую ступень окисления. Температура газа вновь повышается, и газ нужно вновь охлаждать охлаждение производится после каждой ступени контактного окисления. [c.194]

    При пуске узла получения ди- и триоксида серы прогревают и просушивают печь для сжигания серы и контактный аппарат, разжигают запальник печи подают дозирующим насосом расплавленную серу в печь. Убедившись в устойчивом горении серы в печи, запальник тушат. Включают воздушный вентилятор и подают воздух на охлаждение в теплообменники, контактный аппарат. [c.260]

    Характеристика работ. Ведение технологического процесса дегидрирования — отщепления водорода от исходных веществ в жидкой и паровой фазах в присутствии катализатора. Прием сырья, подготовка катализатора, шихты, испарение, перегрев паров, смешивание с водяным паром, подала парогазовой смеси в реактор (контактный аппарат) охлаждение, конденсация, разделение конденсата регенерация и перегрузка катализатора стабилизация продукта. Контроль и регулирование параметров технологического режима, предусмотренных регламентом температуры, давления, количества топливного газа, циркуляции катализатора в системе, воздуха и других показателей процесса, по показаниям контрольно-измерительных приборов и результатам анализов. Отбор проб для контроля, проведение анализов. Расчет количества требуемого сырья, выхода продукта. Предупреждение и устранение причин отклонений от норм технологического режима. Пуск и остановка оборудования. Обслуживание реакторов всех типов, испарителей, перегревательных печей, топок, отстойников, конденсаторов, осушителей, холодильников, газо- и воздуходувок, насосов, коммуникаций, контрольно-измерительных приборов и другого оборудования. Выявление и устранение неисправностей в работе оборудования и коммуникаций. Руководство аппаратчиками низшей квалификации. Учет сырья, готовой продукции. Ведение записей в производственном журнале. Подготовка оборудования к ремонту, прием из ремонта. [c.36]

    Х0.5Х1.5 м из листовой стали 1Х18Н10Т толщиной 4 мм. Образовавшийся вследствие самоиспарения пар направляется в конденсатор 4. Дистиллят отводится в сборник 5. Поверхность нагрева конденсатора 22,5 м . Раствор нз испарителя насосом 6 направляется на рециркуляцию в контактный аппарат. Охлаждение конденсатора производится водой, которая подается насосом. Отсос несконденсировавшихся газов осуществляется [c.76]

    Для сведёния теплового баланса естественно стремление использовать отводимое тепло для предварительного подогрева свежего газа. Поэтому в контактных аппаратах охлаждение в процессе реакции осуществляется путем теплообмена со свежим газом. [c.457]

    Лэлагодаря правильной организации теплообмена в промышленных реакторах синтеза аммиака на выходе из аппаратов достигается концентрация аммиака от 13 до 15% при давлении 300 ат. Это значительно выше, чем возможно при адиабатическом процессе, даже в случае равновесия. Аналогично организован процесс окисления двуокиси серы (см. рис. Х1-9)г температура регулируется при помощи внутреннего или внешнего теплообмена (рис. Х1-10). В настоящее время окисление ЗОа проводят в многослойных контактных аппаратах с промежуточным охлаждением между слоями катализатора.—Дсп. ред.] [c.362]

    Смесь этилена, воздуха, рециркулирующего газа (3—5% (об.) этилена] компримируется в 1 до (9—22)-10 Па и направляется в контактный аппарат 2 — реактор с неподвижным слоем серебряного катализатора (рис. 1Х-7) [110]. Для поддержания температуры в пределах 104—149 °С используется циркулирующий газ. Выделяющийся из реакторов газ охлаждается в теплообменнике и компримируется в 3. Охлажденный газ направляется в скруббер 4, в котором втиленоксид промывается водой. Неабсорбированный газ представляет собой в основном непрореагировавшие этилен и кислород. Часть этой смеси возвращается в реактор, а другая часть нагревается в теплообменнике и направляется во второй реактор 5, где завершается процесс окисления. Продукты реакции подаются в скруббер 6, где этиленоксид абсорбируется водой. Несконден-сировавшиеся газы подвергаются в дальнейшем очистке. Разбавленные растворы этиленоксида в воде из обоих скрубберов [c.270]

    Значительная эндотермичность дегидрирования обусловливает применение трубчатых реакторов, в межтрубном пространстве которых циркулируют горячие газы от сжигания газообразного или жидкого топлива. Схема типичного реакционного- узла для дегидрирования сииртов представлена на рис. 138, В топке 3 происходит сгорание топливного газа, подаваемого вмсстс с воздухом чере ) специальные форсунки. Температура топочных газов слишком высока, поэтому их разбавляют обратным газом (циркуляция его в системе осуществляется газодувкой 4). Спирт поступает вначале в систему испарителей-перегревателей 1, где он нагревается до нужной температуры частично охлажденными топочными газами. Затем пары спирта попадают в реактор 2, где в тоубах нах()дится катализатор. Реакционная смесь подогревается горячими топочными газами, находящимися в межтрубном пространстве, что 1 омпеисирует поглощение тепла из-за эндотермичности продесса. По выходе из контактного аппарата реакционные газы охлаждают в холодильнике-конденсаторе (на рисунке не показан), а в случае летучих продуктов нх дополнительно улавливают водой Полученный конденсат (и водные растворы) ректифицируют, выделяя целевой продукт и непрореагировавший сиирт, возвращаемый на дегидрирование, [c.473]

    Техиологическая схема получения малеинового аягидридэ окислением углеводородов С4 на стационарном слое катализатора (рис. 6.28) аналогична схеме бензольного процесса. Условия окисления также близки. Углеводородовоздуш ную смесь пропускают через контактный аппарат 1, загруженный катализатором. Теплота реакции снимается теплоносителем — расплавом нитрит-нитратных солей — и используется для получения пара низкого и высокого давления. Реакционные газы, охлажденные в теплообменнике 2, направляются в водный скруббер 3 для поглощения малеинового ангидрида. 40%-ный водный раствор малеиновой кислоты поступает в пленочный испаритель 4, затем в дегидрататор 5. Пары малеинового ангидрида направляются на дистилляцию (колонны 5 и 7). [c.213]

    В современных контактных аппаратах, с целью приближения температуры к оптимальной, газовая смесь проходит последовательно несколько слоев контактной массы, между которыми в специальных теплообменниках проп.чводят охлаждение газа. Используют и аппараты, в которых охлаждение газа после коптактировапия в отдельных слоях осуществляют введением холодного воздуха, по при этом происходит разбавление газа. [c.78]

    Пример. Определить количество пара, которое можно получить на 1 пг HNOg, при охлаждении нитрозных газов, выходящих из контактного аппарата, в котле-утилизаторе. [c.244]

    Газообразный аммиак, полученный испарением жидкого продукта и испарителе 1, смешивается с воздухом и в виде АмВС после очистки в фильтре 5 поступает в контактный аппарат 6. В нижней части контактного аппарата встроен котел-утилизатор 7, в котором нитрозные газы, выходящие из контактной массы охлаждаются от ЭСО С до 170°С, при этом до 40% оксида азота (II) окисляется до оксида азота (IV). Охлажденные нитрозные газы из котла-утилизатора направляются в доокислитель [c.227]

    Атмосферный воздух, очищенный от пыли в фильтре 1, сжимается до 0,42 МПа в воздушном компрессоре 2 и делится на два потока. Один подается в контактный аппарат 3, другой через подогреватель аммиака в продувочную колонну5. Газообразный аммиак из испарителя 6 очищается в фильтре 7 и нагревается в подогревателе 4 горячим воздухом до 80—120°С. Очищенный аммиак и воздух поступают в смесительную камеру 8 контактного аппарата 3. Образовавшаяся АмВС, содержащая около 0,11 об. дол. аммиака, проходит тонкую очистку в керамическом фильтре, встроенном в контактный аппарат, и поступает на двухступенчатый катализатор, состоящий из платиноидных сеток и слоя окисного катализатора. Образовавшиеся нитрозные газы проходят котел-утилизатор 9, размещенный в нижней части контактного аппарата, и поступают последовательно сначала в экономайзер 10 и затем в холодильник 11, где охлаждаются до 55°С. При охлаждении нитрозных газов происходит конденсация паров воды с образованием азотной кислоты различной концентрации, которая подается в абсорбционную колонну 12. Нитрозные газы сжимаются в нитрозном компрессоре 13 до 0,108—0,11 МПа, разогреваясь при этом до 230°С, охлаждаются в холодильнике I4, являющимся одновременно подогревателем отходящих газов, до 150°С и холодильнике-конденсаторе 15 до 40—60°С, после чего подаются в абсорбционную колонну 12, в которую сверху поступает вода (паровой конденсат). Образовавшаяся 58—60% -ная кислота из нижней части колонны направляется в продувочную колонну 5, где освобождается от растворенных в ней оксидов азота, и оттуда в [c.229]

    Вода широко применяется для о.хлаждения конструктивных элементов огнетехнических установок, а также в производственных процессах, протекающих при низких температурах, для искусственного охлаждения технологического продукта или аппаратуры. Примерами могут служить водяное охлаждение металлургических печей, печей химических производств охлаждения горячей серной кислоты после контактного аппарата или конденсатора охлаждение водой различных нефтепродуктов охлаждение ковденсаторов паровых турбин, масло- и воздухоохладителей генераторов на элекфостанциях, конденсаторов смешивающего типа выпарных батарей алюминиевых растворов на глиноземных заводах охлаждение рубашек цилиндров двигателей вну-феннего сгорания и т.д. [c.238]

    В промышленности углеродистые материалы чаще всего охлаждают в контактных аппаратах через металлическую стенку с использованием в качестве хладоагента воды. При зтом раскаленный кокс ие смешивается с водой в результате угара целевого продукта не происходит. Однако при охлаждении через металлическую стенку создаются тяжелые условия ее работы. Для защиты металлической стенки от прогара на верхнем горячем участке холодильные барабаны облицовывают огнеупорным материалом, но при этом ухудшается теплообмен и снижается производительность холодильного агрегата. Кроме того, при охлаждении через стенку ослол<няется (особенно во вращающихся холодильных барабанах) утилизация тепла раскаленного кокса. Таким образом, способ охлаждения в контактных аппаратах через металлическую стенку нельзя рекомендовать в случае больших потоков углеродистых материалов. [c.233]

    В промышленном масштабе формальдегид получают ло непрерывному методу Е. И. Орлова пропусканием смеси воздуха п метанола, нагретой до 650 нал раскаленным серебром. Газовую смесь, содержащую избыток метанола, пропускают в контактный аппарат, где происходит образование смеси формальдегида, воды, водорода, окнси и двуокиси углерода, метана, ме1анола и азота. Нз этой смеси по охлаждении поглощают водой формальдегид и мегацол насыщение ведут до 38—40"о-ного содержания газообразного формальдегида. Кроме формальдегида, формалин обычно содержит муравьиную кислоту и 10—12% метанола, который способствует сохране-нпю устойчивое и препарата, препятствуя его полимеризации. [c.142]

    Смеси солей используют в качестве теплоносителей для каталитических процессов и в ряде случаев, когда применение масляной бани невозможно по температурным условиям. На рис. 264 изображен контактный аппарат, в котором тепло реакции отводится при помощи солевой ванны, содержащей расплавленную смесь солей КНОд и ЫаЫО , взятых в разных молекулярных соотношениях. Расплавленная смесь солей находится в межтрубном пространстве аппарата и для отвода тепла реакции охлаждается воздухом. Воздух подается в двойные трубы 2, расположенные в центральной части аппарата, где пет труб 3 с катализатором, и специальным вентилятором засасывается через рубашку 4, окружающую корпус аппарата 1 (наружное охлаждение действует при пуске и лишь периодически во время работы аппарата). В центральной части над двойными трубами установлен пропеллерный насос 5, которым осуществляется циркуляция расплавленной солевой смеси. [c.378]

    Системы, работающие по комбинированной схеме с давлением 0,35— 0,4 МПа иа стадии абсорбции оксидов азота, состоят из нескольких агрегатов мощностью 45—50 тыс. т/год (в пересчете на 100%-иую НКОз). Концентрация продукционной кислоты 47—49% (масс.). Схема установки приведена на рис. 1-40. Атмосферный воздух и газообразный аммиак из газгольдера после очистки поступают в аммиачно-воздушный вентилятор из иего аммиачно-воздущиая смесь (АВС), пройдя подогреватель и дополнительно картонные фильтры, поступает в контактные аппараты. Процесс окислени аммиака ведут при температуре 800—820 °С и линейной скорости смеси около 1,0—1,2 м/с. Нитрозные газы после контактных аппаратов поступают в ко-тел-утилизатор, в котором оии охлаждаются до 160—190 С. При этом получают пар давлением 4,0 МПа и с температурой перегрева до 450 С. Далее иитрозные газы направляются в подогреватель аммиачио-воздушиой смесн здесь онн охлаждаются до 125—140 С и двумя параллельными потоками поступают в два газовых холодильника-промывателя, где температура газов снижается до 35—40°С. При охлаждении нитрозных газов происходит коиденсация водяных парой с образованием 12—15%-иой ННОз и поглощение не прореагировавшего аммиака. [c.63]

    В современных контактных аппаратах окисление SO2 и отвод тепла реакции осущестилиются раздельно. В этом случае охлаждение газа между слонми возможно в промежуточных теплообменниках, расположенных между слоями массы, в выносных, а также путем ггоддува холодного диоксида серы после первого слои контактной массы. Количество холодного газа составляет до 20 Объемн.7о от количества газа, поступающего в систему. [c.41]


Смотреть страницы где упоминается термин Контактные аппараты охлаждением: [c.209]    [c.50]    [c.418]    [c.181]    [c.133]    [c.142]    [c.120]    [c.173]    [c.233]    [c.537]    [c.689]    [c.67]    [c.523]   
Технология серной кислоты (1971) -- [ c.215 ]




ПОИСК





Смотрите так же термины и статьи:

Контактный аппарат



© 2025 chem21.info Реклама на сайте