Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам металлический определение вольфрама

    Изотермы адсорбции газов на металлических и окисных катализаторах изучались Франкенбургом [15], Дэвисом [27] и Ква-ном [16]. Эти авторы проводили опыты в определенных условиях, обеспечивающих достижение истинного термодинамического равновесия. Полученные изотермы отличаются двумя очень характерными особенностями. Во-первых, количество адсорбированного газа, экстраполированное до очень высоких давлений, достигает, повидимому, в широком интервале температур одной и той же предельной величины насыщения при высоких давлениях, например в случае системы водород—вольфрам при изменении температуры от— 195 до 750° С. Это противоречит представлению [41] о том, что величина предельного насыщения данного адсорбента заметно уменьшается с повышением температуры. Далее было показано, что в системе вольфрам—водород число атомов водорода, адсорбированное при насыщении, равняется приблизительно 10 на 1 см поверхности, откуда следует, что все атомы вольфрама на поверхности доступны для адсорбции. [c.328]


    Пластичность металла определяется способностью металла не разрушаясь деформироваться так, что деформации остаются и после окончания действия нагрузки. Пластичность металлов имеет очень большое практическое значение. Благодаря этому свойству металлы поддаются ковке, прокатке, вытягиванию в проволоку (волочению), штамповке. Смещение заполненных атомами металла плоскостей в кристалле в определенных пределах не приводит к разрушению металлической связи. Механизм образования смещений связан с появлением и движением дислокаций. Хрупкими определенное время считались титан, вольфрам, хром, молибден, тантал, висмут, цирконий. Очищенные от примесей эти металлы — высокопластичные материалы, которые можно ковать, прессовать, прокатывать. В табл. 11.3 приведены значения относительного удлинения некоторых металлов, характеризующего их пластичность. [c.324]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    В металлическом молибдене, вольфраме и их сплавах натрий определяют методами пламенной атомно-эмиссионной и атомно-абсорбционной спектрометрии [35, 82, 179, 443, 469, 790, 798, 862, 898, 1013]. Молибден и вольфрам в пламени излучают сплошной спектр, который мешает определению малых количеств натрия, поэтому пред- [c.166]


    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    Определение вольфрама основано на выделении его из раствора навески в виде растворимой в кислотах вольфрамовой кислоты Н2 У 04-Н20 желтого цвета при этом вольфрам одновременно отделяется от большинства сопутствующих компонентов. Образование осадка вольфрамовой кислоты происходит в результате окисления карбидного и металлического вольфрама действием азотной кислоты. Вольфрам обычно не весь выделяется в осадок, небольшая часть его остается в растворе. При очень точных анализах в фильтрате оставшуюся часть вольфрама снова выделяют в осадок с помощью коагулятора (желатины) или осаждают алкалоидом (цинхонином). Осадок вольфрамовой кислоты способен соосаждать примеси из раствора (кремниевую кислоту, железо, фосфор, хром, ванадий, молибден, ниобий и др.), поэтому титриметрический и фотометрический методы имеют определенные преимущества, так как загрязнения здесь существенного влияния не оказывают, как это происходит в гравиметрическом методе. [c.343]

    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    Спектр вольфрама состоит из большого числа близко расположенных линий, поэтому для определения примесей в вольфраме применяют особые приемы внесения анализируемого образца в источник возбуждения, физическое или химическое концентрирование, либо приборы с высокой дисперсией. Вольфрам переводят в WOa [1147], смешивают с угольным порошком для перевода вольфрама в низколетучую форму. В зоне разряда происходит восстановление вольфрама до металла или образуются труднолетучие карбиды. В некоторых случаях перевод металлического вольфрама в окись осуш ествляется прямо в зоне разряда, причем, если проба была предварительно смешана с угольным порошком, одновременно происходит перевод окиси вольфрама в труднолетучие формы [965]. [c.120]

    Чаще всего металлические монокристаллы получают в виде брусков или стержней методами кристаллизации или вытягивания из расплава. Иногда выращивают кристаллы из газовой фазы (например, цинк) или применяют транспортную реакцию в газовой фазе (вольфрам из его гексахлорида [12]). Чтобы получить определенную грань, кристалл обычно разрезают или обрабатывают на станке. Минимальные структурные повреждения вызывают искровая эрозия и кислотный распил, после которых обычно проводят механическое и электрополирование. Режимы электрополирования описаны в литературе [13]. Вырезанные образцы чаще всего имеют вид пластины, фольги или диска, но только весьма тугоплавкие металлы достаточно прочны, чтобы изготовленные из них пластины толщиной менее 0,5 мм обладали необходимыми механическими свойствами. [c.122]

    Американские стандарты рекомендуют растворять металлический вольфрам и ферровольфрам в плавиковой и азотной кислотах. Определение вольфрама производится при этом по цинхониновому методу (ср. также стр. 524). [c.539]

    Определению мешают по механизму (б) — золото (1П) Ф = 1,1), рений (VII) (3000) и ртуть по механизму (в ) — серебро, хром (VI), вольфрам, ванадий, анион NO3. Обработка растворов металлической медью (цементация), предусмотренная прописью определения, устраняет мешающее влияние до 100—200 жкг золота и до 10—20 жг ртути и серебра. Присутствие в растворе 1 г железа, меди или молибдена не влияет на результаты определения. [c.206]

    Виноградов и Дронова [67] применили метод для определения 0,047—0,374% W в металлическом молибдене, 0,04—0,89% W в молибденовом концентрате и 0,0033% W в молибдате аммония. Предварительно Mo(VI) восстанавливают до Mo(V) гидразином, маскируют комплексоном III и при pH 2—3 экстрагируют 8-оксихинолинат вольфрама(У1). После разрушения экстракта комплекса определяют вольфрам роданидным методом. [c.116]

    Анализ сложных по химическому составу минералов тантала и ниобия, содержащих титан, цирконий и вольфрам, отнимает очень много времени и требует самой высокой квалификации химика-аналитика, причем достоверность получаемых результатов невелика. Отсутствуют достаточно надежные и легко выполнимые методы выделения малых количеств ниобия и тантала при анализе горных пород, чистых металлов и сплавов, а также методы определения ниобия и тантала при их содержании около 10 % в металлических титане, цирконии, вольфраме и других металлах. Наиболее удовлетворительные результаты дают экстракционные и хроматографические методы разделения. [c.187]

    Металлическая решетка вольфрама настолько прочна, что точное определение его стандартного электродного потенциала не представляется возможным по ориентировочным расчетам вольфрам в электрохимическом ряду напряжений металлов должен был бы предшествовать водороду. Ни один из металлов У1Б-группы не взаимодействует с водой, и лишь хром способен реагировать с кислотами-неокислителями  [c.446]


    В приведенном ниже методе никель удаляют экстракцией его диэтилдитиокарбамата хлороформом (в качестве растворителей можно также использовать хлористый и треххлористый этилен). Алюминий определяют с помощью алюминона. Со, Си, Мп, Мо, V, РЬ, 2п, С(1, Зп и 51 не мешают определению, так как они либо удаляются вместе с никелем, либо не взаимодействуют с алюминоном. Вольфрам, титан и хром не удаляются в виде карбаматов и мешают определению (рис. 31). В присутствии этих элементов необходимо проводить дополнительные операции по их выделению, например при растворении металлического образца в азотной кислоте можно осадить вольфрам в виде вольфрамовой кислоты. Методика, приведенная ниже, пригодна также для определения алюминия в меди, кобальте и марганце. Точность определения 5—15 у А1 в 12—50 мг никеля в среднем составляет 3% (максимальная ошибка 10%). [c.216]

    Суранова [415] восстанавливала вольфрам металлической ртутью и титровала W(V) ванадатом натрия в присутствии фенил-антраниловой кислоты. При определении 6—72 мг W ошибка -0,33%. [c.102]

    В литературе имеется одно сообщение об аллергических дерматитах, развившихся в результате контакта с металлическим кобальтом. В 1945 г. S hwartz, Pe k и Blair сообщили о проведенном ими обследовании на заводе, производившем цементированные карбиды, часть которых перерабатывалась в режущие инструменты. Материал в виде порошка, в состав которого в определенных пропорциях входили вольфрам, тантал, титан, углерод и металлический кобальт, формовался и прессовался для нужных форм в электрической печи. Было выявлено около 20 больных дерматитами, локализовавшимися преимущественно на открытых участках кожи. У шести из них были поставлены компрессные пробы со всеми перечисленными металлами и у всех больных они оказались положительными только с кобальтом. [c.156]

    Наряду с графитовыми, применяются также трубчатые атомизаторы, изготовленные из фольги тугоплавких металлов. Чаще всего для этой цели применяют молибден и вольфрам. Типичные размеры таких атомизаторов внутренний диаметр 1,5-2 мм, длина 20-25 мм. Главная область применения металлических трубчатых атомизаторов — определение элементов, склонных к карбидообразованию (если только углерод не содержится в самой анализируемой пробе). Основное преимущество — возможность быстрого нагрева атомизатора (до 10 ООО град/с), что позво тяет получать сигналы поглощения в виде очень узких (по времени) резких пиков. Однако повышение чувствительности измерений в данном случае неизбежно связано с ухудшением точности измерений. Кроме того, большинство существующих спектрофотометров не обладает быстродействием, необходимым для работы с такими атомизаторами. [c.842]

    Вольфрам (V). Вольфрам (V) определяют титрованием [41] раствором NH4VO3. Например, при определении вольфрама в сталях и шеелитовых концентратах восстанавливают металлическим [c.141]

    Для фотометрического определения молибдена и вольфрама в металлическом уране разработана методика, по которой сначала экстрагируют молибден с помощью дитиола. Затем водную фазу обрабатывают двухлористым оловом и извлекают вольфрам в виде его комплекса с дитиолом. Содержание молибдена и вольфрама определяют фотометрированием полученных экстрактов [308]. Аналогичные варианты предложены для экстракционно-фотометрического определения вольфрама в циркалое-2 [309] и металлическом бериллии [310]. [c.250]

    До середины XVIII в. было известно около 30 химических элементов затем открыли металлические кобайьт (1735) и никель (1751), напоминающие по свойствам же лезо. С 1766 г. по 1774 г. были открыты водород, кислород, азот и хлор. В конце XVIII в. были обнаружены близкие по свойствам металлы молибден и вольфрам (1781) и хром (1797). В начале XIX в. выделили при электролизе щелочные металлы, затем были открыты многие редкоземельные элементы, среди них иттрий, церий, лантан, тербий, эрбий и.др. К 60-м годам прошлого века стало известно уже 63 химических элемента. В этот. же период времени была завершена реформа атомно-молеку-лярного учения, выработаны методы определения атомных масс, которые были рассчитаны для всех известных тогда элементов (хотя и не всегда правильно). [c.155]

    В. М. Тараян и Е. Н. Овсепян рекомендуют метод потенциометрического титрования молибдена раствором перхлората закиси ртути закись ртути, взаимодействуя с добавленным к титруемому раствору молибдена роданистым калием, образует ртутнородановый комплекс наряду с восстановлением до металлической ртути. Последняя восстанавливает молибден до пятивалентного. Конец титрования определяется по скачку потенциала. Вольфрам не мешает определению молибдена этим методом, так как он не восстанавливается перхлоратом закиси ртути. [c.90]

    Ход определения. Фильтр осторожно вынимают из патрона, помещают в тигель и озоляют в муфельной печи, температуру которой поднимают постепенно. При анализе проб, содержащих вольфрамовый ангидрид, тигель вынимают из печи после озоления фильтра. В случае проб, содержащих двуокись вольфрама, металлический вольфрам или паравольфрамат аммония, зольный остаток выдерживают в печи при 500—600° С около 20 мин до получения WO3. В охлажденный тигель наливают 2 мл 10% раствора NaOH и, поставив тигель на плитку, осторожно нагревают раствор до кипения и кипятят до полного растворения осадка. Затем раствор разбавляют водой, переливают в мерный цилиндр на 10 мл и по охлаждении, ополаскивая тигель, доливают водой до метки [c.360]

    Для ванадия известно несколько степеней окисления. Для титрования ванадия(II) в модельных растворах и искусственных смесях предложено использовать электрогенерированное железо(III) с биамперометрической индикацией к. т. т. После растворения пробы амальгамой цинка восстанавливают ванадий(У) и (IV) до V" и титруют его железом(1П) на фоне серной кислоты при pH > 1 [474]. Разработаны методики определения и V в смесях ионов марганца, хрома и ванадия [475], сталях, содержащих молибден и вольфрам [476, 477], и в сплавах [478, 480—482]. Для индикации к. т. т. предложены потенциометрический и биамперометрический методы. Электрогенерированные титранты из металлоактивных электродов — металлического ванадия, олова, меди и хрома —применены для определения ванадия в инструментальных сталях, сплавах, хромитовых рудах [483, 484—490, 497], латунях, бронзах [494— 497], металлическом цинке [497—499]. [c.75]

    В качестве восстановителя применяют раствор хлорида олова (II) в фосфорной кислоте [67]. При определении серы в сульфатах бария, магния, цинка, натрия [63, 68], а также при анализе сульфидных руд, тиосульфата и других серусодержащих материалов [69] раствор хлорида олова(П) и.фосфорной кислоты предварительно нагревают до удаления хлористого водорода. Восстановление этой смесью детально изучено, и усовершенствован способ приготовления реагента для восстановления [70]. Для восстановления серы рекомендовано также применять металлические титан, хром, молибден, ванадий или вольфрам в присутствии фосфорных кислот и их солей [71]. Чаще других металлов рекомендуется применение металлического хрома в присутствии фосфорной кислоты, этот восстановитель применен для определения серы в феррохроме, металлическом хроме [14] и хлориде титана (IV) [72]. Широко распространен метод восстановления серы смесями иодистоводород-ной и фосфорноватистой кислот [73], иодистоводородной кислоты и гипофосфита натрия в присутствии, уксусной [64], муравьиной [74] и хлористоводородной [75—77] кислот. Кроме того, рекомендована смесь иодистоводородной и муравьиной кислот и красного фосфора [78], а также смесь сульфата титана (111) и фосфорной кислоты [79]. [c.214]

    Необходимость использования современной высоковакуумной аппаратуры для получения чистых нитей была подчеркнута То-.масом и Шофилдом [23], показавшими, что даже те вольфра.мо-вые нити, с которыми работал Робертс [24] в своих классических опытах по определению коэффициента аккомодации, не были в достаточной мере очищенными. Метод получения чистой поверхности мгновенны.м раскаливанием нити является основой э.мис-сионной электронной. микроскопии и имеет весьма важное значение, так как, по всей вероятности, это единственный метод, дающий несомненно чистые поверхности другие методы проверяют путем сравнения результатов с полученными данным методом. Образующаяся поверхность может быть в известной степени поликристаллпческой, однако преимущество раскаливания металлической нити заключается в простоте, с которой можно получать свежую поверхность при последовательных из.мерениях. [c.93]

    Растворы реагента в 7 -ном водном растворе этанола имеют максимум светопоглощения при 468 нм соединение с У(У1) максимально поглощает при 475 и 560 нм, молярный коэффициент погашения 2,55-10, оптимальный интервал кислотности pH 0,5—3. Отношение компонентов 1 1, константа образования 5.5-10 . Реагент применен [330] для фотометрического определения вольфрама в ванадии металлическом, УаОз и КН4УОз. Предварительно вольфрам и другие элементы экстрагируют в виде бенз-гидроксаматов смесью изобутанола с хлороформом (1 1) из растворов, содержащих аскорбиновую кислоту для восстановления У(У). После отделения, озоления экстрактов, сплавления и переведения в раствор маскируют Зп, Мо и Ге тиогликолевой кислотой, а Т1, КЬ, Та и ЗЬ — фторидом аммония. Определению 2—9 мкг У не мешают по 100 мкг Зп, Т1, Ът, ТЬ, В1, 1п 20 мкг КЬ 40 мкг Та 10 мкг Мо 500 мкг ЗЬ. Мешают Се и Са. [c.134]

    Металлический вольфрам, ферровольфрам и сплавы с высоким содержанием вольфрама растворяются в насыщенном растворе Н2С2О4 в присутствии Н2О2 [106] при нагревании до 80° С на водяной бане (см. также гл. 1). Этот метод авторы [104] считают удобным и быстрым при анализе молибденовольфрамовых сплавов и ферровольфрама. Описаны методы определения вольфрама в жаропрочных сплавах [205, 257. 401, 647], в высоколегированных [61, 253, 838] и в сплавах на основе ниобия, циркония, гафпия, титана [284, 333, 510]. [c.174]

    Кроме рассмотренных способов получения карбида вольфрама определенный интерес представляют сообщения об использовании природного газа [299] или его смеси с водородом [178] для восстановления — карбидизации вольфрамового ангидрида или смеси вольфрамовой кислоты с вольфрамовым ангидридом. В результате исследования процесса отложения углерода на поверхности металлического вольфрама при термическом разложении метана было установлено [299], что при температуре 1000—1100° С вольфрам можно науглеро-дить до требуемого содержания углерода в карбиде (подобный способ запатентован в Японии [300]). Аналогичные результаты получены также при восстановлении ШОз метаном в указанно.м интервале температур, образцы содержали 5,9—6,18% общего углерода и не [c.88]

    Описанная в литературе методика [ фазового анализа руд и продуктов их обогащения заключается в последовательной обработке материала аммиаком на водяной бане в течение 4 ч, 2 н. уксусной кислотой при 90 °С в течение 30 мин и 2 н. раствором карбоната натрия под давлением при 250 °С. В первом фильтрате определяют содержание вольфрама тунгстита, уксусно-кислый фильтрат не исследуют, в третьем — содовом фильтрате — определяют вольфрам щеелита, вольфрамита и гюбнерита, в нерастворимом остатке определяют содержание кальция. Считая, что остается только кальций шеелита, расчетным путем находят вольфрам шеелита. Понятно, что такой косвенный метод определения шеелита можно применять только в отсутствие других кальциевых минералов, например флюорита, который, к сожалению, часто сопутствует вольфрамовым минералам. Эта методика не может быть широко применена также и из-за необходимости использования высокотемпературного термостата с металлическими ампулами. [c.172]

    При анализе сплавов хром—вольфрам, хром—мо.шбден и хром— вольфрам — ванадий поступают, как описано в пунктах 1—7. Затем содержимое стакана выпаривают до объема 2—3 мл, разбавляют водой до 20 мл и далее выполняют анализ по методике Колориметрическое определение фосфора в металлическом вольфраме и ферровольфраме , стр. 571, начиная с пункта 4. [c.560]


Смотреть страницы где упоминается термин Вольфрам металлический определение вольфрама: [c.234]    [c.99]    [c.333]    [c.180]    [c.537]    [c.538]    [c.102]    [c.87]    [c.100]    [c.123]    [c.117]    [c.142]    [c.8]    [c.561]    [c.575]    [c.635]   
Химико-технические методы исследования (0) -- [ c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Весовое и фотометрическое определение тория в металлическом вольфраме

Висмут, определение в металлическом вольфраме

Водород, определение в металлическом вольфраме

Вольфрам в металлическом вольфраме

Вольфрам металлический, анализ определение весовое

Вольфрам металлический, определение

Кислород, определение в вольфраме металлическом

Кобальт, определение в вольфраме металлическом

Кобальт, определение в вольфраме металлическом Ковкий чугун, отбор пробы

Кобальт, определение в вольфраме металлическом определение в железе

Кобальт, определение в вольфраме металлическом открытие в присутствии никкеля

Колориметрическое определение фосфора в металлическом вольфраме и ферровольфраме

Медь определение в вольфраме металлическом

Металлический вольфрам

Определение вольфрама в ферровольфраме и металлическом вольфраме

Свинец, определение в вольфраме металлическом

Свинец, определение в вольфраме металлическом отделение от кобальта

Сера определение в вольфраме металлическом

Углерод определение в вольфраме металлическом

Фосфор, определение в вольфраме металлическом



© 2025 chem21.info Реклама на сайте