Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний, определение в железе никеле

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Сплавы цинко-алюминиевые. Спектральный метод анализа Магний первичный. Спектральный метод определения натрия и калия Магний первичный. Спектральный метод определения кремния, железа, никеля, алюминия, меди, марганца и титана [c.821]


    Титан губчатый. Спектральный метод определения кремния, железа, никеля [c.569]

    Бронзы безоловянные. Метод спектрального анализа по окисным стандартным образцам с фотографической регистрацией спектра Бронзы безоловянные. Метод рентгеноспектрального флуоресцентного определения алюминия Бронзы жаропрочные. Метод определения меди Бронзы жаропрочные. Методы определения кремния Бронзы жаропрочные. Методы определения хрома Бронзы жаропрочные. Метод определения фосфора Бронзы жаропрочные. Методы определения железа Бронзы жаропрочные. Метод определения никеля Бронзы жаропрочные. Метод определения свинца Бронзы жаропрочные. Методы определения циркония Бронзы жаропрочные. Метод определения кобальта Бронзы жаропрочные. Методы определения титана Бронзы жаропрочные. Определение хрома, никеля, кобальта, железа, цинка, магния и титана методом атомно-абсорбционной спектрометрии [c.576]

    Редкоземельные металлы и их окиси. Спектральный метод определения ванадия, железа, кобальта, кремния, марганца, меди, никеля, свинца, титана, хрома [c.589]

    Анализ алюминия и его сплавов обычно сводится к определению железа, кремния, меди, магния, марганца, реже калия, натрия, цинка, кальция, никеля. Добавление указанных элементов изменяет свойства чистого алюминия. Так, марганец повышает устойчивость к коррозии, но понижает пластичность магний уменьшает массу и повышает прочность кремний увеличивает прочность, но уменьшает пластичность медь увеличивает прочность. Состав некоторых алюминиевых сплавов приведен в табл. 36. [c.377]

    Для анализа использован атомно-абсорбционный СФМ Перкин-Элмер , модель 303. Условия определения каждого элемента взяты из рекомендаций фирмы-изготовителя прибора. В расчете на анализ 2%-ного раствора достигнуты следующие пределы обнаружения (в мкг/г) литий, натрий — 0,1, калий — 0,3, магний, цинк, кадмий — 0,5, кальций—1,0, серебро—1,5, медь — 2,5, сурьма — 3, железо, никель — 5, свинец—10, алюминий, кремний, олово—50, титан—70, ртуть—100, бор—1000. [c.218]

    Чувствительность определения железа, кобальта, никеля, марганца, кремния, олова, свинца, висмута и некоторых других элементов можно значительно повысить, усиливая интенсивность излучения линий в прикатодном слое. Это явление объясняется скоплением положительных ионов у катода. Прикатодное усиление линий особенно заметно при испарении небольшой навески (5—10 мг) из канала Малого диаметра (0,8—1 мм) и величине аналитического промежутка 10—12 мм. Щель спектрографа освещают участком дуги высотой 1—2 мм, прилегающим к катоду [19, 361]. [c.139]


    СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ МЕДИ, ЖЕЛЕЗА, НИКЕЛЯ, МАРГАНЦА, РТУТИ, СЕРЕБРА, ВИСМУТА, СВИНЦА, ОЛОВА, КАДМИЯ, МАГНИЯ, АЛЮМИНИЯ, СУРЬМЫ, ТЕЛЛУРА, КРЕМНИЯ, ЗОЛОТА И МЫШЬЯКА [c.457]

    Для определения в порошкообразно.м титане железа, никеля, кремния и алюминия [352] брикеты готовят, как описано выше, и сжигают их в дуге переменного тока (ток дуги 4 а, предварительный обжиг 40 сек, съемка в течение 40 сек). [c.153]

    Мухина 3. С. и Володарская Р. С. Методы анализа магниевых сплавов. [Определение кремния, алюминия, меди, марганца, цинка, железа, никеля]. Тр. (Всес. н.-и. ин-т авиац. м-лов ВИАМ ), 1949, 2, с. 21—25. 4869 [c.190]

    Измерения интенсивности люминесценции производят в прямоугольных кюветах емкостью 25 мл на флуориметре. Установку прибора на О производят по раствору, не содержащему хлорида алюминия и ионов фтора, на 100 — по раствору, не содержащему ионов фтора. Возможны измерения при содержании в 50 мл раствора от 0,2 до 100 мкг иона фтора. Ошибка колеблется в пределах 0,2—20% (в зависимости от содержания фтора в пробе). Мешают определению ионы хрома, железа, никеля, кобальта, бериллия, циркония, тория, кремния и фосфора. В их присутствии необходимо предварительно отогнать фтор в виде кремнефтористоводородной кислоты. [c.343]

    ОПРЕДЕЛЕНИЕ КРЕМНИЯ, МАРГАНЦА, ЦИНКА, МАГНИЯ, ОЛОВА, СВИНЦА, ЖЕЛЕЗА, НИКЕЛЯ, СЕРЕБРА, СУРЬМЫ, ВИСМУТА И МЫШЬЯКА СПЕКТРАЛЬНЫМ МЕТОДОМ [c.26]

    Чувствительность определения (%) железа, меди—1 10" . алюминия, магния, никеля, молибдена— 3 10" марганца, кремния, свинца — 5 10" . [c.14]

    Чувствительность определения (в %) серебра — 3-10 натрия, свинца, олова и галлия — 5-10 калия, железа, никеля, хрома и кремния — цинка, кадмия, меди [c.76]

    Как правило, колориметрическому определению бора мешают присутствие окислителей (нитраты, хроматы, перекись водорода), разрушающих красители, фтор-ион, образующий комплексное соединение с бором [91], а также некоторые элементы, такие, как железо, никель, марганец, мель, хром, кобальт, алюминий, ванадий, титан, молибден, цирконий, олово, мышьяк. Влияние окислителей устраняют восстановлением их гидразином, фтор-ион связывают добавлением двуокиси кремния. В литературе имеется обзор методов определения бора с применением дистилляции, ионного обмена, электролиза с ртутным катодом и определения в видимой и УФ-обла-сти спектра с применением флуорометрии, спектроскопии, полярографии и амперометрического титрования в урановых материалах, полупроводниках, сталях и цвет ных сплавах [107, 108]. Подробно методы отделения ме- тающих примесей изложены в п. 2 гл. I. [c.49]

    Колориметрическое определение меди, никеля, железа, алюминия, кальция, магния и кремния [c.136]

    Для определения примесей в карбиде бора навеску последнего сплавляют в платиновом тигле с углекислым калием-натрием, плав выщелачивают, раствор подкисляют соляной кислотой и кипятят для удаления углекислого газа. Определение железа, алюминия, кальция, магния, никеля, меди, кремния проводят весовым, комплексонометрическим или колориметрическим методом (см. гл. 1П). [c.217]

    Авторами изучалось влияние кислот, а также металлов, присутствующих в растворе. Установлено, что азотная, соляная, плавиковая и хлорная кислоты при распылении в пламя собственного поглощения не имеют были отмечены лишь небольшие вариации в атомном поглощении свинца, обусловленные увеличением вязкости кислотных растворов. Показано, что при содержании свинца в растворе в количестве 50 мкг/мл присутствие 1000 мкг/мл натрия, кальция, меди, алюминия, магния, железа, никеля, олова, цинка и кремния определению не мешают. [c.162]

    РАБОТА 12. ОПРЕДЕЛЕНИЕ МАРГАНЦА, КРЕМНИЯ, ЦИНКА. ЖЕЛЕЗА. НИКЕЛЯ И ОЛОВА В БРОНЗЕ КРЕМНЕМАРГАНЦОВОИ МАРКИ БР. КМЦ 3-1 [c.71]

    Работа 12. Определение марганца, кремния, цинка, железа, никеля и олова в бронзе кремнемарганцовой марки Бр. КМЦ 3-1 Работа 13. Спектральный анализ алюминиевого сплава. Работа 14. Анализ сплавов методом фотометрического интер [c.135]

    Редкоземельные металлы и их окиси. Спектральный метод определения ванадия, железа, кобальта, кремния марганца, меди, никеля, свинца, титана, хрома Лантан, церш4, европий, гадолиний, лютеций, иттрий и их окиси. Спектральный метод определения ванадия железа, кальция, кобальта, кремния, магния, марганца, меди, никеля, титана, хрома, цинка и циркония [c.822]

    Стали и сплавы. Определение содержания массовых долей кремния, марганца, хрома, никеля, молибдена, вольфрама, титана, ванадия, кобальта, алюминия, меди, ниобия и железа методом атомно-эмисси-онной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель) [c.823]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]


    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]

    Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Отмечено, что галоидоводородные кислоты дают отсчет на приборе с латунной горелкой вследствие перехода некоторого количества цинка в пламя из горелки. Эффект устраняется при нейтрализации кислот225. Азотная кислота при концентрации до 5% и серная до 1% не влияют на точность анализа, также не влияют медь и алюминий при концентрации, большей концентрации цинка в 1000 раз, а фосфор, марганец, железо, никель и магний — при концентрации, большей в 10 раз . Двуокись кремния уменьшает находимые количества цинка, также действуют медь при концентрации 50 мг/мл и алюминий (10 мг/мл). Цирконий при концентрации до 10 мг/мл не мешает определению цинка 224. [c.252]

    Анализ вольфрама повышенной чистоты и его препаратов (вольфрамовый ангидрид, вольфрамовая кислота, паравольфра-мат аммония) на содержание олова, висмута, свинца, кадмия, сурьмы, меди, мышьяка, цинка, никеля, хрома, титана, магния, кремния, железа и алюминия возможен по методике, описанной в работах [307—309]. По указанной методике пробу превращают в вольфрамовый ангидрид прокаливанием на воздухе при 600— 650° С (примеси при этом не теряются). Эталоны готовят синтетически на основе чистого вольфрамового ангидрида и окислов примесей. Пробы и эталонные образцы смешивают с угольным порошком в соотношении 4 1. В угольный порошок предварительно вводят носитель, — веихество, улучшающее отгонку примесей [106, 170]. Наиболее доступными носителями являются ио-дистый калий (вводится 5% от веса угольного порошка) и фтористый натрий (1%). Смесью в количестве 100 мг набивают угольные электроды специальной формы (см. гл. П, рис. 3). В качестве источника возбуждения можно применять дугу постоянного или переменного тока. В последнем случае чувствительность определений хрома, никеля, меди, алюминия, магния, железа и кремния примерно на порядок ниже, однако во многих случаях она достаточна. Питание постоянным и переменным током поджиг дуги постоянного тока осуществляются по схеме, приведенной на рис. 9. При использовании дуги постоянного тока проба включается анодом (межэлектродный промежуток 3 мм). [c.122]

    Распознование типа сплава. Обнаружение в сплавах тех или иных химических элементов проводят преимущественно дробным методом при помощи микрокристаллоскопических и капельных реакций. Однако прежде всего желательно установить тип сплава. Распознавание типа сплава, как правило, не требует предварительного его измельчения и ведется на деталях бесстружковый методом анализа. Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др., медные сплавы — олово, цинк, свинец, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.384]

    Определение алюминия, цинка, железа, никеля, меди, серебра, свинца, сурьмы, золота и мышьяка в борсиликатном стекле проводят спектральным методом после удаления вещества-основы в виде борнометилового эфира и фтористого кремния [1]. [c.67]

    Разработаны методики определения никеля в нефти и мазуте [1], железа в кремне-известковых минералах [2], железа,, никеля и кобальта в производственных водах с применением экстракции метилизобутнлкетоном [3].  [c.85]

    Определение примесей алюминия, железа, кремния, марганца, меди, никеля, цинка возможно в интервале концен-траций2 10 —5-10" %. [c.11]

    Данные по определению микропримесей в исходных реактивах и МОС приведены в табл. 1, из которой видно, что содержание микропримесей в получаемых МОС значительно ниже, чем в исходных веществах. Так, содержание в бисэтилбензолхроме алюминия, магния, кремния, которые не образуют соответствующих бисареновых производных, на 1 —2 порядка меньше, чем в исходных веществах. Количество меди, магния, титана, цинка, железа, никеля, алюминия, марганца, серебра, кремния в эфирате триметилгаллия и в триметилгаллии на 1 —2 порядка ниже по сравнению с их содержанием в магнии и хлориде галлия. [c.100]

    Метаборат лития (ЫВОг) предложен Ингамеллсом [14, 15] как удобный флюс для разложения силикатных пород, подготовляемых для спектрофотометрического определения кремния, фосфора, железа, титана, марганца, никеля и хрома. Натрий и калий можно определять пламенной фотометрией [16], а другие элементы эмиссионной спектрографией раствора, позволяющей в сущности выполнить полный анализ (без РеО, СО2, Н2О и некоторых второстепенных компонентов) из одной навески (см. гл. 5). [c.37]

    Если в настоящее время исследования микроэлементов нефти связаны с целым комплексом вопросов, таких как происхождение микроэлементов, формы существования их з нефтях, связь с другими компонентами 1сфти и т. д., то большая серия первых по хронологии работ была посвящена лип ь определению зольности нефтей и качественному составу золы нефти. С введением в практику изучения минеральной , асти иефти количественных методов анализа резко возросло число исследований пи составу золы нефтей. Накопление достаточного экспериментального материала позволило Хекфорду [282—284] уже в начале 30-х годов нынешнего сто-лрт я выдвинуть предложение систематизировать известные в то время микроэлементы в следующем порядке (ио их ко-личестве)1ному содержанию) сера, кислород, азот, ванадий, фосфор, калий, никель, юд, кремний, кальций, железо, маг-ни)1. натрий, алюминий, марганец, свинец, серебро, медь, титан, олово, мышьяк. [c.109]

    В золе исследуемых фракций нефтей Таджикской депрессии нолуколичественным спектральным анализом были обнаружены следующие микроэлементы натрий, медь, серебро, берилий, магний, кальций, стронций, барий, цинк, алюминий, лантан, кремний, олово, свинец, титан, цирконий, сурьма, висмут, ванадий, хром, молибден, марганец, железо, никель. Чтобы проследить распределение по фракциям тех микроэлементов (ванадий, хром, марганец, железо, никель, медь, свинец, молибден), которые были количественно определены в самой нефти, подобное определение их производилось и во всех изученных фракциях. Как видно из таблицы, микроэлементы распределены по фракциям неравномерно. Основная масса, например ванадия, сконцентрирована в асфальтенах и спирто-бензольных смолах, а никеля — в асфальтенах и петролейноэфирных маслах (исключение составляют фракции нефти Алмасы). Соответствук>щие данные показаны па рис. 5, 6. Что касается других микроэлементов (хром, марганец, медь, свинец, молибден), то в их распределении также наблюдается определенная закономерность. [c.127]

    Нами было установлено, что кварцевые лодочки, в которые помещают навески порошка для обработки их водородом, сохраняют постоянную массу при температурах ниже 950° С. При более высоких температурах происходит заметная убыль в массе лодочек, доходящая за 1 ч при 1000° С до 3 мг масса лодочек составляла 1,5—1,8 г. Некоторые авторы, например Руни [22], считают, что причиной убыли в массе лодочек является выделение газов из кварца при высоких температурах, сопровождающееся частичным разрушением материала. Согласно литературным данным [23, 24], восстановление водородом закиси железа происходит при 500° С, а окиси железа — при 600° С. В качестве оптимального интервала температур для восстановления окислов железа при определении в железных порошках кислорода водородным методом нами был выбран интервал 900—950° С. При этих температурах масса кварцевых лодочек не уменьшается и восстановление окислов железа происходит достаточно быстро. Окислы железа, никеля и меди при этом полностью восстанавливаются до металла, окислы марганца и хрома — частично, окислы кремния и алюминия не восстанавливаются. [c.33]

    В результате получают брикеты безуглеродистого феррохрома, содержащего 0,01—0,02% углерода. Лаборатория Актюбипского ферросплавного завода определяла кислород в порошке полуокисленного феррохрома по разности, определяя при этом лишь содержание кремния, хрома, железа, марганца, углерода и серы. Результаты определения кислорода были поэтому, как правило, занижены на 0,7—1,2% (абс.), так как не учитывалось содержание в феррохроме никеля, титана, алюминия, ванадия, меди, фосфора и азота. Однако главным недостатком этого определения кислорода являлась большая продолжительность полного анализа полуокисленного феррохрома, которая составляла 8—12 ч. [c.57]


Смотреть страницы где упоминается термин Кремний, определение в железе никеле: [c.425]    [c.445]    [c.375]    [c.96]    [c.51]    [c.20]   
Химико-технические методы исследования (0) -- [ c.278 ]




ПОИСК





Смотрите так же термины и статьи:

Кремний определение

Никель определение



© 2025 chem21.info Реклама на сайте