Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны гидратация

    Очень важной реакцией присоединения к алкинам является гидратация тройной связи, катализируемая кислотой и солями двухвалентной ртути. При этом из ацетилена получается эта-наль, другие алкины дают кетоны  [c.46]

    Какие кетоны получаются, если подвергать гидратации по Кучерову а ) диэтилацетилен б) метилпро-пилацетилен в) 2-пентин г) 1-пентин Напишите уравнения реакций. В каких из этих реакций и почему можно ожидать образования смеси двух кетонов (см. также 3.8 и 3.9)  [c.47]


    У. Какие новые функциональные группы образуются из сафрола при его 1) гидратации, 2) гидролизе в. Гидроксил первичный б. Гидроксил вторичный в. Гидроксил третичный г. Гидроксил фенольного типа д. Альдегидная е. Кетонная [c.138]

    Вторичные спирты, получаемые гидратацией С4—Сд-олефинов нормального строения (гл. 8), превращают в соответствующие им кетоны точно так же, как получают ацетон, а именно парофазным дегидрированием или каталитическим окислением воздухом. Дегидрирование втор-бутилового спирта в метилэтилкетон протекает при 350°, т. е. при несколько более низкой температуре, чем дегидрирование изопропилового спирта (380°). Этот метод считается лучшим, чем каталитическое окисление воздухом. [c.329]

    Одновременное проявление общего кислотного и общего основного катализа можно установить, измеряя зависимость скорости реакции от концентрации каждого из катализаторов. Скорость некоторых реакций, например галогенирования кетонов, гидратации дихлорацетона, а также образования кетона из аниона щавелевоуксусной кислоты, зависит от концентраций общей кислоты и общего основания. Однако реакции, скорость которых пропорциональна как концентрации карбоновой кислоты, так и карбоксилат-иона, нельзя строго отнести к процессам, где реализуется полифункциональный катализ. Эти реакции могут катализироваться димерными (основными) частицами типа НАг, которые в принципе могут существовать в растворе. Кинетически эти две возможности неразличимы. [c.282]

    Можно ли получить этот кетон гидратацией ацетиленового углеводорода в условиях реакции Кучерова  [c.38]

    Кучерова реакция — гидратация ацетилена и его производных в присутствии солей ртути Hg(II) с образованием соответственно ацетальдегида и кетонов (открыта М. Г. Кучеровым в 1881 г.)  [c.327]

    Напишите схемы синтеза диизопропилкетона а) окислением соответствующего спирта б) сухой перегонкой Са-соли карбоновой кислоты в) озонолизом соответствующего этиленового углеводорода. Можно ли получить этот кетон гидратацией ацетиленового углеводорода в условиях реакции Кучерова  [c.64]

    Периодическое изменение электронной структуры атомов элементов проявляется в периодической вариации каталитических свойств их соединений и в области гомогенного катализа реакций окисления-восстановления в растворах. Этот класс каталитических реакций, осуществляемых с помощью комплексных ионов переходных металлов, был открыт и изучен сравнительно недавно. Он включает реакции гидрирования в растворах соединений с двойной связью, присоединение СО и водорода к олефинам (оксосинтез), перемещение двойной связи, полимеризацию диенов, окисление олефинов кислородом в альдегиды и кетоны, гидратацию ацетилена и др. Некоторые из этих реакций, как, например, окисление этилена в аце-тальдегид с помощью палладиевого катализатора и оксосинтез с использованием кобальтового катализатора, уже получили широкое применение в промышленности. [c.236]


    Комбинированный процесс гидратации и окисления олефинов в альдегиды или кетоны уже упоминался выше [ПО, 112]. [c.172]

    Гидратация ацетиленовых углеводородов. Как было указано, присоединение воды к углеводородам с тройной связью (реакция Кучерова, стр. 86) приводит к образованию карбонильных соединений. Из ацетилена при этом образуется альдегид (уксусный), а из его гомологов получаются кетоны. [c.148]

    Теоретические основы экстракции.- Экстракцией называется извлечение вещества из одной жидкой фазы в другую жидкую фазу. С водой не смешиваются малополярные органические жидкости (с низкой диэлектрической постоянной). Подавляющее большинство неорганических соединений, имея ионную природу, растворяется в них плохо. В водном растворе эти соединения диссоциируют на ионы, которые гидратируются молекулами воды. Переход соединения в органическую фазу становится возможным, если все или часть молекул воды, координированных ионом, будут удалены, и получен нейтральный комплекс. Образование нейтральных соединений и уменьшение степени гидратации наблюдается прн образовании солей с органическими кислотами, аминами (если металл входит в состав аниона), сольватов с нейтральными экстрагентами (спиртами, кетонами, простыми и сложными эфирами). При образовании сольватов молекулы экстрагента замещают молекулы воды в гидратной оболочке катиона либо присоединяются к воде гидратной оболочки. Такого рода взаимодействие возможно, если органические вещества содержат атомы кислорода, азота и других элементов, способных быть донорами электронов, а металлы — акцепторами. [c.332]

    Вначале кетоны получали из вторичных спиртов путем окисления в избытке воздуха при катализе металлической медью. Позже стали преимущественно использовать более селективный процесс дегидрирования. С его помощью производят некоторое количество ацетона и метилэтилкетона, если потребность в них не удовлетворяется другими способами (кумольный или окисление олефинов см. стр. 376 и 447). При их синтезе первой стадией является гидратация олефинов в спирты (стр. 187), а затем идет дегидрирование  [c.472]

    При гидратации гомологов ацетилена реакция идет согласно правилу Марковникова и образуются кетоны  [c.104]

    Задача 0-22. Спирты являются продуктами гидратации алкенов, а кетоны — продуктами гидратации алкинов  [c.231]

    В качестве побочных продуктов образуется большое число соединений различных классов —углеводороды, спирты, эфиры, альдегиды, кетоны и др. Для производства дивинила пригоден технический этанол — продукт брожения или гидролиза растительных углеводов, гидратации этилена и т. д. [c.361]

    Для разделения олефинов была использована в основном четкая ректификация ожиженных газов под давлением с помощью технических приемов, уже известных в промышленности нефтепереработки единственным новшеством было проведение ректификации при низкой температуре, требующейся для концентрирования этилена. Основными из разработанных процессов химической переработки олефинов были сернокислотная гидратация, приводившая к получению спиртов, которые затем дегидрировались в альдегиды и кетоны, и получение из олефинов их окисей с помощью реакции гипохлорирования. Доступность в промышленных масштабах окиси этилена и окиси пропилена привела к тому, что на рынке стали появляться все новые и новые продукты, получаемые на их основе, например гликоли, сложные и простые эфиры гликолей и алканоламины. [c.19]

    Гидратацией ацетилена и его гомологов в присутствии солей ртути (И) можно получить альдегиды и кетоны  [c.213]

    Раньше уже были описаны сложные ненасыщенные кетоны, получающиеся в результате конденсации двух и трех молекул ацетона (окись мезитила и форон). Простейший ненасыщенный кетон — метилвинилкетон СНзСОСН = СНа. Он образуется из ацетона и формальдегида или гидратацией моновинилацетилена серной кислотой в присутствии ртутного катализатора  [c.330]

    При гидратации гомологов ацетилена — кетоны  [c.124]

    У. К какому классу относится продукт гидратации толана а. 1,1-гликоль б. 1,2-гликоль в. Альдегид г. Кетон [c.72]

    Другие спирты. Прямая кислотная гидратация олефинов положена в основу синтеза изопропилового спирта и 2-бутанола. Эти спирты перерабатываются в соответствующие кетоны или используются как растворители. [c.372]

    Гидратация алкинов всегда идет с образованием кетонов (разд. 3.4.3) (кроме гидратации ацетилена). [c.116]

    Установите строение углеводорода состава СвНщ, который с аммиачным раствором окиси серебра дает осадок, а в результате гидратации образует кетон, реакцией Кижнера из которого получен 2-метилпентан. [c.112]

    Расширение производства уксусного а. .ьдегида и ацетона на основе этилового и изопропилового спиртов сомнительно, так как су-щестуют процессы с применением других видов сырья. Так, уксусный альдегид получают гидратацией ацетилена, а ацетон (вместе с фенолом) — окислением изопропилбензола (и другими методами). Заслуживает внимания и тот факт, что неполное окисление низших парафиновых углеводородов под давлением позволяет получать спирты, альдегиды, кетоны и низшие кислоты одновременно. [c.209]


    Углеводороды ряда бензола при действии хлористого хромила ОгОаСЬ дают соединения, дальнейшей гидратацией превращающиеся в ароматические альдегиды и кетоны.  [c.40]

    Эту реакцию нетрудно распространить на высшие олефины как правило, образуются кетоны, причем группа ОН в решающей стадии присоединяется к положительному концу двойной связи [113, 122]. Однако изменение реакционной среды может вызвать заметное повышение выхода альдегида из gHs в качестве главного продукта образуется ацетон, а пропионовый альдегид в количестве 20% получается при увеличении концентрации НС1 или при соответствующем выборе лигандов для Pd. Бутадиен сначала дает кротоновый альдегид, что указывает на 1,4-механизм, а затем ацетальдегид, который в присутствии сильной кислоты быстро конденсируется в триацетилбензол. В случае изобутена (и сходных олефинов) получаются только следы изомасляного альдегида, главным же продуктом является трет-бу-танол — результат простой гидратации, катализируемой кислотой. Вышеописанная схема показывает, что окончательная перегруппировка комплекса в этом случае невозможна  [c.170]

    Больпхую часть вторичных спиртов, полученных сернокислотной гидратацией олефинов, используют для производства кетонов. Для этого спирты каталитически дегидрируют, получая из изопропилового спирта ацетон, а из ifmop-бутилового спирта — метилэтилкетон. Упомянутые кетоны являются чрезвычайно важными растворителями и исходными продуктами в промышленности органического синтеза. [c.472]

    За крупнотоннажным производством продуктов химической переработки этилена вскоре последовало промышленное использование в качестве химического сырья пропилена и бутиленов. Эти олефинь[ подвергали гидратации по тому же методу, что и этилен, а полученные спирты переводили в кетоны, которые вместе с их производными также нашли себе применение в автомобильной и лакокрасочной отраслях промышленности. [c.20]

    Гидратацией ацетилена или его гомологов получают ацетальде-гид или соответствующие кетоны. В основе эти процессов лежит открытая М. Г. Кучеровым (1881 г.) [10] реакция гидратации ацетилена в ацетальдегид в присутствии Н2804 с добавкой солей ртути. Хотя эта реакция известна давно и проводится в заводском масштабе, но механизм ее недостаточно изучен и в настоящее время. Она иротекает в несколько стадий, возможно, по следующей схеме (правило Эльтекова) [11]  [c.516]

    Показано, что в реакциях гидратации алкинов 1а и 16 с образованием кетонов 2а,6, реакционная способность алкинов в значительной мере зависит от степени удаленности пентаброфенильного остатка от этинильного фрагмента соединение 16 более реакционноспособно, [c.87]

    ГИДРАТАЦИЯ И ДЕГИДРАТАЦИЯ КАТАЛИТИЧЕСКИЕ —реакции присоединения (гидратация) или отщепления (дегидратация) воды от органических соединений. Г. и Д. к.— одни из основных реакций органической химии. Основными видами реакций гидратации являются гидратация олефинов в спирты, ацетиленовых углеводородов в альдегиды и кетоны, нитрилов в амиды. На этих реакциях основываются промышленные способы производства важнейших продуктов органического синтеза. Реакции дегидратации составляют основу большинства реакций поликонден-сацин, играющих огромную роль при получении полимеров, алкидных или гли-фталевых смол, полиамидных волокон (найлона), мочевиноформальдегидных смол 1 др. [c.72]

    Направление присоединения воды к двузамещенным гомологам ацетилена Н—С=С—К определяется строением алкилов, связанных с углеродами у тройной связи. Если сродство к электронам у обеих групп Н и К примерно одинаково, как, например, у алкильных радикалов с нормальной цепью, то при гидратации получаются смеси изомерных кетонов примерно в равных количествах  [c.160]

    Алкины легко присоединяют воду (гидратация), образуя спирты, кислоты. Присоединение Н2О идет в присутствии катализатора — Н 804 (реакция М. Г. Ку-черова, открыта в 1881 г.), либо над гетерогенными катализаторами. Сначала образуется непредельный спирт, а затем альдегид (или кетон)  [c.199]

    Присоединение воды к ацетиленам в присутствии концентрированной серной кислоты проходит значительно труднее. Алкилацетн-лены образуют в этом случае соответствующие кетоны только при нагревании. Реакция ускоряется при добавке в реакционную смесь солей ртути (обычно сульфат или ацетат, реакция Кучерова М. Г.) При гидратации ацетилена получается уксусный альдегид, терминальные алкил- и арилацетилены в этих условиях образуют только соответствующие метилалкил(арил)кетоны  [c.119]

    Ш. Какие новые функциональные грушш образуются в продуктах 1) гидратации каучука, 2) озонолиза каучука с восстановительным гидролизом а. Альдегидная б. Первичная гидроксильная в. Вторичная гидроксильная г. Третичная гидроксильная д. Кетонная [c.23]

    У. Какие новые функциональные группы офазуются в продукте полной гидратации хлоро-црена в присутствии кислот а. Гидроксил первичный б. Гидроксил вторичный в. Гидроксил третичный г. Альдегидная группа д. Кетонная группа [c.40]

    У. Какие новые функциональные грушш образуются при полной гидратации углеводорода в црисутствии кислоты 1 а. Альдегидная грушш б. Гидроксил первичннЁ в. Гидроксил третичный г. Гидроксил вторичный д. Кетонная грушта [c.45]

    Ш. Какие новые функциональные группы образуются при полной гидратации углеводороде в присутствии солей ртути а. Альдегидная группа б. Гидрокоил первичный В. Гидроксил вторичный г. Гидроксил третичный д. Кетонная группа [c.46]

    При гидратации монозамещенных ацетиленов образуются метил-кетоны, например  [c.69]

    Присоединение воды к простым виниловым эфирам приводит к гидролизу до альдегидов илп кетонов (т. 2, реакция 0-7). Кислотно-катализируемая гидратация кетенов дает кар-ооновые кислоты [136]  [c.165]

    Гидратацию тройных связей обычно проводят с примене- пем в качестве катализаторов солей ртути (часто сульфатов) Г137]. Поскольку эта реакция подчиняется правилу Марковникова, то только ацетилен приводит к альдегиду. Все остальные алкины дают кетоны (при рассмотрении реакции 15-13 описан метод обращения ориентации для терминальных алкинов). В реакции алкинов типа КС = СН почти исключительно получаются метилкетоны, но субстраты типа НС = СН обычно приводят к обоим возможным продуктам. Однако если К — первичная группа, а К — вторичная или третичная, то карбонильная группа предпочтительно образуется по соседству с вторичным или третичным атомом углерода [138]. Удобный метод проведения реакции заключается в использовании катализатора, приготовленного пропиткой Ыа11оп-Н (полимерная супер-кислая перфторированная сульфокислота) оксидом ртути(II) [139]. [c.165]

    Реакция гидратации ацетиленовых углеводородов реакция Ку-черова) имеет большое практическое значение, так как ведет к синтезу различных ценных продуктов. Например, уксусный альдегид, получаемый гидратацией ацетилена путем окисления, может быть переведен в уксусную кислоту (стр. 164), а при восстановлении — в этиловый спирт (стр. 117). При гидратации гомологов ацетилена, так как реакция протекает по правилу Марковникова, всегда образуются кетоны (стр. 134) [c.87]


Смотреть страницы где упоминается термин Кетоны гидратация: [c.505]    [c.520]    [c.519]    [c.125]    [c.69]    [c.254]   
Органическая химия (1956) -- [ c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Гидратация и присоединение спиртов к альдегидам и кетонам

Реакции гидратации альдегидов и кетоно



© 2025 chem21.info Реклама на сайте