Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбция затраты

    Группа 2. Затраты на энергию, обеспечивающую подачу газа на абсорбцию. Затраты на перекачку газа определяются общим перепадом давления в колонне и прямо пропорциональны гидравлическому сопротивлению насадки, продолжительности ра- [c.75]

    В рассмотренных выше процессах на стадии сушки образуются большие объемы отходящих газов, загрязненных примесями аммиака, фтора и других соединений. Это требует сооружения в составе производств комплексных удобрений громоздких систем абсорбции, затраты на которые составляют значительную часть (30—40%) от общей стоимости используемого оборудования. [c.245]


    Насыщенный абсорбент поступает в турбину 3, где снижается его давление с давления абсорбции до давления десорбции. Турбина 3 служит приводом насоса, что существенно снижает энергетические затраты на перекачку абсорбента. Насыщенный абсорбент после снижения давления поступает в теплообменник 5 с целью повышения его температуры и далее в верхнюю часть десорбера 6. В нижнюю часть десорбера 6 подается горячий десорбирующий агент VI, предназначенный для снижения парциального давления целевых компонентов в газовой фазе с целью повышения движущей силы массопередачи. Из верхней части десорбера 6 уходят целевые компоненты V, из нижней — регенерированный абсорбент III. Регенерированный абсорбент после рекуперации теплоты в теплообменнике 5 через промежуточную емкость 4 насосом через воздушный или водяной холодильник 2 возвращается в абсорбер 1. [c.72]

    Выпуск этана чистотой 90% и выше потребует значительных затрат, а сам метод масляной абсорбции становится малопригодным для этих целей. Более подходящими процессами в этом случае будут метод глубокого охлаждения для газов с высоким содержанием этана и комбинированный абсорбционно-низкотемпературный процесс (с охлаждением сорбционного масла и газа до —23°) для газов с малым содержанием этана. Высокая степень извлечения может быть достигнута также при помощи процесса гиперсорбции. Считают, что наиболее экономически оправданной является глубина извлечения этана 70—85%. [c.28]

    Таким образом, капитальные и эксплуатационные затраты на мембранный процесс соответственно на 25 и 60% ниже, чем на абсорбцию водными растворами диэтаноламина. С увеличе- [c.295]

    Изменение условий обычно связано с повышением (понижением) температуры (что не всегда желательно) и ростом капитальных и энергетических затрат. Поэтому обычно на первой стадии проводится разделение смеси на газовую и жидкую фазы (что при большой разности температур не представляет труда) с последующей раздельной их переработкой. Причем газовая фаза в дальнейшем может быть разделена как ректификацией (при повышенном давлении), так и другими способами (абсорбцией, мембранными процессами, адсорбцией и т. д.). Выбор того или иного способа будет опять определяться в значительной степени свойствами смеси. [c.96]

    Необходимость использования приближенных моделей очевидна при расчете многоступенчатых процессов разделения многокомпонентных смесей (ректификация, абсорбция, экстракция и т. п.). Экспериментально показано 1112], что около 80% общих затрат связано с расчетом термодинамических свойств, так как необходимо многократно рассчитывать равновесие фаз на каждой из ступеней. Поэтому нужно максимально уменьшить число обращений к расчету свойств в процессе последовательных приближений. Это можно сделать следующим образом. [c.429]


    Наряду с давлением абсорбции, величина которого принимается, другим основным параметром абсорбционного процесса является температура. Численное значение константы равновесия К уменьшается с понижением температуры, а значение А при этом увеличивается, и из газа извлекается больше жирных углеводородов на единицу объема циркулирующего абсорбента. Поэтому применение для охлаждения воздушных холодильников снижает стоимость эксплуатации абсорбционно-отпарной секции газобензинового завода, а использование искусственного холода увеличивает эту стоимость. Оптимальную температуру можно определить, представив графически зависимость стоимости извлечения углеводородов с помощью холодильного и абсорбционного процессов от средней температуры абсорбции. При этом для данной степени извлечения стоимость разделения углеводородов методом ректификации принимается постоянной. Стоимость абсорбционного процесса извлечения углеводородов определяется стоимостью абсорбции, отпарки, охлаждения абсорбента, величиной затрат на перекачку масла и стоимостью оборудования. [c.135]

    Процесс извлечения этана можно считать криогенным, так как для его осуществления требуются специальные металлы и соблюдение мероприятий, связанных с низкими температурами. На рис. 133 показана приблизительная стоимость извлечения этана из природного газа. Эти данные не учитывают затрат на очистку газа, разделение продуктов извлечения н их хранение. Как видно из рис. 133, оптимальным, с точки зрения стоимости, является 60%-ное извлечение этана из гааа. Для этого применяются следующие основные способы непосредственное охлаждение газа абсорбция при низких температурах адсорбция на углях и охлаждение. [c.210]

    Таким образом, можно заключить, что предъявляемые к носителям требования связаны с обеспечением условий фазового равновесия, селективности, с отсутствием побочных эффектов в процессе разделения. Аналогичные требования предъявляются к процессу адсорбции. Важно иметь в виду, что применение этих способов обычно предполагает дополнительную стадию - стадию регенерации носителя. В случае ректификации (азеотропно-экстрактивной, экстрактивной, азеотропной) и экстракции - это декантация или обычная ректификация, а в случае абсорбции и адсорбции - десорбция. Поэтому к затратам на реализацию процесса добавляются расходы на носитель и его регенерацию. [c.27]

    Температуру абсорбции СОг поддерживают в пределах 38—45° С. Раствор моноэтаноламина регенерируют при 160—180° С. В связи с этим процесс очистки от СОг с помощью МЭА связан с затратами довольно больших количеств тепла. При проведении очистки под давлением растворимость двуокиси углерода в растворе моноэтаноламина увеличивается это позволяет уменьшить количество циркулирующего раствора и применять аппараты меньших размеров. [c.124]

    Поглощение двуокиси углерода в абсорбере протекает с выделением тепла, а удаление Oj из поглотителя при регенерации требует затраты такого же количества тепла, равного тепловому аффекту абсорбции соа в кДж/м.  [c.117]

    Основные недостатки барботажных абсорберов — сложность конструкции и высокое гидравлическое сопротивление, связанное При пропускании больших количеств газа с значительными затратами энергии на перемещение газа через аппарат. Поэтому барботажные абсорберы применяют преимущественно в тех случаях, когда абсорбция ведется под повышенным давлением, так как при этом высокое гидравлическое сопротивление не существенно. [c.602]

    Для рассматриваемого процесса рациональными являются w — = 1 м/сек и Я = 0,15 м. Уменьшение этих параметров приводит к снижению интенсивности абсорбции, а увеличение к чрезмерному возрастанию энергетических затрат при сравнительно небольшом повышении значений к. п. д. [c.204]

    Газ для синтеза аммиака обычно получают из исходного сырья, содержащего углерод. Окислы углерода, которые дезактивируют катализатор синтеза аммиака (гл. 7), должны быть удалены из синтез-газа перед его использованием. На большинстве современных аммиачных установок окись углерода конвертируют в две стадии с паром в двуокись углерода, абсорбируют СОа в скруббере и окончательно очищают синтез-газ метанированием остатков СО и СОа До уровня следов. Другие схемы очистки — такие, как абсорбция СО раствором меди или очистка путем низкотемпературной дистилляции (промывки) — обычно имеют более высокую эксплуатационную стоимость, а иногда также более высокие капитальные затраты, чем каталитическая очистка, но им все же может быть отдано предпочтение в некоторых случаях на отдельных заводах. [c.117]

    Понижение температуры процесса абсорбции позволяет снизить удельный расход абсорбента и уменьшить необходимое число тарелок. В промышленных условиях температура абсорбции зависит главным образом от применяемого охлаждающего агента. В современных абсорбционных установках, обеспечивающих извлечение практически всех компонентов газа, включая этан, экономически оправдано ведение процесса при пониженных температурах с использованием специальных хладагентов испаряющихся аммиака, пропана и др. В этом случае затраты на сооружение и эксплуатацию специальных холодильных установок быстро ок)шаются за счет сокращения капитальных и эксплуатационных затрат на другое оборудование. [c.214]


    В некоторых случаях экономически оправдывается ведение процесса абсорбции при пониженных температурах с использованием специальных хладагентов испаряющегося аммиака, пропана и др. в этом случае затраты на сооружение и эксплуатацию специальных холодильных установок меньше, чем затраты, связанные с повышением давления в абсорбере или увеличением расхода абсорбента. [c.230]

    Выбор метода расщепления углеводородов (фракционная раз-гонка при высоком давлении, нефтяная абсорбция, низкотемпературная сепарация) зависит от технико-экономического анализа, результаты которого определяются местными условиями. Низкие энергетические затраты всегда связаны с низкими температурами, а низкие цены на сталь, проведение процесса при высоком давлении, обеспечение условий для более полного усвоения нефти [c.234]

    Сравнение технико-экономических показателей комбинированной установки КТ-1 с комплексом отдельно стоящих установок, решающих ту же проблему, показывают, что общие капиталовложения меньше на 36,2 % численность обслуживающего персонала снижается в 2,5 раза производительность труда по переработке сырья на одного работающего повышается в 2,5 раза эксплуатационные затраты снижаются на 40,1 % в три раза сокращается производственная площадь. Комбинированная установка КТ-2 включает блоки глубокой вакуумной перегонки мазута с отбором вакуумного дистиллята с концом кипения 540 =С, легкого гидрокрекинга-гидроочистки — сырья крекинга, абсорбции и газофракционирования. Материальный баланс установки (см. табл. 7.4) показывает выработку широкого ассортимента продуктов. [c.266]

    Разделение газовых смесей в ряде случаев возможно путем их ожижения (например, при повышении давления) и выделения отдельных составляюших смеси методом ректификации (см. гл. 12). Однако из-за высоких энергозатрат на ректификацию для большинства процессов разделения газовых смесей предпочтительней оказывается абсорбция. Затраты в последнем случае связаны со стои- [c.908]

    Далинейшее улучшение процесса разделения катализата риформинга достигается при использовании холодной сепарации газа на I ступени и абсорбции газа стабильным катализатором на II ступени [23]. Принципиальная схема такой установки приведена на рис. 1У-24. Катализат охлаждают и частично конденсируют при 120 °С и направляют в I ступень сепарации, где под давлением 0,97 МПа он разделяется на газовую и жидкую фазы. Газовую фазу компримируют до 1,4 МПа и при 160 °С подают на разделение в абсорбер, на верх которого подают стабильный катализат при 38°С. Разделение катализата по данной схеме обеспечивает получение водородсодержащего газа с концентрацией 81,2% (об.) Нг при снижении зисплуатационных затрат по сравнению со схемой двухступенчатой сепарации на 10—15%. В табл. IV.13 приведены состав и параметры основных потоков блока разделения по схеме, изображенной на рис. 1У-24, на основе которых может быть рассчитан материальный баланс процесса. [c.234]

    Принципиальная технологическая схема процессов химической абсорбции не отличается от обычной схемы абсорбционного процесса. Однар(0 в конкретных условиях в зависимости от количества кислых газов в очищаемом газе, наличия примесей, при особых требованиях к степени очистки, к качеству кислого газа, и других факторов технологические схемы могут сун ест-венно отличаться. Так, например, при использовании аминных процессов при очистке газов газоконденсатных месторождений под высоким давлением и с высокой концентрацией кислых компонентов широко используется схема с разветвленными потоками абсорбента (рис. 53), позволяющая сократить капитальные вложения и в некоторой степени эксплуатационные затраты. Высокая концентрация кислых комионентов требует больших объемов циркуляции поглотительного раствора. Это не только вызывает рост энергетических затрат на перекачку и регенерацию абсорбента, но и требует больших объемов массообменных аппаратов, т. е. увеличения капитальнрлх вложений. Вместе с тем из практики известно, что в силу высоких скоростей реакций аминов с кислыми газами основная очистка газа происходит на первых по ходу очищаемого газа пяти—десяти реальных таре, 1-ках абсорбера на последующих тарелках идет тонкая доочистка. Этот факт послужил основанием для подачи основного количества грубо регенерированного абсорбента в середину абсорбера, а в верхнюю часть абсорбера — меньшей части глубоко-регенерированного абсорбента. Это позволило использовать абсорбер переменного сечения (нижняя часть большего диаметра, верхняя — меньшего), что снизило металлозатраты, а также сократить затраты энергии за счет глубокой регенерации только части абсорбента. [c.171]

    Поглотительная способность пропиленкарбоната увеличивается с понижением температуры. Обычно используемые температуры абсорбции составляют 30- --6°С. Понижение температуры абсорбции обеспечивает снижение скорости циркуляции, а следовательно, и энергетических затрат. Давление изменяется от 2 до 7 МПа. Регенерация абсорбента осуществляется ступенчатым снижением давления. Для снижения потерь углеводородов, растворяющихся в пропиленкарбопате в процессе абсорбции в схему процесса включается компрессор для сжатия газа, выделяющегося после первой ступени снижения давления насыщенного раствора, и закачки его в сырьевой поток. [c.180]

    Характерный недостаток процесса, как любого процесса физической абсорбции, — коабсорбция углеводородов. Для снижения потерь углеводородов газы первой ступени выветривания насыщенного абсорбента сжимаются в компрессоре и подаются на рециркуляцию в абсорбер. Использование компрессора значительно повышает эксплуатационные затраты. [c.181]

    Однако столь густое расположение форсунок в иолых колоннах для абсорбции газов и других процессов применяется редко, в основном из-за высоких капитальных и эксилуатациои[1Ых затрат, сложности комму-ницирования, ремонта обслуживания большого числа форсунок и опасности их забивания, резко возрастаю- [c.207]

    Однако для расчетных целей при отсутствии части или всей требуемой информации может быть использован и другой подход, который часто оказывается менее трудоемким в смысле затраты времени, чем тщательный анализ всех деталей абсорбционного процесса. Коэффициент ускорения Е или удельная скорость абсорбции 7 зависят от состава раствора и газа и от величины Если использовать лабораторную модель абсорбера с известной поверхностью контакта фаз, в которой значение коэффициента физической массоотдачи таково же, что и в проект Груемой колонне, то можно определить значения Е или / , соответствующие составам жидкости и газа в различных точках проектируемого аппарата, и подставить их затем в уравнение (VIII,33) или (VIII,32). Использование лабораторных моделей для этой цели обсуждается в главе VII. [c.192]

    Проведено сравнение [68, 69] затрат на очистку биогаза с помощью мембран исследовательского центра GKSS и абсорбци-оннымии методамии — водной промывкой и этаноламиновой (МЭА и ДЭА) очисткой (рис. 8.24). Расчеты производили для нагрузок по исходному газу 118, 1180 и 3540 м /ч давление газа, подаваемого на очистку,— 1,5 МПа. [c.304]

    В вихревой трубе происходит ие только конденсация, но и абсорбция углеводородов конденсатом, поэтому результаты очистки значительно более высокие, чем при простой конденсации. С15едняя концентрация углеводородов фракции С5 в очищенном газе в 2,5—3 раза ниже, чем в исходном, а содержание Сб—Сй снижается от 0,2—0,6 до 0,02—0,03% при температуре минус 50 °С. Постепенно блок очистки газа может забиться гидратами и его требуется подогревать до 50—100 °С, либо вводить небольшое количество метанола. Основными преимуществами указанного способа очистки газа являются простота аппаратурного оформления, а также небольшие капитальные и эксплуатационные затраты. Кроме того, при конденсации углеводородов происходит очистка природного газа также и от сернистых соединений, хорошо растворимых в газовом конденсате, в частности от меркаптана. Способ очистки может быть применен лишь в тех случаях, когда имеется возможность снижения давления очищаемого газа в 2—3 раза. [c.47]

    Данная технология при незначительных капитальных затратах позволяет извлечь до 80-90% иизкокипящих фракций из газа парового пространства резервуара. Технологическая схема УЛФ, основанная на абсорбции высококипящих компонентов из газа резервуаров, обеспечивает значительное сокращение потерь нефти и конденсата, повышение качества нефти за счет возврата в нее бензиновых фракций и позволяет облегчить состав газа. Эта система УЛФ не нуждается в сложном аппаратурном оформлении и не требует больших капитальных вложений, проста в обслуживании. Она может успешно работать как автономно, так и в комплексе с элементами более сложных установок УЛФ. Подобную технологию можно также применять для очистки дымовых газов (рис. 1.9). [c.30]

    Разработка оптимальных технологических схем однородных тепловых и ректификационных систем — типовых технологически узлов химических производств связана с решением следующей конкретной задачи синтеза ХТС, которая является задачей синтеза четвертого класса. При заданных типах элементов системы необходимо определить топологию технологических связей между этими элементами и выбрать такие параметры элементов, которые обеспечивают выполнение либо требуемой технологической операции теплообмена между несколькими технологическими потоками, либо технологической операции разделения многокомпонентной смеси (МКС) на заданные продукты (химические компоненты или фракции) при оптимальном значении некоторого показателя эффективности функционирования системы (например, минимум приведенных затрат). В частности, задача синтеза оптимальных технологических схем систем разделения многокомпонентных смесей (СРМС) формулируется следующим образом при заданных составе сырья, номенклатуре продуктов разделения и требованиях к их качеству необходимо выбрать оптимальные с эко -номической точки зрения типы и параметры процессов разделения (например, обычная, азеотропная или экстрактивная ректификация экстракция абсорбция и др.), а также оптимальную структуру технологических связей между этими процессами разделения. [c.142]

    Альтернативными способами выделения чистых продуктов или фракций обычно являются ректификация, экстракция, адсорбция, кристал.1изация, мембранные процессы, абсорбция, выпаривание. В последнее время стало уделяться значительно больше внимания другим, помимо ректификации, способам разделения в силу нескольких причин. Во-первых, вследствие высокой энергоемкости ректификации и роста цен на источники энергии. Так, в США за 1976 г. на ректификацию было израсходовано 2,11КДж или 3% всех энергетических затрат страны [12]. Во-вторых, по мере совершенствования технологии эти процессы становятся дешевле. В значительной степени этому способствует и совершенствование систем управления. [c.85]

    Задача синтеза систем разделения заключается в том, чтобы при известных свойствах исходной смеси X (количество, состав, температура, давление) определить стратегию получения целевых продуктов с заданными свойствами Y (количеством, концентрацией), т. е. топологию технологической схемы G, а также совокупность способов разделения — технологических операторов Т (ректификации, экстракции, абсорбции, кристаллизации и т. д.) при оптимальном значении критерия функционирования (минимуме приведепных затрат, максимальной степени извлечения отдельных компонентов, минимальных энергетических затрат и т. д.). Формально можно записать [c.471]

    Под совмещенными процессами понимают такие, когда два или более процессов протекают одновременно и в одном аппарате с эффективностью на уровне или выше, чем раздельно. К таким процессам можно отнести, например, совмещение химического превращения с ректификацией (хеморектификацию) или абсорбцией (хемосорбцию), т. е. совмещение процессов химического превращения и разделения, а также совмещение массообменных процессов (например, ректификации и абсорбции и др.). Эффективность совмещенных процессов заключается в том, что, во-первых, снижаются капитальные затраты за счет уменьшения числа единиц оборудования, а во-вторых, - эксплуатационные затраты за счет снижения и энергетического объединения материальных потоков. Негативная сторона такого совмещения заключается в более жестких условиях эксплуатации и соответственно в необходимости более четкого ведения процесса. [c.35]

    В работе [U 1985а] Р. Ван Минен, председатель группы экспертов, побывавшей в Индии, признал, что система охлаждения была отключена в течение 6 месяцев перед аварией. Однако объяснений этому факту не приводится. Тем не менее в работе [URG,1985], выполненной индийскими специалистами по заказу профсоюзов, выдвинуто предположение, что это было сделано с целью уменьшения текущих затрат завода. Хотя такие отключения системы охлаждения случались и ранее, они делались в нарушение правил безопасности, принятых материнской компанией, где подчеркивается важность хранения МИЦ при температуре О °С. Очевидно, что без охлаждения температура МИЦ будет близка к температуре окружающей среды, которая в июле в Бхопале может достигать 30 °С. В газете "Нью-Йорк тайме" утверждается, что система оповещения о превышении допустимого значения температуры, установленная на резервуаре для контроля эффективности охлаждения, была просто демонтирована, когда была отключена система охлаждения. Указывается также, что предыдущим летом отмечались случаи, когда температура содержимого превышала допустимый предел, т. е. 25 С. Таким образом, основная система защиты была в нерабочем состоянии. Противоречива информация по поводу того, находился ли в рабочем состоянии скруббер. Когда на следующий день после аварии было проведено испытание работы скруббера, насос работал абсолютно нормально, и возникло мнение, что расходомер во время аварии был заблокирован и поэтому на нем не было показаний о работе скруббера. На следующее утро стенка скруббера оказалась горячей, следовательно, происходил процесс абсорбции. Однако неизвестно количество гидроксида натрия ни до, ни после аварии. Судя по размерам скруббера, представляется сомнительным, чтобы он мог "справиться" примерно с 15 т МИЦ в час. Можно предположить, что скруббер был рассчитан на небольшие количества МИЦ, т. е. на допустимые утечки в ходе обычных технологических операций, а не крупную аварию. Скорость утечки во время аварии была примерно 4 кг/с. При атмосферном давлении и, скажем, 50 С это составляло 1,85 м /с. По данным [U ,1985] скруббер имел диаметр 1,7 м и [c.434]

    В процессе работы в последнем по ходу газа аппарате, куда непрерывно подается вода, концентрация HNOз в растворе устанавливается в пределах 4-6%, что обеспечивает максимум эффективности абсорбции как паров НЙОз, так и оксидов азота. Максимум эффективности третьего по ходу газа абсорбера стал возможным благодаря новому принципу проектирования ступени, в которой предусмотрены распыление жидкости и фильтрация газового потока одновременно. Концентрация HNOз и оксидов азота после стадии абсорбции составляет 0.005-0.1 г/м . Отходящие газы после абсорберов газодувкой 2 нагнетаются в систему каталитической газоочистки, включающую малогабаритную волновую топку нагрева газов 3 и реактор каталитической газоочистки 4. В топке газы нагреваются до 300°С и поступают в реактор, где смешиваются с NHз и проходят через два слоя катализатора. Концентрация оксидов азота после реактора при очистке залповых газовых выбросов составляет 0.01-0.02% об., а при очистке технологических выбросов — в пределах 0.003-0.008% об. Концентрация НКОз в отходящих газах практически равна нулю. Горячие очищенные отходящие газы процесса каталитической очистки направляются в топку 7 и используются в процессе концентрирования 70%-ной Н2804. При этом относительно дорогой способ каталитической газоочистки становится в новой технологии не только самым надежным, но и самым дешевым, ибо энергетические затраты на его проведение полностью могут быть отнесены к последующему процессу концентрирования серной кислоты. [c.329]

    В отличие от хемосорбциопных способов методом физической абсорбции можно наряду с сероводородом и диоксидом углерода извлекать серооксид углерода, сероуглерод, меркаптаны, а иногда и сочетать процесс очистки с осушкой газа. Поэтому в некоторых случаях (особенно при высоких парциальных давлениях кислых компонентов и когда не требуется тонкая очистка газа) экономичнее использовать физические абсорбенты, которые по сравнению с химическими отличаются существенно более низкими затратами на регенерацию. Ограниченное применение этих абсорбентов обусловлено повышенной растворимостью углеводородов в них, что снижает качество получаемого кислого газа, направляемого обычно на установки получения серы. [c.14]

    Недостатками процессов адсорбционной очистки газа являются относительно высокие эксплуатационные затраты и по-лупериодичность процесса, в связи с чем эти процессы чаще используют для тонкой очистки газа от остаточных количеств кислых компонентов после предварительной очистки методом абсорбции, например, процессу очистки газа на цеолитах предшествует очистка растворами аминов. [c.15]

    Большой объем работ, связанных с разработкой двухстадийного алкилирования, был проделан целым рядом нефтеперерабатывающих фирм [3]. В этом процессе существенно уменьшается фракционирующая часть, являющаяся наиболее дорогостоящей секцией установки. Наряду с исследовательскими работами на пилотной установке было проведено несколько испытаний в заводских условиях. Олефин абсорбировали отработанной или рециркулирующей серной кислотой, нереакционноспособные компоненты и парафиновые углеводороды удалялись на стадии абсорбции, а смесь кислоты с олефинами поступала на алкилирование. Удаление инертных примесей способствовало повышению октанового числа алкилата и снижению нагрузки на колонну депропанизации, где получают циркулирующий изобутан. Однако слабым местом процесса являлся более высокий расход кислоты. Еще одним недостатком (или, во всяком случае, усложнением) процесса было то, что когда абсорбцию проводили с очень высокой степенью превращения серной кислоты в эфиры в жидкой фазе, значительное количество нейтральных эфиров (диалкилсульфатов) оказывалось преимущественно в углеводородной фазе, а не в кислотной. Хотя фракционирование и является наиболее дорогостоящей секцией установки, введение в практику системы охлаждения отходящим потоком в 1953 г. [4, 5] и системы изостриппинга в 1956 г. способствовало снижению затрат на фракционирование. Обе эти системы позволили уменьшить колонну деизобутанизации и снизить эксплуатационные затраты на выделение циркулирующего изобутана фракционированием. [c.226]

    Очистку газа от двуокиси углерода горячим раствором карбоната калия [5—7] (горячим раствором поташа) применяют на большинстве современных установок для производства водорода, работаюпщх при давлении 1,2—3,0 МПа. Ведение процесса позволяет обойтись без затраты дополнительного пара за счет тепла, имеющегося в газе-после конверсии окиси углерода. Температуры абсорбции и регенерации близки между собой, т. е. процесс проводят без громоздких теплообменников и расход охлаждающей воды сравнительно мал. Перечисленные преимущества обусловили широкое применение этого метода очистки. [c.119]

    На НПЗ и НХЗ абсорбция применяется в блоках газоразделения для выделения целевых компонентов из смеси углеводородов. Эффективность абсорбции зависит от температуры и давления, при которых проводится процесс, свойств газа и абсорбента, скорости движения абсорбируемого газа, количества подаваемого абсорбента. Повышение давления или уменьшение температуры в абсорбере способствуют лучшему извлечению компонентов. Однако, поскольку работа при повышенном давлении и пониженных температурах связана с дополнительными эксплуатационными затратами, выбор параметров должен определяться на базе технико-экономических расчетов. Абсорбционное извлечение углеводородов из смесей с большим и средним количеством извлекаемых компонентов проводится при давлении не выше 1,6 МПа. Если газ поступает на переработку с более высоким давлением, то абсорбция проводится пр атом павлении. [c.111]

    Рассчитанные 3dbH HM0 Tii степени очистки газа от соотношения потоков абсорбента, приведенные на рис, 9, показывают, что для достижения максимально возможной степени очистки 0,989 по двухпоточной схеме необходимо увеличить верхний охлаждаемый поток абсорбента до 120 N /ч. По второму варианту схемы оптимальным количеством рециркулирующего раствора является 200 м /ч. Увеличение доли рециркулируемого абсорбента выше 200 м /ч практически не оказывает влияния на степень очистки, так как с повышением кратности рециркуляции увеличивается концентрация бикарбоната в растворе, поступающем на абсорбцию в середину колонны, и это снижает скорость химической реакции и общий коэффициент массопередачи. Увеличение степени очистки конвертированного газа от двуокиси углерода позволит снизить расход технического водорода на стадии метанизации приблизительно до 500 т /год, что соответствует с учетом затрат на внедрение предлагаемых мероприятий экономическому эффекту в 56,7 и 21,5 тыс. руб/год соответственно. [c.164]

    Однии из распространенных методов очистки водородсодержащего газа от двуокиси углерода при производстве водорода является ыетод горячей поташной очистки, основанный на обратимой хемо-сорбции двуокиси углерода растворами карбоната калия [I]. К преимуществам этого метода, по сравнению с моноэтаноламиновой очисткой, относят высокую химическую и термическую стойкость абсорбента, возможность осуществления абсорбции и десорбции при одинаковой температуре, исключая затраты на теплообменную аппаратуру, более низкий удельный расход пара на регенерацию абсорбента, меньшую коррозионную активность рабочей среды. Однако, в отличие от моноэтаноламиновой очистки, поташный метод имеет ограничения по глубине извлечения двуокиси- углерода из газового потока, но разработанные в последнее время модификации процессов, включающие в состав хемосорбента различные активирующие добавки [2,3], способствуют устранению в некоторой степени этих недостатков. Усовершенствованием метода горячей поташной очистки является организация процесса по многопоточным схемам [4]. [c.94]

    Широкое раснространонпе в промышленности получила двухступенчатая абсорбция, при которой в первой ступени для исходного газа используется легкий низкомолекулярный абсорбент, нанример бепзин, а во второй ступени для улавливания из сухого газа паров легкого абсорбента используется у ке более тяжелый абсорбент, например керосин или соляровый дистиллят. При такой схеме суммарный расход абсорбента и эксплуатационные затраты часто оказываются значительно меньше, чем при одиоступенчатои абсорбции исходного газа тяжелым абсорбентом. [c.240]

    ВЫСОКОЙ температуре 140...160 К). Тем самым упрощается традимионная схема путем замены колонного абсорбера проаым в исполнении аппаратом-сепаратором. Однако, при этом абсорбция компонентов газа по-прежнему осуществляется в колонном аппарате, требующем больших капитальных затрат. [c.24]

    С целью повышения четкости фракционирования, снижения энергетических затрат и температур процесса существуют схемы двухколонной стабилизации нефти, стабилизации с предварительной сепарацией перед колонной и с дополнительной сепарацией нефти, отводимой из кубовой части колонны при более низком давлении. Предлагается организовать различные рециклоаые потоки для абсорбции высококипящих компонентов в верхней или увеличение отпарки в нижней части колонны. [c.46]


Смотреть страницы где упоминается термин Абсорбция затраты: [c.92]    [c.257]    [c.129]    [c.223]    [c.36]   
Ректификационные и абсорбционные аппараты. Методы расчета и основы конструирования. Изд.3 (1978) -- [ c.234 , c.235 ]




ПОИСК





Смотрите так же термины и статьи:

Затраты

Затраты на процессы ректификации и абсорбции



© 2024 chem21.info Реклама на сайте