Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбционные низкотемпературные

    Выпуск этана чистотой 90% и выше потребует значительных затрат, а сам метод масляной абсорбции становится малопригодным для этих целей. Более подходящими процессами в этом случае будут метод глубокого охлаждения для газов с высоким содержанием этана и комбинированный абсорбционно-низкотемпературный процесс (с охлаждением сорбционного масла и газа до —23°) для газов с малым содержанием этана. Высокая степень извлечения может быть достигнута также при помощи процесса гиперсорбции. Считают, что наиболее экономически оправданной является глубина извлечения этана 70—85%. [c.28]


    Лекция 15. Основные методы отбензинивания природных и попутны х газов компрессионный, адсорбционный, абсорбционный, низкотемпературной конденсации и ректификации. [c.353]

    Сырьем для этих заводов являются газы нефтепереработки и смесь газообразных и жидких углеводородов, непостоянная по составу. При изменяющемся составе должно применяться абсорбционно-ректификационное газоразделение. Преобладающим же методом получения этилена в будущем будет метод низкотемпературной ректификации [24]. [c.38]

    В настоящее время в промышленности применяются следующие методы разделения углеводородов природных и попутных газов 1) компрессионный, 2) абсорбционный при обычных температурах, 3) абсорбционный с охлаждением газа и абсорбента, 4) адсорбционный и 5) низкотемпературной конденсации и ректификации. [c.18]

    В промышленности существует несколько методов извлечения этилена из газов . низкотемпературное фракционирование, абсорбционный метод, адсорбционный (гиперсорбция), абсорбция растворами солей меди и др. [c.55]

    На некоторых установках применяют абсорбционно-ректификационный метод. Абсорбция углеводородов Са и выше проводится нри температуре —20 — 25° и давлении 30—35 ати. После насыщения абсорбент поступает в колонну на регенерацию. Верхняя фракция колонны, состоящая из углеводородов Сг и выше, поступает на разделение прн помощи низкотемпературной ректификации. В качестве абсорбента используют пропан, бутан или пентан. [c.56]

    Отходящие из абсорбционной колонны газы, содержащие 0,1—0,15% оксидов азота, поступают в узел каталитической очистки, где они нагреваются, а затем восстанавливаются до элементарного азота метаном. Выхлопные газы, содержащие продукты расщепления оксидов азота [0,002—0,008%) (об.)], направляются в газовую турбину, приводя в движение турбокомпрессор. Таким образом, данный агрегат полностью автономен по энергии [75, 76]. Энергия рекуперируется в результате установки на одной оси с турбокомпрессором газовой турбины. Это выгодно отличает схему от зарубежных схем, в которых к низкотемпературной газовой турбине дополнительно устанавливается паровая. [c.213]

    Ниже приведены методика и рекомендации по расчету абсорбционно-де-сорбционной (абсорбционно-отпарной) колонны для разделения углеводородных газов методика и рекомендации по расчету холодильника абсорбента установки низкотемпературной абсорбции. [c.84]

    Стоимость водорода, вырабатываемого на этих установках, сравнима со стоимостью водорода, получаемого конверсией газообразного сырья с паром. Однако вследствие небольших производительностей этот процесс едва ли найдет широкое распространение на нефтеперерабатывающих заводах и, по-видимому, будет использоваться как дополнение к установкам низкотемпературного фракционирования или -абсорбционного выделения водорода. Методы низкотемпературного фракционирования и абсорбции наиболее экономичны при выделении водорода с чистотой 80—95% из сырья со сравнительно низким его содержанием. Диффузионное разделение через палладий более применимо для сырья, содержащего 70—80% водорода, и для получения его чистотой более 99%. [c.113]


    Высокотемпературная паровая конверсия СО, превращающая окись углерода и пар в двуокись углерода и водород, увеличивает эффективность использования водорода и вследствие этого применяется на большинстве аммиачных установок. Низкотемпературная конверсия СО — относительно новый процесс, который требует применения чистого газа и пара, а также современной технологии производства катализаторов. В процессе происходит небольшое увеличение концентрации водорода, но главное его преимущество заключается в снижении содержания окиси углерода до такого уровня, который позволяет исключить применение дорогостоящего абсорбционного оборудования. Метанирование (получение метана в реакции СО и СОа с водородом) не является новым процессом, но его применение в производстве синтез-газа для аммиака стало возможным после разработки низкотемпературных катализаторов паровой конверсии СО. [c.117]

    Можно рекомендовать — для определения следовых количеств металлов рассматриваемым методом — их концентрирование вместо нагрева путем низкотемпературной (ниже 0°С) сушки, что уменьшает потери летучих металлов и допускает применение ме-тод 1Ки для любых сочетаний элементов [269]. Для обеспечения единства измерения содержания микроэлементов в нефтях и нефтепродуктах предложена аттестация стандартных образцов методом атомно-абсорбционной спектроскопии с оптимизацией условий анализа [270]. [c.146]

    В настоящее время эта классическая технология вытеснена низкотемпературной абсорбцией, при которой достигается более высокий коэффициент полезного действия абсорбции газа, а последующая фракционная разгонка охлажденных жидкостей обеспечивает более высокий выход продуктов. Газ, подвергаемый обработке, сначала освобождается от Нг5 и осушается этиленгли-колем при —30°С. Затем этиленгликоль регенерируется и направляется на повторный цикл. Очищенный газ проходит одну или несколько абсорбционных колонок, в которых он под определенным давлением и при температуре около —35 °С контактирует сначала с легкими, а затем с тяжелыми тощими нефтями. Эти нефти последовательно разделяются на ряд низкотемпературных фракционных стадий, число которых зависит от вида требуемых продуктов газообразного или жидкого метана этана — сырья для химического крекинга пропана бутана или их смеси, т. е. собственно СНГ, а также остаточного дистиллята. [c.13]

    При постоянной толщине поглощающего слоя градуировочный график, построенный в координатах А—с, представляет собой прямую, проходящую через нулевую точку. Так как подавляющее большинство свободных атомов находится в основном состоянии, то значения атомных коэффициентов абсорбции дл элементов очень высоки и достигают и-10 , что при.мерно на три порядка выше молярных коэффициентов поглощения светового излучения, полученных для растворов (8 = п-10 ). Это в известной степени обусловливает низкие абсолютные и относительные пределы обнаружения элементов атомно-абсорбционным методом первые составляют 10 —10 г, вторые —10-5—10-8%. Для атомизации вещества в атомно-абсорбционной спектрофотометрии используют пламена различных типов и электротермические атомизаторы. Последние основаны на получении поглощающего слоя свободных атомов элемента путем импульсного термического испарения вещества кювета Львова, графитовый трубчатый атомизатор, лазерный испаритель и др. Пламенная атомизация вещества получила большое распространение в аналитической практике, так как она обеспечивает достаточно низкие пределы обнаружения элементов (Ю — 10" %) и хорошую воспроизводимость результатов анализа (1—2%) при достаточно высокой скорости определений и небольшой трудоемкости. Для наиболее доступных низкотемпературных пламен число элементов, определяемых методом атомно-абсорбционной спектрофотометрии, значительно больше, чем [c.48]

    Химический состав природного газа, полученного из чисто газовых и газоконденсатных месторождений приведен в табл. 2, [2, с. 46]. Углеводороды С4—С5 (так называемые газовые конденсаты) отделяются от природного газа либо низкотемпературными абсорбционными и адсорбционными методами, либо низкотемпера- [c.20]

    Для адсорбционного разделения углеводородных газов наиболее широко применяется активированный уголь. Уголь обладает высокой способностью удерживать легкие углеводороды. Так, при обычных давлениях он способен поглощать этана в 20 раз больше, чем равное ему по весу количество легкого абсорбционного масла [45, 48]. Чтобы абсорбционная способность масла сравнялась с удерживающей способностью угля, требуется применение более высокого давления и дорогостоящего низкотемпературного охлаждения. Более тяжелые углеводороды поглощаются жидкими абсорбентами достаточно хорошо даже и при умеренных давлениях. Кроме того, при высоком содержании тяжелых углеводородов (выше пентана) и особенно способных полимеризоваться высококипящих ненредельных адсорбционная способность угля быстро падает, так как такие компоненты трудно удаляются с его поверхности. [c.177]


    Содержание оксидов азота на выходе из абсорбционных колонн значительно превышает санитарные нормы. Поэтому в промышленной практике применяются методы каталитического восстановления оксидов азота природным газом или аммиаком до молекулярного азота н воды. Условно по температурам восстановления процессы делят на высокотемпературные (более 500 °С) и низкотемпературные (менее 500 °С). [c.59]

    До середины шестидесятых годов в основе технологических, процессов извлечения целевых компонентов из газа лежали абсорбционные процессы при обычных и низких температурах.. Эти процессы обеспечивали глубину извлечения пропана из газа до 90%. Повышение потребности в этане, связанное с ростом, цен на нефтепродукты, обусловило его производство из природных и нефтяных газов и привело к разработке ряда новых низкотемпературных технологических схем для глубокого извлечения пропана и этана из газа. [c.154]

    К физическим методам извлечения водорода из водородсодержащих смесей относятся низкотемпературная конденсация и фракционирование, адсорбционное выделение при помощи молекулярных сит, абсорбционное выделение при помощи жидких растворителей, концентрирование водорода методом диффузии через мембраны [4, 111, 129, 134, 143, 150]. [c.8]

    Для удаления двуокиси углерода из конвертированного газа по этой схеме применяют обычные абсорбционные методы. Глубокая конверсия окиси углерода на низкотемпературном катализаторе (остаточное содержание окиси углерода 0,2—0,6%) позволила заменить традиционные методы очистки газа от окиси углерода стадией гидрирования до метана. [c.15]

    Абсорбционная холодильная установка холодопроизводительностью 100 000 ккал1ч. На рис. 162 приведена схема абсорбционной низкотемпературной водоаммиачной холодильной установки непрерывного действия конструкции ВНИХИ. [c.334]

    Наибольщий интерес с экономической точки зрения представляет метод концентрирования водорода низкотемпературным фракционированием или абсорбционным извлечением углеводородных газов. Эти методы позволяют вьщелить водород из бедных газов и, сконцентрировав его до 95% (по объему), возвращать в процесс. Кроме указанных методов газы отдува могут бьггь использованы в качестве В(ГГ на установках гидроочистки, а также в виде компонента сырья водородной установки. [c.87]

    Для анализа природных газов применяется ограниченное число методов абсорбционные методы, использующие прибор типа Орса, методы, основанные на поглощении и последующем сжигании, например метод Бурреля, методы низкотемпературной перегонки и в последнее время масс-спектрометрический метод. Наиболее широкое применение имеют различные Варианты методов низкотемпературной перегонки. [c.10]

    По сравнению с методами низкотемпературной конденсации и ректификации, описание которых приводится далее, указанный метод имеет ряд преимуществ. Одно из них заключается в том, что при абсорбционном методе с применением холода не требуется таких низких температур, которые необходимы при низкотемпературной конденсации и ректификации, в связй с чем расходы на производство холода в этом случае значительно ниже. Кроме того, абсорбционный метод менее чувствителен к изменению состава исходного газа. [c.30]

    Процессы отбензипивания попутных углеводородных газов и получения сжиженных газов проводятся как две последовательные операции получение нестабильного газового бензина и его стабилизация с одновременным выделением компонентов сжиженных газов или индивидуальных углеводородов. В настоящее время промышленное применение получили четыре метода выделения нестабильного газового бензина компрессионный, абсорбционный, адсорбционный, низкотемпературная конденсация или ректификация. [c.163]

    При извлечении этана по первому способу температура процесса определяется давлением и составом газа. Обычно она находится в пределах —(73,34-84,4) °С. Во втором и третьем способах извлечения этана температура поддерживается равной —40° С. Например, на новом заводе в Кейти фирмы НишЫе Oil and Refining Со для извлечения 60% этана из газа применяется низкотемпературная абсорбция. Установка запроектирована на рабочее давление 73,8 кгс/см . В качестве поглотителя используется отбензиненное абсорбционное масло, охлажденное до —40° С и предварительно насыщенное метаном. [c.210]

    Газы крекинга (первая группа) разделяют чаще всего абсорбционно-ректификационным методом, рассмотренным ранее для ио- путных газов (стр. 26). Этот же метод иногда используют п для разделения газов пиролиза, но на современных крупных установках ирнменяют низкотемпературную ректификацию, так как она дает Голее чистые фракции олефииов и требует меньше энергии. [c.47]

    Очищенный газ подается на отбензинивание. В мировой практике переработки гопутных газов применяются следующие основные способы отбензинивания (выделения углеводородов Сд и выше) компрессионный, абсорбционный, адсорб- ционный, низкотемпературная ректификация и конденсация. [c.50]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Находящиеся в синтез-газе окислы углерода должны быть удалены либо превращены в инертные соединения прежде чем газ поступит на синтез аммиака, иначе кислород или любое кислородсодержащее соединение, попавщее в аммиачный цикл, отравят катализатор синтеза. Окислы углерода удаляются из газа химическими или абсорбционными методами они могут также вступать в реакцию с образованием воды и выводиться затем из системы в виде конденсата. Современные заводы, в которых производство основано на паровом риформинге, применяют комбинацию высоко- и низкотемпературных катализаторов конверсии СО с абсорбцией двуокиси углерода. Следующее за этим метанирование удаляет остаточные окислы углерода. Метанирование — простой процесс, осуществимый в небольшой установке и на относительно недорогом катализаторе. [c.143]

    Существующие методы выделения этилена из газовых смесей можно разделить на две большие группы низкотемпературная ректификация (конденсационный метод) и абсорбционно-ректнфика-ционный метод. В нервом случае применяют весьма низкие температуры —от —120 до —160° С. Так, метановая колонна работает при температуре в верхней части от—150 до—158° С (абсолютное давление 1,5—2 ат) и в нижней — около —80° С. Выбор низкого давления и в связи с этим столь глубокого охлаждения объясняется низкой критической температурой метана (—82,5° С), а также более высоким значением коэффициента относительной летучести смеси метан-этилен в области низких давлений. [c.314]

    Применительно к газам, получаемым на заводе от нескольких процессов (крекипга, риформипга и т. д.), целесообразно сочетать схему простейшего абсорбционно-ректификационного тина со схемой низкотемпературного или абсорбционного разделения сухой части газа. [c.316]

    Схема процесса изображена на рис. 105. Содержащие пропилен газы после очисРки от сероводорода комнримируют до 8—10 ат и вводят в ниж-нюю часть тарельчатой колонны, где они нри 20 реагируют с 92%-ной серной кислотой, движущейся противотоком к ним. Эти газы, как правило, получают со стабилизационных установок жидкофазного низкотемпературного крекинга они содержат 20—24% пропилена. Не говоря уже о таких параметрах, как давление, температура и концентрация кислоты, этот метод отличается от сернокислотной гидратации этилеиа еще тем, что на ка кдой тарелке абсорбционной колонны поверх кислоты находится слой растворителя (масла). [c.461]

    Разновидностью комбинированных абсорбционно-ректификационных си-<1тем являются ГФУ, отделяющие Са и вышекинящие углеводороды от метана низкотемпературной абсорбцией с последующим разделением поглощенных компонентов ректификацией. Отделение метана от этилена и этана низкотемпературной абсорбцией осложняется весьма малой растворимостью Сг даже в легких поглотителях, несмотря на низкую температуру и высокое давление, что вызывает необходимость циркуляции большого количества абсорбента и, следовательно, высоких эксплуатационных расходов. [c.171]

    Как следует из этих данных, выработка холода термохимическим трансформатором тепла почти в 5,5 раза экономичнее его выработки на компрессионных установках и в 7,1 раза — на аммиачно-абсорбционных холодильных машинах. Сооружение термохимических трансформаторов тепла целесообразно предусматривать на отдельных установках, нуждаюш ихся в хладоагенте, или возле градирен снабжаюш,их водой потребителей низкотемпературной [c.183]

    С точки зрения комплексного подхода к системе сбора, подготовки нефти и переработки газа представляет интерес опыт эксплуатации нефтяного месторождения Рейнбоу-Лейк [41], расположенного на себеро-западе Канады в провинции Альберта. По климатическим условиям этот район Канады очень близок к условиям Западной Сибири. Месторождение расположено в труднодоступном таежном заболоченном месте, на территории которого построен газоперерабатывающий завод. Основное назначение завода — подготовка нефти и переработка нефтяного газа с целью получения обессоленной и обезвоженной стабильной нефти, сухого газа, широкой фракции легких углеводородов и элементарной серы. Связь с заводом осуществляется в основном с помощью авиации. Сбор нефти и газа на месторождении Рейнбоу-Лейк имеет много общего с лучевой системой сбора, описанной выше. Газонефтяная смесь прямо от скважины через замерные установки поступает на завод, где все потоки объединяются в одном коллекторе. Непосредственно на территории завода осуществляют сепарацию нефти в три ступени. Отделение газа в сепараторе первой ступени происходит при давлении 0,75 МПа и температуре 25°С. Нефть после сепаратора подогревают паром в теплообменнике до температуры 75—80°С и направляют сначала в сепаратор второй ступени с давлением 0,25 МПа, а затем в сепаратор третьей ступени с давлением 0,1 МПа. Далее нефть идет иа установку по обезвоживанию и обессоливанию. Доведенную до кондиции нефть перекачивают по нефтепроводу на НПЗ. Нефтяной газ, отделившийся на третьей и второй ступенях сепарации, самостоятельными потоками поступает на разные цилиндры компрессора, дожимается до давления 0,75 МПа и подается на смешение с газом первой ступени. Нефтяной газ месторождения Рейнбоу-Лейк содержит около 5% сероводорода. Поэтому, прежде чем поступать на блок переработки, этот газ подвергается очистке от НгЗ по абсорбционной схеме. Переработку газа осуществляют по схеме низкотемпературной конденсации при давлении 2,7 МПа и температуре — 18°С. Для осушки газа применяют 80%-ный раствор триэтиленгликоля (ТЭГ), который инжектируется в сырьевые теплообменники и в распределительную камеру пропанового холодильника. Точка росы осушенного газа достигает —34°С. Основную часть перерабо- [c.39]

    Тем не менее в ряде случаев абсорбционные процессы являются высокоэффективными при переработке природных и нефтяных газов например, при наличии в сырье парафинистых углеводородов с высокими температурами застывания. Охлаждение такого газа до более низких температур может вызвать осложнения в работе газоперерабатывающих установок. В тО же время, подбирая соответствующие абсорбент и режим процесса, можно достичь глубокого извлечения целевых компонентов из газа при плюсовых температурах. Абсорбция эффективна при эксплуатации газоконденсатных месторождений сайк-линг-процессом в этом случае процесс можно вести под давлением 10—12 МПа, что позволит достичь экономию энергии на дожатие сухого газа при закачке его в пласт [142], а также для тонкой очистки газа (на Оренбургском ГПЗ процесс низкотемпературной абсорбции используется для тонкой очистки газа от тиолов). [c.191]

    Осушка цеолитами позволяет понизить температуру в абсорбционной колонне до —20 °С и осуществить переход на низкомолекулярные абсорбенты, обладающие бопее высокой поглотительной способностью по углеводородам. При-сутствуюпще в абсорбенте добавки и ингибиторы коррозии в конце стадии осушки полностью вытесняются из цеолита адсорбируемой водой и, таким образом, не дезактивируют его. По аналогичному регламенту работают несколько промышленных установок, предназначенных для осушки конденсатов перед нх низкотемпературным раздолонйем. [c.383]

    За период, прошедшии со времени выхода в свет первого издания книги (1969 г.), в промышленности производства аммиака произошли существенные изменения. Основным методом получения синтез-газа в настоящее время является трубчатая конверсия природного газа с предварительной тонкой двухступенчатой очисткой от сернистых соединений, с последующей низкотемпературной конверсией окиси углерода, тонкой абсорбционной очисткой от двуокиси углерода и метанированием кислородсодержащих примесей. [c.7]


Смотреть страницы где упоминается термин Абсорбционные низкотемпературные: [c.183]    [c.203]    [c.63]    [c.207]    [c.77]    [c.535]    [c.157]    [c.191]    [c.383]   
Производство сырья для нефтехимических синтезов (1983) -- [ c.284 ]




ПОИСК







© 2025 chem21.info Реклама на сайте