Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Почва плотность

    ГОЛУБЕВА ЛАБОРАТОРИЯ. Комплекс приборов для ускоренного анализа почв. В числе основных включает приборы для определения прочности структуры почвы, плотности почвы, для механического анализа почвы, д.ля определения реакции (pH) почвы, карбонатов и кислотности почвы, подвижного алюминия в почве, гумуса в почве и торфе, для колориметрического определения нитратов в почве, для определения подвижных фосфатов в некарбонатных почвах, подвижного калия, закисных форм железа и засоленности почв. Разработана в Московском институте инженеров землеустройства. [c.75]


    Распространение в почве. Минеральные смазочные масла проникают в почву главным образом под действием силы тяжести и поверхностно-активных сил. Распространение масла зависит от вида и структуры подпочвенного слоя, гидрологических условий и свойств масла (плотности, вязкости, смачивающей способности, содержания и типов присадок и других свойств). Проницаемость и капиллярность - физические параметры, характеризующие осадочные горные породы, зависят от гранулометрического состава и объемной плотности. Непористые породы характеризуются трещинами, расщелинами, отслоенными поверхностями и карстовыми явлениями. Проницаемость почвы или породы, характеризующая скорость просачивания и боковое распространение минерального масла, составляет от 10 до 10 м/с для водонасыщенных осадочных пород и снижается с увеличением содержания воды в поро- [c.228]

    Гравиметрический метод основан на изучении изменения силы тяжести в том или ином районе. Оказывается, если под поверхностью почвы находится горная порода малой плотности, например каменная соль, то и земное тяготение здесь несколько уменьшается. А вот плотные горные породы, такие, как, например, базальт или гранит, напротив, увеличивают силу тяжести. [c.40]

    Как было отмечено, при загрязнении почвы нефтепродуктами нарушается водно-воздушный и окислительно-восстановительный режим почвы. Происходит обволакивание и склеивание структурных элементов почвы, заметно увеличивается плотность и вязкость почвенной массы, что ведет к ухудшению питательного режима почвы [4, 21, 35, 209]. [c.144]

    В пыли содержатся также в небольших количествах окислы железа и алюминия, входящие в состав почвы и также являющиеся довольно твердыми веществами. Остальные составляющие пыли являются более мягкими и представляют собой смесь органических веществ с неорганическими. Плотность пыли — 2400—2600 кг/м Размер частиц пыли определяется структурой и составом почвы (табл. 10.2). [c.310]

    В почвы масла проникают в основном под действием сил тяжести и поверхностно-активных явлений. Распространение масла в почве зависит от характера подпочвенного слоя, гидрологических условий, состава и свойств масла. К последним относятся в первую очередь плотность, вязкость, смачивающая способность, содержание и тип присадок. Скорость просачивания и бокового распространения масла в почве составляет 10 — 10 м/с и снижается с увеличением водонасыщенности последней [46]. [c.77]

    В больпшнстве рек России концентрация радионуклидов не превышает допустимых уровней Однако в озерах Брянской обласги, где плотность загрязнения почвы цезием-137 выше 40 Ки/м , содержание этого элемента близко к ВДУ или превьппает его. Высокие концентрации стронция-90 наблюдаются в реке Теча на Южном Урале в зоне влияния ПО Маяк . На этом предприятии особую озабоченность вызывает сосредоточение средне- и низкоактивных жидких радиоактивных отходов в водоемах-хранилищах, в том числе в озере Карачай. Около 350 млн.м за-грязненной воды накоплено в каскаде водоемов в пойме реки Теча после прекращения сбросов в нее отходов производства. [c.46]


    А, Микроскопически индентифицируется в виде чешуйчатых агрегатов с 1,516—1,527, Пт= 1,516—1,526, Ир= 1,493—1,503 (—) 2У — большой. ДТА (—) 50—150°С (удаление адсорбированной воды) (—) 200—235 (небольшой пик в виде ступеньки на кривой, соответствующий удалению межпакетной воды) (—) 500— 760 (удаление конституционной воды) (—) 800—860 (разрушение кристаллической решетки) ( + ) 900—1000°С (образование нового кристаллического соединения). Плотность 2 г/см . Твердость 1—2. Природный минерал, встречается в виде плотных, землистых, скрытокристаллических масс, залежей бентонитовых глин, в илистой фракции почв и т. д. Образуется главным образом в экзогенных условиях при выветривании основных изверженных пород в щелочной среде. [c.187]

    Пр= 1,552 (—) 2 У=53—60 пластинки имеют совершенную спайность по (001). ДТА (пирофиллит, Урал) (—) максимум при 630—800°С (растянутый эффект выделения воды). Вся вода из пирофиллита ( 4,5-7,0%) удаляется в интервале 500—вОО С. Плотность 2,4 (2,84) г/см . Твердость 1 —1,5. В кислотах не разлагается. Встречается в гидротермальных жильных месторождениях, в богатых глиноземом метаморфических сланцах, в почвах и т. д. Синтетически может быть получен в гидротермальных условиях под давлением. [c.191]

    Габитус кристаллов — от призматических удлиненных до игольчатых Пд колеблется от 1,628 до 1,75 цвет от светло-зеленого до зелено-черного и черного спайность совершенная по (110) под углом 124° плеохроизм по — желто-зеленый, по Л т — бледно-зе-леный, по Np — зеленовато-желтый. ДТА (роговая обманка, Урал) (—) 1175°С (удаление воды) обезвоживание начинается с 400°С, количество воды,-выделившейся до 800°С, не превышает 0,57о- Плотность 3,0—3,5 г/см (возрастает с увеличением содержания железа). Твердость 5—6. В кислотах растворяется после предварительного прокаливания. Роговые обманки типичны для интрузивных изверженных пород, но встречаются также в метаморфических породах содержатся в почвах. [c.196]

    Связанная вода обладает особыми сзойствами большей плотностью пониженной температурой замерзания (до —15°С и ниже) потерей растворяющей способности и т. д. Связанная вода студней и гелей играет большую роль в нашей жизни, ибо присутствие ее в почве, растениях, во всех живых организмах обеспечивает морозоустойчивость, поддерживает водные запасы , определяет морфологические структуры клеток и тканей. В человеческом организме доля связанной воды составляет у младенца - 70%, снижаясь к старости до 40 /о- Если ...вода — это арена, на которой разыгрывается действие жизни... , то связанной воде на этой арене представляется особая, почти самостоятельная роль. В настоящее время развиваются представления о существовании жидкокристаллических фаз и возможности разделения различных форм водных растворов на две л<идкие фазы (расслоение, коацервация) как основе многих жизненно важных процессов. [c.302]

    Катодная защита основана на наложении отрицательного потенциала от внешнего источника тока на металл, при этом значительно замедляется процесс его ионизации, а в реакцию деполяризации вступают электроны не с металла, а от внешнего источника тока. При этом положительный полюс источника тока подсоединяется к анодному заземлителю. Обязательным условием катодной защиты является наличие токопроводящей среды (природные почва, вода и т.п.) между защищаемым сооружением и анодным заземлителем. Критериями эффективности катодной защиты являются защитный потенциал и плотность тока. [c.4]

    Удельное электрическое сопротивление оказьшает большое влияние на коррозионную агрессивность почвы, которая тем больше, чем меньше ее удельное сопротивление. Однако ввиду того, что удельное сопротивление зависит от влажности, состава и концентрации солей, воздухопроницаемости почвы и др., по его значению нельзя однозначно оценить коррозионную активность почвы. Интенсивность почвенной коррозии -результат воздействия многочисленных взаимосвязанных и переменных во времени факторов, и изменение одного из них оказывает влияние на суммарное воздействие факторов. В СССР коррозионную активность почв по отношению к стали оценивают по трем показателям удельному сопротивлению, потере массы образцов и плотности поляризующего тока. Коррозионную активность грунтов устанавливают по показателю, характеризующему наибольшую коррозионную активность (табл. 9). [c.45]

    Вода — самое распространенное на Земле соединение она составляет в основном всю гидросферу, входит в состав минералов и гарных пород, находится в растениях и животных, составляя от 50 до 99% их веса, присутствует в почве и атмосфере. Вода имеет очень важное значение в разнообразных процессах и явлениях живой и неживой природы и в практической деятельности человека. Она является наиболее изученным соединением некоторые из ее свойств использованы в качестве основы при определении единиц измерения таких физических величин, как масса, плотность, температура, теплота и теплоемкость. [c.321]


    Как следует из уравнения (8), удельное сопротивление почвы и общая площадь поверхности обнаженных участков трубопровода определяют плотность тока коррозии. Это уравнение поясняет также, почему после появления первой утечки коррозия трубопровода ускоряется продукты коррозии, как правило, снижают удельное сопротивление почвы. Кроме того, как только в трубопроводе возникает сквозное отверстие, ппо-щадь анодного участка в этом месте уменьшается и плотность коррозионного тока возрастает. , [c.45]

    Обязательным условием использования протекторной и катодной защиты является присутствие токопроводящей среды (природные почва, вода и т. п.). Критериями протекторной и катодной защиты являются такие электрические величины как защитный потенциал Уз (В) и защитная плотность тока / (мА/м-). [c.11]

    Теория коррозии блуждающими токами является наименее разработанной областью коррозионной науки. Объясняется это весьма большой сложностью различных процессов, происходящих в системе источник блуждающих токов — земля — подземное металлическое сооружение — источник блуждающих токов, а также взаимообусловленностью этих процессов (явлений), возникающих в разных частях этой системы. Большие трудности связаны с изучением особенностей протекания электрохимических процессов на границе почва — металл при протекании переменных по знаку, амплитуде, плотности и частоте блуждающих токов. Отсюда и сложность теоретического анализа этой системы. Так, теоретические исследования по выявлению распределения токов и потенциалов в указанной системе с использованием ЭВМ весьма громоздки и не всегда дают достоверные результаты, что резко ограничивает их практическое применение. Для получения достоверных данных необходимо использовать современные методы как математических, так и электротехнических, электрохимических, геофизических и ряда других специальных технических наук. [c.46]

    На основании полученных данных строят диаграмму в координатах разность потенциалов — плотность поляризующего тока. Из диаграммы определяют плотность тока, соответствующую разности потенциалов Л 7 = 0,5 в, а по этой плотности в соответствии с данными табл. 37 — коррозионную активность почвы. [c.85]

    Чтобы вызвать необходимое для катодной защиты уменьшение потенциала, на защищаемой конструкции требуется определенная плотность защитного тока. Требуемая плотность тока, которую обычно выражают в мА/м , изменяется с изменением условий и зависит от коррозионной среды. Для защиты стали без покрытия обычно требуются следующие плотности тока в почве 10-100, в пресной воде 20-50, в стоячей морской воде 50-150, в проточной морской воде 150-300. [c.69]

    Аноды в почве часто окружают специальной засыпкой, обеспечивающей хорошую электропроводность вблизи анода, где плотность тока наибольшая. [c.70]

    Известно, что свойство почвы, характеризующее способность проводить ток, называют удельной проводимостью. Связь между плотностью тока в какой-либо точке почвы и напряженностью поля в этой же точке устанавливает закон Ома в дифференциальной форме =уЕц, где — напряженность поля источника катодной защиты. [c.121]

    Разрушение металлических сооружений под влиянием электрокоррозии происходит со значительной скоростью, так как общая сила блуждающих токов находится в пределах от 10—20 до 200 А. При хорошей проводимости почвы и наличии повреждения в изоляции металлического сооружения плотность тока в отдельных точках анодной зоны может достигать очень высоких значений. Если сталь корродирует лишь в анодной зоне, то амфотерные металлы — свинец, алюминий и др. — разрушаются на катодных участках вследствие подщелачивания среды при протекании коррозионного процесса с кислородной деполяризацией. [c.32]

    Для катодной защиты в почвах получили распространение железокремниевые аноды и стальные электроды в коксовой мелочи, для работы в морских условиях — платинированные титановые аноды. Размеры, конструкция, число анодов, место их расположения выбираются из условий допустимых анодных плотностей тока, электропроводности среды, обеспечения заданного потенциала и плотности тока на защищаемом объекте, особенностей эксплуатации. [c.142]

    Грунтовая пыль состоит из частиц разного размера и имеет различный состав. Основным компонентом пыли являются окислы кремния. Их содержание в пыли составляет 65—98 %. Кварцевые частицы имеют плотность, около 2650 кг/м и твердость 1,1 — 1,2 ГПа/мм , которая превышает твердость других частиц пыли. С увеличением содержания окислов кремния загрязнения с эксплуатационной точки зрения становятся более неприятными — износ двигателей возрастает. Так, при содержании кварца в почве 95, 70 и 60 % средний износ гильз цилиндров двигателей составил через 256 ч работы соответственно 152, 93 и 72 мкм. [c.50]

    В пыли в небольших количествах содержатся окислы железа и алюминия, которые являются также довольно твердыми веществами. Остальные составляющие пыли более мягкие и представляют собой смесь органических веществ с неорганическими. Плотность пыли 2400—2600 кг/м . Размер частиц пыли определяется структурой почвы. Количество частиц размером до 50 мкм составляет 20—95 %. Лишь в Ливийской пустыне оно равно 10 %. На песчаных и супесчаных почвах количество пыли, состоящей из таких частиц, составляет 20—30 %. На остальных почвах образуется пыль, содержание в которой частиц размером до 50 мкм всегда около 50 % и более. Особенно мелкой является довольно распространенная лёссовая пыль. Количество мелких частиц (до 30 мкм) в ней достигает 80 %. Особенность лёссовой пыли ее мельчайшие частицы, попадая в нефтепродукты, как бы склеиваются между собой, образуя более крупные частицы, оседающие на дно резервуаров. [c.50]

    Контроль за состоянием почвы проводится как визуально, путем осмотра так и лабораторным методом. Визуально исследуется изменение внешних (видимых) характеристик, таких как цвет, плотность, наличие растительности. Лабораторный анализ включает отбор проб почвы, измельчение, отмыв в пресной, предварительно исследованной воде, отстой и химический анализ этой воды. [c.379]

    Объяснение. Средний радиус капилляра в почве зависит, с одной стороны, от ее механического состава, с другой — от ее структуры. В более рыхлой, свежеобработанной почве плотность упаковки частиц меньше и, как результат, радиусы капиллярных ходов больше. Чем меньше средний радиус капилляров, тем на большую высоту поднимается вода из нижних горизонтов почры. [c.30]

    Аномальная нлотность. Ранние исследования приписывали связанной воде значительно большую плотность, чем капельно-жидкой. По А. В. Раковскому, она лежит в пределах 1,28—2,452 г/см . По М. В. Чапеку, у первых порций воды, адсорбированной почвами, плотность 1,7 г/сМ . Для воды, связанной с кремпегелем, указывается плотность 1,027 (Г. Торп) и 1,285 г/см (Д. Ивипг). По К. Сазерленду, кристаллизационная вода сульфата лития имеет плотность 1,31 г/см . Слои, сложенные мономерными молекулами воды, ири самой плотной упаковке, по расчету Д. Бернала и А. Фаулера, должны иметь плотность 1,84 г/см . [c.27]

    На рис, 184 приведена зависимость плотности юка ог времени для железного анода, поляризуемого при постоянном потенциале электрода (—0,5 в) с помощью потенцйостата , для песчаной почвы различной влажности. Видно, что во всех почвах плотность тока, необходимая для поддержания заданного анодного потенциала, уменьшается со временем В точках, указанных стрелками, происходит резкое падение плотности аноднополяризующего тока почти до нуля, что и указывает на наступление анодной пассивности электрода. Наблюдаемая на поляризационных кривых при более низких влажностях почвы (начиная от 5% и ниж ) более сильная поляризуемость, сопровождаемая иногда образованием характерных минимумов (см. рис, 181), связана также с добавочным торможением анодного процесса вследствие возникновения анодных па сивных пленок и последующего их разрушения при повышенной плотности анодно-поляризующего тока. Так как анодный процесс ионизации металла связан с переходом атома металла в гидратированный катион металла, то для его осуществления необходимо присутствие в почве некоторого количества влаги, В большинстве естественных, не очень сухих почв имеющаяся влажность оказывается достаточной для осуществления анодного процесса и он может протека гь без заметного торможения. Однако в достато-iHo сухих почвах, когда в почве и на поверхности металла остается только адсорбционно связанная влага, для проте кания анодного процесса возникает дополнительное торможение, связанное с недостатком на поверхности металла влаги, необходимой для процесса гидратации аноднорастворяющихся ионов металла. В этом случае скорость анодной реакции может уже контролироваться транспортом (диффузией) водяных паров в зону реакции (к аноду). В эти условиях при наличии на поверхности металла неувлажненной почвы анодный процесс будет тормозиться даже в большей степени, чем в условиях атмосферной коррозии под адсорбционной пленкой влаги (рис. 185). Этот механизм может быть привлечен для объяснения наблюдаемого уменьшения скоро ти коррозии образцов, зарытых в сухую почву (песок или глину), по сравнению со скоростью коррозии таких же образцов з чисто атмосферных условиях. В общем, в отношении железного электрода можно считать, чго во влажных нейтральных почвах анодный проце -с будет протекать по типу, характерному для жидких нейтральных элек- [c.360]

    Блуждающими токами называют токи утечки из электрических цепей или любые токи, попадающие в землю от внещ-них источников. Попадая в металлические конструкции, они вызывают коррозию в местах выхода из металла в почву или воду. Обычно природные токи в земле не опасны в коррозионном отношении — они слишком малы и действуют кратковременно. Переменный ток вызывает меньшие разрушения, чем постоянный, а токи высокой частоты обусловливают большие разрушения, чем токи низкой частоты. По данным Джонса [1], возрастание коррозии углеродистой стали в 0,1 и. Na l, вызванное токами частотой 60 Гц и плотностью 300 А/м, незначительно, если раствор аэрирован, и в несколько раз выше (хотя и относительно низкое) в деаэрированном растворе. Возможно, в аэрированном растворе скорости обратимых или частично обратимых анодной и катодной реакций симметричны по отношению к наложенному переменному потенциалу, а в деаэрированном они несимметричны, главным образом вследствие реакции выделения водорода. Подсчитано, что коррозия стали, свинца или меди в распространенных коррозионных средах под действием переменного тока частотой 60 Гц не превышает 1 % от разрушений, вызванных постоянным током той же силы [2, 3]. [c.209]

    На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен. [c.215]

    Исследование влияния содержания твердой фазы бурового рястпря ппйдгтаняеннпй в основном глиной ня меха. гический состав почв, который определяет такие свойства, как липкость, связность, водопроницаемость, поглотительную способность и целый ряд других показателей, воздействующих на плодородие почв и рост растений, показало, что при загрязнении почвогрунтов происходит перераспре-делепие фракций механических элементов не только по профилю, но и по их размерам. Кроме того, жидкие буровые отходы при попадании их в почву плохо смешиваются в ней, образуя крупные глинистые комки, обладающие высокой вязкостью и липкостью. При высыхании они не разрушаются, в результате чего резко ухудшается агрономическая ценность почвенной структуры. В местах скопления буровых растворов происходит увеличение плотности твердой фазы (от 2,6 до 2,8 г/см ) и плотности почв (от 1,12 до 1,50 г/см ), что является неблагоприятным фактором для развития растений [21 ]. [c.80]

    Вода класса 1 ( Вполне пригодная ) не опасна с точки зрения осолонцевания почвы и может применяться для полива сельскохозяйственных культур без применения химических мелиорантов. Длительное орошение такой воды не вызывает ухудшения физических свойств почвы, так как содержание поглощенного натрия в почвенном поглощающем комплексе не превышает 3—5% от емкости катионного обмена. Содержание катионов магния в воде этого класса не должно превышать содержание в ней катионов кальция, т. е. обязательно должно выполняться условие [Са +] [Mg2+] l. Вода класса I обеспечивает урожай сельскохозяйственных культур не ниже, чем при орошении пресными водами. Только иа почвах, обладающих плохими физическими и водно-физическими свойствами (плотность пахотного и подпахотного горизонтов более 1,50 ккг/м , водопроницаемость в первый час впитывания менее 30 мм вод. ст.) и при отсутствии промывного режима орошение такой водой с общей минерализацией более 50 мкг-экв/м (более 3 кг/м ) не допускается ввиду реальной угрозы засолення верхних слоев почвен-иого профиля. [c.94]

    Вода класса II ( Ограниченно пригодная ) может вызывать слабое ослонце-ванне почвы, доходящее до 10% поглощенного натрия от емкости катионного обмена. Воды этого класса, особенно слабо минерализованные (до 25 мкг-экв/м , т. е. до 1,5 кг/м ), могут использоваться для орошения без применения химических мелиорантов непродолжительное время (3—5 лет) черноземов южных и обыкновенных. Орошение каштановых и темно-каштановых почв обязательно должно сопровождаться применением химических мелиорантов или плантажировани-ем орошаемых почв. При применении одного из указанных приемов вода класса II обеспечивает такой же урожай сельскохозяйственных культур, как и при поливе пресными водами. На почвах с плохими физическими и водно-физическими свойствами (плотность пахотного и подпахотного горизонтов более 1,50 ккг/м , водопроницаемость в первый час впитывания менее 30 мм вод. ст., содержание водопрочных агрегатов 0,25—10 мм менее 20% от массы почвы) орошение следует проводить водами с общей минерализацией не более 50 мкг-экв/м (не более 3 кг/м ) и в обязательном порядке вносить в почву (или в поливную воду) химические мелиоранты. [c.94]

    Вода класса III ( Условно пригодная ) при использовании ее для орошения вызывает осолонцевание почвы, доходящее до 20% поглощенного натрия от емкости катионного обмена и снижает урожай сельскохозяйственных культур на 20—50% но сравнению с орошением пресной водой. Использование этой воды допускается лишь при обязательном применении химической мелиорации или план-тажировання почв, что позволяет поддерживать урожайность сельскохозяйственных культур на уровне 85—90% от урожаев, полученных в первый год орошения. Воды класса III, имеющие общую минерализацию выше 50 мкг-экв/м (выше 3 кг/м ), не следует применять на почвах, обладащих плохими физическими и водно-физическими свойствами (плотность более 1,50 ккг/м водопроницаемость в [c.94]

    Важнейшим и наиболее сильным действующим окислителем в почве является молекулярный кислород, содержащийся в почве и почвенном рас шо])е. Поэтому направление и развитие окислитель-но-восстановительиых процессов в почве тесно связано с условиями ее аэрации и, следовательно, зависит от всех свойств почвы, влияющих иа ее газообмен — структуры, плотности, механического состава, а также влажности. Ухудшение аэрации в результате повышения влажности почвы, ее уплотнение, образование так называемой корки на ее поверхности и целый ряд других причин приводят к снижению окислительно-восстановительного потенциала почвы. [c.260]

Рис. 126. Разрушение битумов под действием микроорганизмов о —во влажной почве (содержание влаги 16%) / — битум марки А (температура размягчения 90 °С по КиШ, пенетрация 48X0,1 ля при 25 °С, плотность 1,015г/сл< при 25°С) 2 —битум марки Р (температура размягчения 76 °С по Ки Ш, пенетрация О при 25 °С) 3 — битум марки С (температура размягчения 101 °С по КиШ. пенетрация 3X0,1 мн при 25 °С, плотность 1,06 при 25 °С) Рис. 126. Разрушение битумов под <a href="/info/62897">действием микроорганизмов</a> о —во влажной почве (<a href="/info/143085">содержание влаги</a> 16%) / — <a href="/info/792471">битум марки</a> А (<a href="/info/49846">температура размягчения</a> 90 °С по КиШ, пенетрация 48X0,1 ля при 25 °С, плотность 1,015г/сл< при 25°С) 2 —<a href="/info/792471">битум марки</a> Р (<a href="/info/49846">температура размягчения</a> 76 °С по Ки Ш, пенетрация О при 25 °С) 3 — <a href="/info/792471">битум марки</a> С (<a href="/info/49846">температура размягчения</a> 101 °С по КиШ. пенетрация 3X0,1 мн при 25 °С, плотность 1,06 при 25 °С)
    Изотермический коэффициент сжатия свинца равен 2,3-10 атм . Выразите его в Кубик свинца с ребром 10 vi необходи.мо было вставить в киль телевизионной камеры для почво ных исследований, и проектировщикам нужно было знать механические (напряжения, возникающие в установке. Как изменится объем такого кубика на дне моря иа глубииах а) 100 футов и б) 5000 морских саженей Среднюю плотность воды примите равной р 1,03 г/см . [c.113]

    Когда катод и анод расположены близко друг к другу и pH почвенной влаги > 5, коррозионные продукты могут образовать покрытие, в какой-то степени защищающее поверхность стали. Поэтому коррозия будет распределена равномерно, и ее скорость будет падать йо времени. Однако в некоторых случаях анод и катод могут оказаться более или менее удаленными друг от друга. В экстремальных случаях это расстояние на трубопроводе или кабеле может достигать одного - двух километров. Образующиеся на катоде ионы металла будут мигрировать с током к катоду, а ОН-ионы, образующиеся на катоде, - к аноду. В этом случае продукты коррозии будут осаждаться где-то между анодом и катодом. Поэтому они не образуют защитного покрытия на аноде. В результате на аноде может протекать питтиигообразование, причем в питтинге отсутствуют продукты коррозии и часто виден блестящий металл. Поскольку защитного покрытия на аноде не образуется, скорость коррозии не убывает во времени, а наоборот, может возрастать вследствие обогащения прилегающих слоев почвы ионами, образующимися при работе коррозионного элемента. Если площадь катода во много раз больше площади анода, то анодная плотность тока, а значит и скорость питтингообразования будет высокой. Локальная коррозия может [c.50]

    Теплообмен между поверхностью и глубинными слоями почвы ( ак (в различные сезоны и часы суток направление этого потока будет различным). Величина его зависит от теплопроводности, теплоемкости и плотности грунта, т. е. от его темпер атуропроводности. [c.122]


Смотреть страницы где упоминается термин Почва плотность: [c.17]    [c.258]    [c.6]    [c.59]    [c.217]    [c.216]    [c.260]    [c.392]    [c.356]    [c.129]    [c.476]   
Защита подземных металлических сооружений от коррозии (1990) -- [ c.55 ]




ПОИСК







© 2024 chem21.info Реклама на сайте