Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разряд на катоде комплексных ионов металлов

    Разряд на катоде комплексных ионов металлов [c.29]

    Учитывая весьма малую концентрацию простых ионов металла в растворе его цианистой соли, ряд исследователей считает наиболее вероятным непосредственный разряд на катоде комплексных ионов [10—15]. При этом принимается, что преодоление отталкивающего влияния отрицательного заряда поверхности катода достигается либо за счет деформации анионов в двойном электрическом поле и их ориентации как диполей [2], либо благодаря склонности ионов циана к специфической адсорбции [29]. [c.11]


    Скорость протекания всего процесса в целом контролируется стадией, сопровождающейся наибольшими торможениями. Причинами торможения могут быть замедленная доставка разряжающихся ионов к катоду — концентрационное перенапряжение (1-я стадия) замедленный разряд ионов, который обусловлен медленным переносом заряда через двойной электрический слой и связанным с этим изменением физико-химического и энергетического состояния ионов (дегидратация, десольватация, распад комплексных ионов и др.) — электрохимическое перенапряжение (2-я стадия) трудности, связанные с построением кристаллической решетки замедленная диффузия ад-атомов (ад-ионов) по поверхности катода к местам роста кристаллов, задержка при вхождении атомов в кристаллическую решетку или при образовании двух- или трехмерных кристаллических зародышей, т. е. то, что характеризует так называемое кристаллизационное перенапряжение (3-я стадия). Величина последнего сравнительно невелика и зависит от природы металла и от состояния поверхности катода, которое в ходе электролиза меняется в результате адсорбции посторонних ионов, молекул и органических веществ. [c.335]

    Подобно указанной схеме при соответствующих условиях (pH, избыток лиганда и др.) восстанавливаются и другие комплексные анионы металлов, например пирофосфаты, роданиды или фториды. В зависимости от концентрации свободного комплексообразующего лиганда и значения pH разряжающимися частицами могут быть ионы с большим или меньшим координационным числом. Во всех этих случаях торможение процесса выделения металлов на катоде может быть весьма значительным вследствие затруднений подвода анионов к катоду или недостаточной скорости отвода от катода лигандов, освобождающихся после разряда ионов, а также вследствие неблагоприятных условий адсорбции разряжающихся ионов на катоде. Последнее определяется знаком и величиной заряда поверхности металла в данных условиях [7]. [c.341]

    Так, в последние годы были особенно подробно изучены закономерности разряда водородных и частично металлических ионо , исследовалась кинетика обмена между амальгамами и ионами металлов, реакции взаимодействия простых и сложных комплексных ионов на катоде с перезарядкой или восстановлением их до металла и ряд других существенных проблем. [c.7]

    Согласно теории комплексообразования, коллоидные соединения образуют комплексы с катионами металлов. Вследствие прочной адсорбционной связи между органическими коллоидами и катионами металлов процесс разряда комплексных ионов замедляется, поэтому разряд металла на катоде в присутствии коллоидной добавки протекает при повышенной поляризации. Поверхностноактивные вещества могут адсорбироваться либо всей поверхностью катода, либо отдельными участками его поверхности. В первом случае разряд катионов осуществляется через сплошную пленку адсорбированного вещества, во втором — разряд катионов и осаждение металла происходят только на свободных участках поверхности катода. [c.132]


    Механизм электровосстановления комплексов металла через предварительную адсорбцию их на поверхности электрода был рассмотрен Е. Лайонсом. Он допускает, что во внутреннюю координационную сферу восстанавливающегося комплекса входит молекула воды или другой лиганд, адсорбированный на поверхности металлического электрода, играющий роль мостика между электродом и центральным ионом металла. Войдя в двойной электрический слой, комплексный ион претерпевает деформацию. По достижении достаточного потенциала сложный ион разрывается, при этом катион металла под влиянием электрического поля входит в сферу влияния электронов кристаллической решетки осадка, а освободившиеся простые анионы вытесняются из двойного слоя в раствор. При этом при соответствующем потенциале не исключена возможность выхода электрона из катода на адсорбированный диполь и его разряд в жидкой фазе (туннельный эффект). [c.399]

    Процессу разряда кобальта и никеля часто, очевидно, предшествует реакция десольватации или диссоциация комплексного иона [925, 993, 955, 928]. Большое значение для электродного процесса имеют обменные реакции между анионами фона и окружением катионов N 2+ и Со + [1276, 944, 945, 943, 938], а также адсорбционные процессы на поверхности катодов с участием молекул растворителя, фонового электролита и образующихся комплексов исследуемых металлов [681, 684, 680, 470, 944, 945]. [c.99]

    Предположим, что на этих электродах выделяются соответствующие металлы. В первом случае, т. е. при выделении серебра, разряду его положительных ионов способствуют силы притяжения, существующие между ними и анионами, адсорбированными катодом, подобно тому, как положительно заряженная сетка ускоряет движение электронов в трехэлектродной радиолампе. Небольшому смещению потенциала в отрицательную сторону отвечает значительная скорость разряда. Поэтому даже при высоких плотностях тока перенапряжение остается незначительным. Во втором случае, т. е. при выделении цинка, не только отсутствует ускоряющее действие анионов, но может даже появиться тормозящий эффект посторонних катионов, если они присутствуют в растворе наряду с ионами цинка. Появление тормозящего эффекта легко понять, если учесть, что к моменту наложения тока в двойном слое присутствуют ионы металла и посторонние катионы, например ионы водорода. При включении тока ионы металла (в условиях, когда его выделение является основным катодным процессом) начнут разряжаться и их число в двойном слое уменьшится, в то время как число посторонних катионов, не подвергающихся разряду, останется неизменным. Убыль положительных зарядов должна быть восполнена за счет вхождения в двойной слой новых катионов, а ими могут быть как ионы металла, так и посторонние катионы. Таким образом, при смещении потенциала в отрицательную сторону (увеличении отрицательного заряда поверхности металла) доля разряжающихся катионов в двойном слое уменьшится, а доля посторонних катионов и общий положительный заряд катионной сетки увеличатся. Поступление катионов металла будет, таким образом, затруднено, и для обеспечения процесса разряда потребуется большее перенапряжение. При разряде комплексных анионов, как это, по-видимому, имеет место в случае цианистых электролитов серебрения и цинкования, соотношения меняются на обратные. Анионная сетка оказывает теперь уже не активирующее, а тормозящее действие. [c.444]

    Многие исследователи пытались усовершенствовать теорию электровыделения металлов, привлекая представления об электронном строении их ионов. Одна из таких попыток принадлежит Лайонсу (1954). По Лайонсу, величина металлического перенапряжения зависит от характера электронных структур разряжающихся ионов и выделившегося на катоде металла. При этом перенапряжение будет особенно большим в двух случаях. Во-первых, если аквакомплексы (или иные комплексы) образованы ионами за счет электронов, находящихся на внутренних орбитах (внутриорбитальные комплексы), благодаря чему создаются наиболее прочные связи ионов в растворе. Во-вторых, если велика разница в электронных структурах иона и металла в этом случае требуется значительная энергия активации для их перестройки в процессе разряда. Разряжающиеся ионы имеют обычно иную структуру, чем ионы, присутствующие в растворе. Это обстоятельство связано с тем, что при адсорбции на электроде происходит частичная диссоциация простого гидратированного или комплексного иона. Освобождающиеся связи удерживают ион на поверхности электрода, причем до момента разряда идет дальнейшая перестройка его электронной структуры в направлении, сближающем ее со структурой иона в металле. Далее следует разряд или с полной дегидратацией иона, или [c.495]


    При осаждении металлов наблюдается интересное явление, состоящее в том, что в растворах комплексных ионов, особенно в растворах цианидов, обычно образуются гладкие осадки иллюстрацией может служить выделение серебра, которое в азотнокислых растворах при не очень низких плотностях тока идет с образованием очень крупнокристаллических осадков, в то время как в растворах цианидов получаются хорошо известные в качестве гальванических покрытий гладкие осадки. Некоторые исследователи считают, что образованию кристаллических зародышей благоприятствует крайне малая концентрация простых ионов в растворах комплексных солей, например Ag+ в растворе с анионами Ag( N)F. Однако другие исследователи полагают, что вместе с металлом осаждается некоторое количество нерастворимой соли, например простого цианида серебра, который действует как добавка , затрудняющая рост кристаллов. Возможный путь образования таких нерастворимых осадков на катоде связан с разрядом каких-то комплексных катионов, например катионов типа Ag2( N) , приводящим к выделению серебра и цианида серебра в непосредственной близости друг от друга. Можно предполагать, что в растворах комплексных цианидов присутствуют подобные ионы [4]. Было высказано и другое предположение, состоящее в том, что осаждение из растворов комплексных солей на катоде не является результатом разряда катионов, которые присутствуют в очень малых количествах. Предполагается, что это осаждение связано с приобретением комплексными ионами Ад ( N)2 дополнительных зарядов, превращающих эти ионы в ионы Ад(СЫ)2" образующийся комплекс неустойчив и более или менее быстро распадается на серебро и ионы циана. Таким образом, выделение серебра является вторичным процессом и поэтому определяется иными условиями, чем условия, соответствующие выделению металлов из растворов простых ионов, где идет непосредственный разряд .  [c.640]

    Лайонс [273] полагает, что переходные металлы образуют внутриорбитальные комплексные ионы, разряд которых протекает с высоким перенапряжением. Причиной высокой энергии активации переходных металлов может служить также их ярко выраженная склонность к пассивированию вследствие образования на поверхности металла окисных пленок. Металлы, выделившиеся на катоде, покрываются окисной пленкой и разряд их можег прекратиться. [c.79]

    Уравнение (1). показывает, что сблизить потенциалы разряда ионов металлов Ме и Мег можно различными путями, а и.менно изменением а) активности этих ионов в результате изменения концентрации в растворе соли соответствующего металла либо перевода ионов металла в комплексное соединение б) величины поляризации катода, плотности тока или концентрации комплексообразователя в растворе. [c.195]

    По вопросу о механизме выделения на катоде металла из цианидного комплекса до сих пор нет полной ясности. Существуют различные предположения [4]. Согласно одному из них, катодное выделение металла происходит в результате разряда простых ионов, которые появляются в результате диссоциации комплексных ионов. [c.166]

    Вместе с тем, при изучении разряда комплексных ионов цинка, кадмия, серебра, ртути и других металлов пришли к выводу, что в большинстве случаев на катоде разряжаются ионы с меньшим числом комплексообразующих лигандов, чем преобладающие комплексные ионы в растворе. [c.243]

    Причины образования мелкокристаллических осадков из растворов комплексных солей и механизм процесса электроосаждения были предметом многочисленных исследований. В результате были высказаны две принципиально различные точки зрения. Сторонники первой из них считают, что на катоде имеет место разряд простых ионов металлов, образующихся в электролите за счет частичной диссоциации комплексных ионов. [c.38]

    Чем прочнее комплексный ион тем меньше концентрация в электролите простых ионов металла, а следовательно, тем выше концентрационная поляризация при разряде их на катоде. Высокая поляризация обусловливает равномерное распределение металла по поверхности катода и мелкокристаллическую структуру осадка. [c.38]

    Поэтому в настоящее время следует считать правильной вторую точку зрения, согласно которой на катоде происходит непосредственный разряд комплексных ионов. Хотя в цианистых комплексах металл входит в состав аниона, все же вполне возможно представить себе присутствие их в адсорбированном виде на поверхности катода (тем более, что восстановление других анионов на катоде является доказанным фактом). Под действием электрического поля двойного слоя комплексный анион деформируется, превращаясь в диполь, и удерживается у поверхности электрода за счет притяжения положительного конца диполя. Разряд цианистого комплекса может быть представлен схемой [c.39]

    В настоящее время имеется достаточное число литературных и опытных данных, свидетельствующих о том, что электрокристаллизация из растворов, содержащих металл в составе комплексных ионов, происходит в результате непосредственного восстановления сложных ионов или молекул на катоде. В пользу такого механизма электродных реакций говорят многие факты и среди них наличие нескольких ветвей на поляризационных кривых в случае осаждения металлов из ко.мплексных электролитов [8]. При этом существование двух, трех и более перегибов объясняется разрядом различных ионов, находящихся в электролите [9]. [c.46]

    НФ сорт Б, 15—20 уротропина, 0,7—1,2 ОС-20, pH 4—6 / = = 0,5- l,5 A/дм . Первая из указанных органических добавок способствует повышению рассеивающей способности электролита и формированию более мелкокристаллических осадков, вторая — образует с кадмием комплексное соединение, что несколько замедляет реакцию разряда иона металла на катоде и снижает нижний предел плотности тока. [c.127]

    Комплексный анион иногда представляю как диполь, который адсорбируется на поверхности катода. Войдя в двойной электрический слой, такой аннон претерпевает деформацию, ориентируясь своим положительным концом к катоду, а отрицательным в раствор. По достижении достаточного потенциала сложный анпои разрывается, при этом ион металла входит в сферу влияния электронов кристаллической решетки, а освободившиеся простые анионы вытесняются из двойного слоя в раствор. При соответствующем потенциале не исключена возможность выхода электрона из металла на адсорбированный диполь и разряд его в жидкой фазе (туннельный эффект). Присутствие в электролите поверхностно активных Катионов облегчает разряд комплексного аниона, так как такие катионы, адсорбируясь на поверхности, экранируя ее, тем самым снижают отталкивающее воздействие заряженной поверхности на сложный анион. [c.245]

    Согласно этой теории [28] коллоидные соединения в электролите образуют комплексы с катионами металлов. Эти комплексы не являются соединениями химического типа, а их следует рассматривать как адсорбционные образования — металлоколлоиды. Вследствие прочной адсорбционной связи между органическими коллоидами и катионами металлов процесс разряда комплексных ионов (десорбция металла из комплекса и его выделение на катоде) замедляется. Поэтому разряд металла на катоде в присутствии коллоидной добавки протекает при повышенной поляризации. [c.46]

    В отношении механизма процессов высказывались предполо-жепия, которые основаны на трех различных точках зрения. Согласно первой из них, предполагается, что, несмотря на исключительно малую концентрацию свободных ионов металла в цианистых растворах, на катоде разряжаются простые катионы [7—9]. В противоположность этому представлению работами других авторов [10—15] развито предположение о непосредственном разряде на электроде комплексных ионов. При этом предполагается существование комплексных ионов различных типов. Согласно третьей точке зрения, из цианистых растворов металл выделяется на электроде в результате вторичного процесса [16—20]. [c.8]

    Из полученных данных также нельзя сделать определенное заключение о структуре разряжающихся ионов. Тем не менее, результаты настоящего исследования являются, на наш взгляд, вескими аргументами в пользу предположения о разряде на катоде ионов с меньшим числом координированных лигандов, чем преобладающие в электролите анионы. Основой для такого заключения служат возможность создания условий, при которых химическая поляризация понижается до весьма малой, практически неуловимой величины, отсутствие корреляции между структурой комплексных ионов и степенью торможения катодного процесса, а также наблюдаемая в ряде случаев аналогия между закономерностями кинетики электродных реакций в растворах цианистых и сернокислых солех тех же металлов. [c.134]

    На структуру осадков может оказывать влияние комнлексообразование ионов. В гальваностегии часто применяют электролиты, в которых ионы разряжающегося на катоде металла присутствуют в комплексной форме, например, в виде анионов [2п(СЫ)4] , [А (СМ)г] , [8п(ОН)б] , [Си(Р207)2] - При образовании таких комплексных ионов в растворе равновесный потенциал металла смещается в отрицательную область в результате уменьшения концентрации простых ионов металла. Как правило, разряд комплексных ионов, особенно при избытке лиганда, сопровождается повышением катодной поляризации вследствие затруднений электродного процесса (диффузионные ограничения, замедленный разряд и др.). Образующиеся в этом случае осадки всегда отличаются мелкозернистой структурой. В то же время при выделении металла из других растворов комплексных солей, например аммиакатных, станнитных, плюм-битных, катодная поляризация невелика и осадки получаются неудовлетворительного качества. Для улучшения структуры осадков необходимо добавлять поверхно-стно-активные вещества. [c.143]

    В зависимости от того, в каком виде ион разряжающегося металла находится в растворе, все электролиты делятся на комплексные и простые. Разряд комплексных ионов на катоде происходит при более высоком перенапряжении, чем разряд простых ионов. Поэтому осадки, полученные из комплексных электролитов, более мелкозернисты и раномерны по толщине. Однако у этих электролитов ниже выход металла по току и более низкие рабочие плотности тока, т. е. по производительности [c.151]

    Можно было предполагать, что значительная химическая поляриза-хщя при электроосаждепии металлов из цианистых растворов обусловлена замедленностью разряда комплексных ионов на электродах. Процесс протекает следующим образом комплексный цианистый ион [Ag(GNa)l , вытесняя чужеродные частицы с поверхности электрода, адсорбируется на ней, затем адсорбированные ионы разряжаются с выделением металла ла поверхности катода. Аналогично представляют этот процесс Габер [c.240]


Смотреть страницы где упоминается термин Разряд на катоде комплексных ионов металлов: [c.34]    [c.471]    [c.78]    [c.352]    [c.244]    [c.13]    [c.443]    [c.366]    [c.9]    [c.104]    [c.10]   
Смотреть главы в:

Электролиз в гидрометаллургии -> Разряд на катоде комплексных ионов металлов




ПОИСК





Смотрите так же термины и статьи:

Ионов разряд

Ионы комплексные

Катод

Комплексные ионы и разряд



© 2025 chem21.info Реклама на сайте