Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация методов газового анализа

    Химический анализ, используемый во многих отраслях науки и производства, имеет разнообразное назначение. Так, существует классификация по видам материалов газовый анализ, анализ масел, воды, топлива анализ сили-,катов, руд и минералов, цветных и черных металлов и сплавов анализ пластмасс анализ каучука анализ пищевых продуктов, анализ кормов, анализ фармацевтических препаратов и т. д. Каждый из этих видов анализа имеет свои специфические методы определений и свою соответствующую лабораторную технику (приборы и оборудование). [c.8]


    КЛАССИФИКАЦИЯ МЕТОДОВ ГАЗОВОГО АНАЛИЗА [c.100]

    Данная классификация методов газового анализа, конечно, является чисто условной. Она, правда, несколько облегчает возможность разбора различных приемов, которыми пользуются для определения состава газовой смеси, но ни в коем случае не претендует на полноту охвата всех существующих методов. [c.100]

    Для анализа газов применяют все три группы методов, рассмотренные в разделе о классификации методов количественного анализа. Для определения отдельных компонентов газовой смеси иногда применяют методы, основанные на измерении количества продукта реакции. Так, например, содержание СО, в смеси газов в некоторых случаях определяют следующим образом. Определенный объем газа пропускают через взвешенный поглотитель, содержащий едкую щелочь. При реакции образуется углекислая соль  [c.446]

    Следует отметить, что данная классификация условна, т. к. указанные методы в чистом виде не реализуются. Используются их комбинации, например объемно-манометрический метод газового анализа включает в себя объемный и химический методы, а также манометрический метод измерения давления. В современных приборах реализованы оптико-акустический, хромато-масс-спектрометрический и т. п. методы, сочетающие в себе два вышеперечисленных метода и более. [c.662]

    Различные авторы по разному классифицируют методы газового анализа [51—54]. Каждая из этих классификаций имеет определенный недостаток. Наиболее удачной, вероятно, можно считать схему, приведенную в работе [55], где классификация проведена по принципу метода определения концентрации. Исходя из этого, методы газового анализа можно разделить на химические, физико-химические, физические. [c.212]

    Существуют и другие классификации аналитических методов. Иногда при классификации имеют в виду определенные классы веществ анализ металлов, анализ воды, газовый анализ, сили- [c.13]

    Можно классифицировать методы определения по видам анализа, дпя которых они предназначены. Можно говорить о методах изотопного, элементного, молекулярного анализа и т. д. Однако и эта классификация имеет недостатки, может быть, более существенные, чем предыдущая. В самом деле, больщинство методов элементного анализа (кроме радиоактивационно-го) применяются и дпя структурно-группового или молекулярного анализа. Главным методом изотопного анализа является масс-спектрометрия, но ее используют и в элементном, структурно-групповом и молекулярном анализе. Типичный метод молекулярного анализа — газовая хроматография — применяется для элементного анализа органических веществ в СНЫ-анали-заторах. [c.8]


    Качественный анализ иредиолагает сбор всей необходимой информации о пробе для идентификации ее комионентов. Газовая хроматография является особенно ценным методом качественного анализа, поскольку она позволяет получать одиовремеиио разнообразную информацию об анализируемой смеси. По общему виду хроматограммы можно сразу сделать вывод о сложности анализируемой смеси. Времена удерживания комионентов смеси позволяют провести их классификацию в соответствии с летучестью. Специфические детекторы, в первую очередь масс-спектрометр, дают информацию об элементном составе и структуре комионентов анализируемой пробы. Качество этих данных определяется эффективностью разделения, поэтому внедрение в лабораторную практику капиллярных колонок существенно повысило ценность газовой хроматографии как метода качественного анализа. [c.92]

    ИЛИ приведены в табл. 7.9. Затем стараются растворить исследуемое вещество в растворителе, используя все доступные средства, в первую очередь интенсивное перемешивание и встряхивание. Если вещество хорошо растворимо в применяемом растворителе, так что классификацию по растворимости можно без труда провести на основе визуальных наблюдений, то применять для такого анализа метод газовой хроматографии нет необходимости. Если это не так, то вначале и для растворителя, и для растворяемого вещества в одних и тех же экспериментальных условиях определяют газохроматографические времена удерживания и мольные отклики детектора (см. ниже). Затем в хроматограф вводят пробы объемом 2—10 мкл, отобранные из каждого жидкого слоя, возникающего при проверке растворимости. [c.471]

    Широкое применение газовой хроматографии обусловлено многими ее преимуществами по сравнению с другими физикохимическими методами анализа. Виды хроматографии классифицируются по природе разделения адсорбционная (использование различной адсорбируемости разделяемых веществ на твердой поверхности) распределительная (поглощение разделяемых соединений жидкостью, различия в растворимости между двумя сосуществующими жидкими или жидкой и газовой фазами) осадочная (образование нерастворимых соединений в результате химической реакции с осадителем). По признаку агрегатного состояния подвижной и неподвижной фазы классификация дана в табл. 1.32. [c.66]

    Разработанные к настоящему времени методы определения растворимости газов в жидкостях весьма многочисленны и разнообразны [1-6]. Общепринятой является классификация, предложенная Баттино и Клевером [1,3], которые взяли за основу разделения методов природу измеряемых величин и способ их измерения. Классифицированные по этому принципу методы делятся на физические и химические. Такая классификация является достаточно условной, поскольку, с одной стороны, химическими методами измеряется физический параметр -масса растворенного газа, а с другой - многие основанные на физических принципах методы относятся к арсеналу современной инструментальной аналитической химии. В этой связи мы предлагаем разделить существующие методы на термодинамические (волюмо-манометрические) и аналитические. Термодинамические (волюмо-манометрические) методы позволяют косвенным путем определять количество абсорбированного газа на основе измерения рУТ параметров парожидкостного равновесия и последующего термодинамического анализа системы пар - жидкость. Методы, относящиеся к этому классу, широко распространены. В наиболее совершенных конструкциях достигнут очень высокий уровень точности (погрешность 0,1% и ниже). Сюда относятся методы насыщения и методы экстракции. В первом случае обезгаженный растворитель насыщается газом при контролируемых рУГ-параметрах, а во втором - растворенный в жидкости газ извлекается и проводится анализ рУГ-параметров газовой фазы. В аналитических методах проводится прямое или косвенное измерение количества абсорбированного газа путем анализа жидкой фазы. Для этих целей применяются объемное титрование (химическе методы), газовая и газожидкостная хроматография (хроматографические методы), масс-спектрометрия, метод радиоактивных индикаторов, электрохимические методы (кулонометрия, потенциометрия, полярография). Аналитические методы (за исключением хроматографического и масс-спектрометрического) не обладают той общностью, которая присуща термодинамическим методам. Они используются для изучения ограниченного круга систем или при решении некоторых нестандартных задач, например для проведения измерений в особых условиях. Погрешность аналитических методов составляет, как правило, несколько процентов. Учитывая указанные обстоятельства, а также принимая во внимание изложенные во введении цели данного обзора, мы ограничиваемся рассмотрением лишь химических и хроматографических методов. [c.232]

    В основу той или иной классификации хроматографических методов могут быть положены различные характерные признаки процесса. Рассмотрим эти способы классификации и определим место различных вариантов газовой хроматографии в общем ряду хроматографических процессов. При этом следует учитывать, что в каждом случае существуют промежуточные методы и варианты, не укладывающиеся в рамки строгой классификации. Более того, именно такие промежуточные варианты часто оказываются весьма перспективными и даже единственно возможными для решения самых сложных задач анализа и определения физико-химических свойств веществ. [c.25]


    Источники излучения, применяемые при анализе газов, классифицируют в зависимости от способа подготовки проб (разд. 2.5.1). Помимо определения неметаллических компонентов в газовых смесях важной и посильной для эмиссионного спектрального анализа задачей является определение содержания металлов в газах и, в частности, металлов, присутствующих в виде газообразных соединений или взвешенных твердых частиц. В рамках этой же классификации некоторые трудности возникают при определении содержания газов в металлических пробах. С одной стороны, неметаллические элементы, присутствующие в металлах, часто можно определять в разрядах высокой энергии вместе с металлическими составляющими (разд. 3.2.6), а с другой — не всегда известно, находятся ли в анализируемой пробе неметаллические элементы (кислород, азот, водород) в виде адсорбированного газа или в виде химических соединений. Таким образом, в этой области, так же как и при определении металлов в газах, анализ газов и металлов (иногда диэлектрических материалов) может проводиться по одним и тем же методам. [c.176]

    Следует уточнить некоторые вопросы терминологии, касающиеся классификации хроматографических методов. В самом простейшем случае под термином газовая хроматография подразумевается метод анализа, когда разделение смеси веществ в хроматографической колонке осуществляется в потоке газа (газа-носителя), непрерывно пропускаемого через колонку. Газоадсорбционная (разделение на адсорбенте — угле, силикагеле или оксиде алюминия) и газо-жидкостная (разделение на сорбенте — твердый носитель, покрытый жидкостью — неподвижной жидкой фазой) — это все варианты газовой хроматографии. [c.9]

    В заключении этого раздела необходимо отметить, что выбор метода анализа обусловлен составом газа. Природные углеводородные газы, согласно существующей классификации, делятся на сухие и жирные . Первые характеризуются высоким содержанием метана (до 99%) и малым содержанием его гомологов. В жирных газах (попутные, нефтяные газы) содержание метана значительно ниже, а концентрации его гомологов состава Сг—С5 возрастают до десятков процентов. При применении газо-жидкостной хроматографии для анализа сухих газов трудно получить четкое разделение метана и этана, нередко пик метана перекрывает пик этана, содержание которого в сухом газе может составлять 0,1% и меньше. Поэтому в данном случае рекомендуется использовать адсорбционную газовую хроматографию, позволяющую получить значительную разницу во времени удерживания метана и [c.68]

    В книге представлены характеристики различных видов газообразного топлива и дана его промышленная классификация изложены физико-химические основы горения газа описаны методы сжигания газообразного топлива приведены конструкции наиболее распространенных газовых горелок и даны методы их расчета рассмотрено сжигание газа в топках котлов с освещением вопросов автоматизации газифицированных котельных дан анализ технико-экономических показателей использования газообразного топлива в различных отраслях народного хозяйства. [c.2]

    В табл. 1.1 приведена классификация методов аналитической хим ии. Первую группу составляют химические методы анализа, в основе которых лежит изменение энергии химической реакции. В ходе реакции изменяются параметры, связанные с расходом исходных веществ или образованием продуктов реакции. Эти изменения экспериментатор может либо наблюдать непосредственно (визуально), например появление окраски или выпадение осадка, либо измерять такие велич-ины, как расход реагента, массу образующегося продукта и т. д. Если в основе метода лежит измерение массы одного из продуктов реакции, то такой метод называют гравиметрическим.. Если определяют объем затраченного реагента с точно известной Концентрацией, то такой метод называют титри-метрическим. Титриметрические методы классифицируют по типам реакций, лежащих в их основе кислотно-основные, окислительновосстановительные, комплексообразования и осаждения (см. разд. 7.6.2). В газоволюмометрическом методе избирательно поглощают определяемый компонент газовой смеси и измеряют объем смеси до и после поглощения. Зависимость скорости химической реакции от концентраций реагирующих веществ лежит в основе кинетических методов анализа. [c.11]

    Согласно классификации, приведенной в табл. 3.71, важнейшую группу хроматографических методов составляют методы анализа. Поэтому методы газовой, жидкостной, сверхкритической флюидной, ионной и хиральной хроматографии рассматриваются в специальном разделе, посвященном аналитической хроматографии. При этом учитывается и тот факт, что понимание и трактовки хроматографии специалистами в области методов разделения веществ и в области хроматографических методов анализа далеко не идентичны и приводимые ими сведения взаимно дополняют друг друга и позволяют лучше понять специфику хроматографии [114, 115]. [c.214]

    Р. Мартин с сотрудниками (R. Martin and oth., 1963) провели исследование лигроинов из 18 нефтей, проанализированных методом газовой хроматографии, а также масс-спектрометрии. Эти новые данные, возможно, из-за большего разнообразия нефтей и более точных методов анализа показали более широкие изменения, чем было отмечено раньше. Р. Мартин и его сотрудники считают, что обобщения, сделанные Ф. Россини, Б. Мэром и А. Стрейффом (эти обобщения, по существу, были взяты у А. Форциати. — Прим. авт.), явились значительным шагом вперед в классификации состав нефтей. Теперь можно сделать обобщение в несколько другой форме. [c.66]

    При выборе улавливающего оборудования необходимо учитывать последующую обработку материала. Если требуется определить только его общее количество, можно применять практически любой из приведенных выше методов, поскольку улавливающее устройство можно взвесить до и после отбора пробы, и вычислить чистую массу образца. Если образец должен далее подвергнуться химичеокому анализу, его необходимо собрать с фильтра, либо смывая, либо используя растворитель в качестве фильтрующей среды. Возможно, требуется определить гранулометрический состав частиц, тогда решение проблемы связано с значительными техническими затруднениями. Если для определения размеров частиц будет использован метод жидкостной седиментации, или декантации, тогда фильтр можно прамьгвать седиментационной жидкостью. Однако как для воздушной, так и для жидкостной классификации и седиментации основным остается вопрос о сохранении размеров частиц и апромератов такими, какими они были в газовом потоке. [c.89]

    Адсорбционные свойства графитированных саж практически полностью определяются свойствами систем адсорбат — базисная грань графита. Эта грань не несет никаких локально сосредоточенных на ее периферии зарядов, поэтому графитированная термическая сажа представляет неспецифический адсорбент (адсорбент I типа по классификации Киселева). Адсорбция молекул любой электронной структуры происходит на графитированных термических сажах неспецифически и определяется в основном геометрией молекулы и поляризуемостью ее звеньев. Особую роль играет здесь число контактов звеньев молекулы с плсЗской поверхностью адсорбентов. Поэтому энергия адсорбции и определяемые с помощью газовой хроматографии удерживаемые объемы зависят от геометрической структуры молекул. Это позволило в последние годы rie только с успехом использовать графитированную сажу для хроматографического анализа структурных изомеров и дейте-розамещенных молекул, но и применить хроматографический метод для идентификации структуры изомерных и изотопных молекул. [c.124]

    Целью настоящего исследования была разработка систематического метода применения реактивов для классификации функциональных групп таким методом можно непосредствеп-по, быстро и без больших затрат выполнить качественный газовый хроматографический анализ. [c.264]

    Вторая глава содержит описание имеющихся на сегодняшний день методов математиче ского моделирования газовых потоков с твердыми частицами. Проведен анализ применимости тех или иных подходов для изучения различных классов запыленных течений в соответствии с описанной в первой главе классификацией. [c.6]

    Классификация электрохимических методов анализа основана на типах проводимых измерений и способах использования методов в аналитических целях. Простейшим и, вероятно, наиболее старым методом является использование тока в качестве реагента для получения продуктов электролиза, которые либо взвешивают, как при электровесовом определении меди, либо измеряют объемы, как в газовой купонометрии. Действительно, избирательность электролиза обеспечивает полную эффективность разделения либо при удалении мешающих элементов, либо при предварительном концентрировании. Электрические измерения можно использовать для контроля неэлектрохимических реакций. Так, измерение основных электрических параметров — напряжения, сопротивления и силы тока — применяют в потенциометрическом, кондуктометрическом и амперометрическом титровании соответственно. [c.279]


Смотреть страницы где упоминается термин Классификация методов газового анализа: [c.197]    [c.23]    [c.937]    [c.80]   
Газовый анализ (1955) -- [ c.100 ]

Газовый анализ (1961) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ газовый

Анализ классификация

Классификация методов анализа

Метод классификация

Методы газового анализа



© 2025 chem21.info Реклама на сайте