Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидко-жидкостная хроматографи

    Хроматографические методы еще подразделяют по агрегатному состоянию фаз. Подвижная фаза может быть либо жидкой (жидкостная хроматография), либо газообразной (газовая хроматография). В случае жидкостной различают жидкость-твердофазную (неподвижная фаза твердая) и жидкость-жидкостную (неподвижная фаза жидкая) хроматографию. К жидко-твердофазной [c.255]


    Л.2. Сопоставление адсорбции и распределения. Среди различных вариантов разделения в жидкостной хроматографии, вероятно, наибольшим возможным числом комбинаций фаз и поэтому наибольшей потенциальной селективностью обладает распределительная жидко-жидкостная хроматография, хотя она меньше всего используется в лабораториях. Традиционно жидко-жидкостное распределение включает прохождение менее полярной подвижной фазы через слой, заполненный носителем с большим объемом и малой удельной поверхностью (таким, как диатомитовая земля), на который нанесена неполярная подвижная фаза [107, 108]. Обращая полярность фаз, т.е. нанося менее полярные соединения на носитель и используя более полярную жидкость в качестве подвижной фазы, получают альтернативный вариант метода. Эти два варианта были названы нормально-фазной я обращенно-фазной хроматографией соответственно. [c.73]

    Разделение сложных смесей методом колоночной хроматографии в некоторых случаях удобнее проводить при градиентном элюировании [6, 13, 22а, 37] (см. разд. 1.3.3). В ионообменной хроматографии широко используется программирование потока элюентов и их градиента в настоящее время этот метод благодаря введенным в последнее время привитым фазам также применяется в жидко-жидкостной хроматографии i[3, 20]. Системы формирования градиента, в которых растворители смешиваются при нормальном давлении, относительно недороги и легко изготавливаются. [c.53]

    Строго говоря, все сказанное дО сих пор правомерно только для твердо-жидкостной хроматографии. В жидко-жидкостной хроматографии фазовое отношение часто изменяется за счет вымывания или уноса неподвижной фазы (подвижной фазой). До некоторой степени такие отклонения тоже могут быть компенсированы "линеаризацией" с помощью параметра Кс. [c.159]

    За исключением распределительной хроматографии (жидко-жидкостной хроматографии), кондиционирование слоя сорбента парами элюента является нежелательным, так как в некоторых случаях это приводит к сильному [c.166]

    Жидко-жидкостная хроматография основана на распределении вещества между двумя жидкими фазами. В качестве неподвижной фазы используют воду или органический растворитель. В первом случае подвижной фазой является органический растворитель, во втором — водный раствор. Жидко-жидкостную хроматографию подразделяют на колоночную распределительную и бумажную. [c.46]

    Подвижная фаза — жидкость — жидкостная хроматография жидко-жидкостная хроматография (неподвижная фаза — жидкость) жидкостно-адсорбционная хроматография (неподвижная фаза — твердый сорбент.) [c.92]


    При условии, что разделяемые вещества не сорбируются частицами геля, процесс, происходящий в колонке, можно рассматривать как частный случай жидко-жидкостной хроматографии. При прохождении через колонку общим объемом Уг вещество распределяется между растворителем, окружающим гранулы геля (с объемом Уо) и растворителем, заключенным внутри гранул (объемом После прохождения столбика сорбента вещество элюируется в объеме Уе. Поведение белков может быть охарактеризовано с помощью коэффициента распределения [c.423]

    Жидко-жидкостная хроматография [c.220]

    ГОМ метод непрерывного противоточного распределения. Однако широкого употребления в аналитической химии он не нашел, так как о бычно разделение таких смесей легче проводится на хроматографической колонке. В таких случаях (см. разд. 4.4) может быть использована жидко-жидкостная хроматография с обращенной фазой (экстракционная хроматография). [c.222]

    Распределительная хроматография, в которой преимущественно используются образование комплексов и их свойства, включает жидко-жидкостную хроматографию (ЖЖХ) и газожидкостную хроматографию (ГЖХ). Менее часто применяются комплексы в адсор бционной хроматографии, в которой различают жидкостную адсорбционную хроматографию (ЖАХ) и газоадсорбционную хроматографию (ГАХ). [c.234]

    В табл. 3.106 приведены параметры оптимизации, которые можно применить в жидко-жидкостной хроматографии. Очевидно, полярность обеих фаз в значительной степени определяет удерживание и селективность. Для того чтобы оптимизировать разделение, можно изменить (преимущественно) состав подвижной фазы (т. е. изменить состав и концентрацию компонентов подвижной фазы без существенного изменения ее полярности). При разделении по методу жидко-жидкостной хроматографии требуется надлежащий контроль температуры, даже если температура не является основным параметром оптимизации. Поэтому, возможно, имеет смысл просто выбрать температуру в качестве дополнительного параметра оптимизации. [c.139]

    Правильный выбор сорбента и соответствующей элюирующей системы — это первый и наиболее важный этап решения поставленной задачи. Поэтому необходимо обстоятельно знать свойства всех типов используемых в ТСХ сорбентов. Выбрать оптимальную хроматографическую систему достаточно сложно, поскольку разделение методом ТСХ обычно совершается в результате сочетания различных механизмов, чаще всего адсорбции и распределения между фазами, а также ионного обмена или затрудненной диффузии (гель-хроматография). Однако, еслп условия выбраны правильно, один из механизмов разделения становится преобладающим. Если разделяемые соединения неполярны, следует создать условия, благоприятные для адсорбционной хроматографии (применение сорбента с большой адсорбционной способностью), а для разделения полярных (растворимых в воде) соединений следует использовать принципы, применяемые в жидко-жидкостной хроматографии. Наконец, при работе с ионогенными соединениями следует избрать методику ионообменной хроматографии. Очевидно, что налицо определенная аналогия с колоночной хроматографией. [c.97]

    Выше уже говорилось о важности стабильности колонок в жидкостной хроматографии, поэтому при хроматографировании нельзя применять растворители, вызывающие частичную потерю эффективности колонки или изменения в характеристиках удерживания колонки. Применительно к жидко-жидкостной хроматографии это означает, что растворитель и неподвижная фаза должны быть несмешивающимися (или не полностью смешивающиеся). В настоящее время вопрос о том, смешиваются фазы или нет, решается эмпирически, хотя в разд. Ж мы приведем некоторые рекомендации. Кроме того, не полностью смешивающийся (так как нет двух растворителей всегда полностью смешиваемых) растворитель перед поступлением в колонку должен быть предварительно насыщен неподвижной фазой (см. гл. 5 и 6). Другими словами, растворитель и неподвижная фаза должны находиться в термодинамическом равновесии до того, как они встретятся в колонке. Подобная же ситуация иногда наблюдается и в адсорбционной хроматографии, где используемые сорбенты обычно дезактивируются адсорбированной водой (гл. 6). При повторном использовании колонки содержание воды в сорбенте при разделении не должно меняться. По этой причине к растворителю следует добавить такое количество воды, чтобы растворитель и сорбент находились в термодинамическом равновесии в соответствии с активностью воды в каждой фазе. Этот вопрос обсуждается в гл. 6. [c.99]

    Колонка в жидко-жидкостной хроматографии состоит из слоя тонко измельченного твердого вещества (носителя), обычно инертного, на котором фиксируется неподвижная распределяющая фаза. Подвижная фаза протекает через колонку и, таким образом, на очень большой поверхности вступает в контакт с неподвижной фазой. При этом имеет место быстрое равновесное распределение растворенного вещества (образца) между этими двумя фазами. Разделение компонентов образца возможно вследствие их различного распределения в подвижной и неподвижной фазах. Это относится только к элютивной хроматографии, где компоненты образца [c.123]


    Б. Преимущества жидко-жидкостной хроматографии [c.124]

    Прежде чем перейти к вопросам применения этого метода, сделаем несколько замечаний, касающихся характерных особенностей жидко-жидкостной хроматографии. [c.124]

    Незначительное влияние типа образца. ЖЖХ —один из наиболее гибких методов в сравнении с другими видами хроматографии, включая и различные методы жидкостной хроматографии. Эта гибкость определяется в основном выбором распределяющих фаз, используемых для достижения разделения. Чтобы достичь требуемого разделения, которое трудно выполнить другими хроматографическими методами, в данном случае можно использовать определенное химическое взаимодействие. Жидко-жидкостная хроматография может применяться для разделения самых различных образцов, как полярных, так и неполярных. Чаще всего неподвижная фаза — полярное вещество, в то время как подвижная фаза значительно менее полярна. Эта форма используется для разделения наиболее сильно полярных соединений, так как эти вещества предпочтительнее удерживаются в полярных неподвижных фазах. При разделении неполярных молекул полярность фаз меняется. Этот метод иногда называют жидко-жидкостной хроматографией с обращенной фазой. [c.124]

    Многообразие систем удерживания. Универсальной разделяющей системы для всех веществ, какой является, например, силикагель в ТЖХ, в жидко-жидкостной хроматографии не существует. Возможности метода подбора соответствующих пар разделяющих жидкостей теоретически неограниченны. [c.124]

    Жидко-жидкостная хроматография 125 [c.125]

    Количественные признаки. Жидко-жидкостную хроматографию целесообразно применять в наиболее трудных случаях количественного разделения анализ с высокой степенью точности, анализ следов соединений, содержание которых не достигает 1 ч. на млн. Перечисленные выше характеристики делают ЖЖХ одним из паи-более точных методов жидкостной хроматографии. [c.125]

    В жидко-жидкостной хроматографии используются два основных типа носителей пористые и поверхностно-пористые (тонкослойные или пленочные). К числу пористых носителей относятся силикагель, диатомиты (например, хромосорб) и пористые стекла, такие, как порасил. Эти носители имеют пористую структуру и большую площадь поверхности. К поверхностно-пористым, или тонкослойно-пористым, насадкам, состоящим из частиц с непроницаемой сердцевиной и тонкой пористой оболочкой, относятся зипакс— носитель с контролируемой поверхностной пористостью, корасил и поверхностно-травленные зерна. Основные типы материалов перечислены в табл. 5.1. [c.125]

    Жидко-жидкосТная хроматография 129 [c.129]

    Жидко-жидкостная хроматография 133 [c.133]

    Жидко-жидкостная хроматография 135 [c.135]

    Жидко-жидкостная хроматография 137 [c.137]

    Жидко-жидкостная хроматография 139 [c.139]

    Жидко-жидкостная хроматография 141 [c.141]

    Как было определено, стандартная жидко-жидкостная хроматография имеет значительные ограничения. Поскольку неподвижная фаза обычно до некоторой степени растворима в подвижной фазе, последнюю необходимо предварительно насыщать неподвижной фазой, чтобы избежать постепенного удаления этой фазы из колонки. Кроме того, относительно высокие скорости потока, используемые в высокоскоростном разделении, иногда создают в сверх-узких колонках сдвиговые усилия, под действием которых неподвижная фаза может быть удалена с носителя. [c.146]

    Разделение в последних системах происходит за счет комбинации механизмов разделения и адсорбции, хотя до конца они не поняты. Даже шривитые фазы, такие, как is, хорошо адсорбируют некоторые количества органических растворителей из водно-органической подвижной фазы, образуя жидкую неподвижную фазу in situ [40, 54, ПО, 111]. Природа таких адсорбированных слоев может изменяться с изменением концентрации органического растворителя в подвижной фазе. Так, компоненты смеси стероидов, предварительно разделенные традиционной распределительной жидко-жидкостной хроматографией после введения в колонку, заполненную фазой is, элюируются в нормально-фазном порядке при использовании элюента метанол—вода (60 40), но р обращенно-фазном порядке, если отношение метанол —вода меняется на 40 60 [115]. Такое обращение порядка элюирования было бы маловероятным, если бы единственным механизмом, действующим в этой хроматографической системе, была твердофазная адсорбция (гидрофобное взаимодействие). [c.74]

    Жидко-твердофазная хроматография (на окиси алюминия, брушите, на модификациях фосфата кальция, гидроксиапатите) Жидко-жидкостная хроматография (на целите, целлюлозе, силикагеле, крахмале) [c.10]

    Для разделения пуриновых алкалоидов, а также бруцина и стрихнина применяют жидко-жидкостную хроматографию [17]. Наиболее подходящим носителем в этом случае оказался корасил II, в то время как в тех же условиях на корасиле I были получены более размытые пики, по-видимому, за счет сильной адсорбции. В качестве стационарной фазы использовали Poly-G300 в концентрации 1,1%, который наносили в растворе метиленхлорида. Подвижной фазой -служила система гептан-метанол (10 1), (рис. 39.2). [c.105]

    Метилбензиловые эфиры пенициллинов с успехом очищали методом высокоскоростной жидко-жидкостной хроматографии (ЖЖХ) на колонке с сорбентом зипакс (Zipax) в системе этанол — 5% н-гексана. Время элюирования зависит от содержания в подвижной фазе гексана. Метилбензиловый эфир пе--нициллина G был отделен от примесей за 4 мин. Заместители в боковых цепях пенициллинов характеризуются огромным разнообразием, широко варьирует и растворимость пенициллинов  [c.205]

    Жидко-жидкостную хроматографию использовали для отделения ряда примесей, присутствующих в образце 3-формилри-фампина. Оптимальный коэффициент распределения подбирали, варьируя полярность носителя. Наилучщей системой оказалась смесь зипакс—полиамид в системе н-гексан—этанол (3 1). Эти условия обеспечивают возможность чувствительного детектирования отделяемых примесей (хинона, рифампина и Х32), а также надежное определение главного компонента смеси, сильнополярного относительно высокомолекулярного 3-формилрифам-пина [74]. [c.223]

    Жидкостную хроматографию используют для выделения и очистки синтетических красителей, однако первой стадией является экстракция исходных материалов (продуктов питания, косметических средств и т. п.) или кристаллизация (в случае анализа коммерческих красителей). Затем красители концентрируют на колонке и отделяют от сопутствующих примесей. Следующим этапом может быть хроматография на бумаге, хроматография в тонком слое или спектрофотометрия. Общей задачей является также определение примесей (добавок, солей) в коммерческих красителях, которые затем должны быть проанализированы на колонке с сорбентом. Наконец, иногда требуется разделить смесь красителей на отдельные компоненты. В настоящее время к синтетическим красителям относятся вещества, сильно различающиеся по химическим и физическим свойствам. Поэтому выбор хроматографического метода зависит от поставленной задачи и типа красителя. Практически здесь применяют все известные неорганические сорбенты, иониты, гели декстрана, порошкообразную целлюлозу и полиамиды. Достаточно перспективным методом является также колоночная хроматография высокого разрешения. Возможности жидко-жидкостной хроматографии продемонстрированы на примере определения примесей в антрахиноновых красителях [1]. Хроматографию проводили в системе с обращенными фазами в качестве стационарной фазы использовали пермафазу ODS (Permaphase ODS), в качестве подвижной фазы — систему метанол—вода (15 85). [c.261]

    Это вариант хроматографии, при котором пользуются жидкой подвижной фазой, неподвижная фаза может быть жидкой (жидко-жидкостная хроматография) или твердой (жидкостноадсорбционная хроматография) [226, 231]. [c.95]

    В неорганическом качественном анализе используют преимущественно водные растворы исследуемых веществ, поэтому имеет значение только жидкостная хроматография. Когда неподвижная фаза образована твердым веществом, то соответствующий метод носит название твердо-жидкостной хроматографии (ТЖХ), при жидкой неподвижной фазе имеем жидко-жидкостную хроматографию (ЖЖХ). Неподвижная фаза в ТЛ<Х избирательно поглощает некоторые компоненты раствора. Но и в ЖЖХ необходимо применять твердое вещество, однако инертное, служащее только в качестве носителя неподвижной фазы. В обоих случаях можно называть твердое вещество насадкой. Если насадку (в ТЖХ) или насадку с фиксированной на ней неподвижной жидкой фазой (в ЖЖХ) помещают в стеклянную или металлическую трубку, через которую затем пропускают подвижну о фазу, то такой вариант ЖХ называют колоночной хроматографией. Если насадка открыта и представляет собой либо тонкий ело измельченного твердого вещества, либо лист специальной хро.матографической бумаги, то говорят соответственно о тонкослойной, либо бумажной хроматографии (тех и БХ). В неорганическом качественном анализ используют обычно колоночную ионообменную хроматографию и тонкослойную и бумажную распределительную хроматографию. Расс.мотрим кратко суть этих хроматографических методов. [c.280]

    Жидко-жидкостная хроматография. Систему жидкость — жидкость можно получить путем покрытия специальных материалов тонким слоем жидкой фазы, т. е. применить тот же прием, к которому прибегают при приготовлении упакованных колонок для ГЖХ. Чтобы такая колонка (неподвижная фаза) была стабильной, необходимо, чтобы неподвижная фаза не растворялась в подвижной, точно так же как в ГЖХ неподвижная фаза должна оставаться нелетучей при выбранной температуре хроматографировация. К сожалению, нерастворимость является таким требованисхм, которое в реальных условиях до конца неосуш,ествимо. Требование нерастворимости неподвижной фазы в подвижной становится еще более трудно осуществимым в тех случаях, когда необходима некоторая гибкость в отношении выбора подвижной фазы. Например, подбирая неподвижную фазу, элюотропная сила (полярность) которой была бы достаточна для того, чтобы коэффициенты емкости попали в оптимальный диапазон, приходится комбинировать смеси нескольких индивидуальных растворителей. [c.69]

    Описаяный Цветом [85] в 1906 г новый метод разделения не был оценен по достоинству и привлек внимание химиков лишь 25 лет спустя, когда Кун, Винтерштейн и Ледерер [51] вновь открыли его. В 1941 г. Мартин и Синдж [58] опубликовали статью с описанием нового аналитического метода — жидко-жидкостной хроматографии. Это открытие было настолько важным и оказало такое влияние на развитие химического анализа, что авторы его впоследствии были удостоены Нобелевской премии. Мартин и Синдж всегда полагали, что в качестве подвижной фазы в предложенном ими методе можно использовать и газы, однако осуществить эту идею удалось далеко не сразу лишь 10 лет спустя Мартин и Джеймс доказали справедливость этого предположения и разработали основы исключительно эффективного практически универсального аналитического метода. Они продемонстрировали преимущества нового метода на примере разделения летучих жирных кислот и показали, что вследствие низкой вязкости газа по сравнению с вязкостью жидкой подвижной фазы и во много раз более быстрой диффузии в газовой фазе разделение с применением газа-носителя проходит значительно быстрее, и поэтому такой метод более удобен для рутинных анализов. Почти одновременно Янак [41] опубликовал работу, посвященную разделению углеводородов методом газо-адсорбционной хроматографии. [c.154]

    ЖИДКО-ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ Дж. Киркленд [c.123]

    Жидко-жидкостная хроматография, называемая также распределительной хроматографией, получила признание как эффективный метод высокоразрешимого разделения с 1941 г., т. е. с того момента, когда она была предложена Мартином и Сингом [1]. Однако для аналитических целей этот метод применяется реже, чем новейшие методы газовой или тонкослойной хроматографии. В последнее время, после того, как была усовершенствована методика изготовления колонок и разработана лучшая аппаратура, интерес к этому методу возродился. Теоретические разработки, создание специализированных насадок, чувствительных детекторов, воспроизводимых насосных систем —все это делает высокоскоростную жидко-жидкостную хроматографию высокого давления практическим методом разделения. [c.123]

    Основной интерес к жидко-жидкостной хроматографии был проявлен исследователями, специализируюшимися в газо-жидкост-ной хроматографии, таким образом, современную ЖЖХ считают одной из разновидностей ГЖХ. Например, описаны современные системы ЖЖХ, имеюшие эффективность колонок и время анализа, сравнимые с таковыми в газовой хроматографии. Следовательно, современная ЖЖХ является аналогом ГЖХ. [c.123]


Смотреть страницы где упоминается термин Жидко-жидкостная хроматографи: [c.17]    [c.264]    [c.143]   
Оптимизация селективности в хроматографии (1989) -- [ c.69 , c.73 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкостная хроматография хроматографы

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте