Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнитный резонанс кристаллических соединени

    Многие физические методы, упоминавшиеся в предыдущем разделе, сводятся к измерению величин, зависящих как от молекулярного веса, так и от формы молекул. Следовательно, те же методы могут использоваться и для определения конформации. Однако намного более ценными в этом отношении являются два других метода рентгеноструктурный анализ кристаллических соединений и получение спектров ядерно-го магнитного резонанса (ЯМР) соединений, находящихся в растворе. [c.183]


    Моногидрат > " ведет себя совершенно так же, как и соль оксония [НдО] СЮ4. Кристаллическая структура соединения была детально изучена при помощи дифракции рентгеновских лучей . Ионы перхлората представляют собой почти точный тетраэдр со средним расстоянием С1—О, равным 1,42 А. Изучение протонно-магнитного резонанса показывает, что ион оксония имеет пирамидальную структуру, сходную со структурой аммиака расстояние Н—-Н составляет 1,58 А, расстояние О—Н равно 0,98 А, угол Н—О—Н составляет 110°. Тщательное исследование спектра Рамана подтвердило выводы прежних работ по выяснению строения моногидрата хлорной кислоты и позволило подсчитать энергии валентных связей  [c.24]

    Основные научные работы посвящены изучению термодинамических свойств галогенидов, оксидов и других соединений урана, а также кристаллических структур неорганических соединений (в частности, кристаллов фторидов редких металлов) и химических связей в них. Одним из первых применил метод ядерного магнитного резонанса для изучения электронной [c.123]

    В настоящее время при исследовании строения органических веществ особенно широко используются электромагнитные колебания с длиной волны от миллиардных долей сантиметра до нескольких метров Дифракция рентгеновских лучей (Л = 0,1—0,01 10" см) в кристаллах используется для определения межатомных расстояний и других параметров кристаллической решетки. Электромагнитные колебания ультрафиолетовой (Л = 10" —4-10" см), видимой (К = 4-1(Г<—7-10" см) и инфракрасной = 7-Ю- -10- см) областей спектра используются для определения тонкого строения молекул. Микроволновые колебания (/ = 10 —10 см) характеризуют вращение молекул. Сантиметровые и метровые волны используются для определения строения органических соединений с одновременным воздействием на них электромагнитного поля (электронный парамагнитный и ядерный магнитный резонанс). [c.19]

    Сведения о / -конфигурации Ра (IV) [43] и У(У) [44] в кристаллических решетках были получены из данных спектров парамагнитного резонанса. Большое число измерений магнитной восприимчивости [45] согласуется с предположением о /"-конфигурации для других соединений актинидов. [c.104]

    В инфракрасном спектре полученного бесцветного кристаллического продукта не обнаружены ни линии исходного вещества, ни линии ОН. По данным химического анализа продукт имеет следующий состав [ Hз (NP l2)20]Sb lй. В спектре Н ядерного магнитного резонанса не обнаружен ожидаемый триплет, который подтвердил бы предложенную выше симметричную структуру. По-видимому, вместо циклического соединения был получен изомер, структура которого еще не ясна. [c.122]


    Строение XXVIII подтверждается также результатами изучения инфракрасных и ультрафиолетовых спектров поглощения [130, 142, 178, 245], спектров комбинационного рассеяния света [240], диффракции электронов дикетеНа в парах [35], кристаллографических данных [150], спектра протонного магнитного резонанса жидкого дикетена при температурах вплоть до 120° [10] и спектра поглощения протонного резонанса кристаллического дикетена [79]. Вассерман [251] заметил интересную химическую особенность этого своеобразного соединения. Она заключается в том, что дикетен представляет собой умеренно сильную кислоту (рК 7,1), которую можно титровать в водной среде. Это объясняется, по-вндимому, весьма благоприятной возможностью резонансной стабилизации аниона (XXIX). [c.231]

    Алмазоподобные соединения. Адамантан, или трицикло[3,3,1,1 ] декан, молекулярная структура которого показана на рис. 37, представляет простейший насыщенный полициклический углеводород (СюН ) с атомами углерода, расположенными в виде сетки, напоминающей так называемую характерную ячейку решетки алмаза. Более того, адамантан является прототипом большого семейства алмазоподобных соединений со сходной молекулярной структурой, получающихся при замещении некоторых атомов углерода, образующих пространственную сетку, другими подходящими атомами. Кремний, азот и фосфор могут замещать третичный или мостиковый атом углерода, а кислород и сера могут играть роль одной или более метиленовых групп адамантана. Теплоемкость адамантана в области от 5° до 350° К определили Чанг и Уэструм [ПО] результаты их исследования представлены на рис. 38. При 208,62° К наблюдался резкий переход с кажущейся теплоемкостью больше 4000 кал -град -моль , а энтропия перехода равна 3,87 кал-град- -моль . Из-за значительного предпереходного увеличения теплоемкости изотермическая энтропия перехода при полном превращении в пластическую кристаллическую фазу, по-видимому, минимальна. Новацкий [480] сообщил, что адамантан образует плотно упакованную гранецентрированную кубическую решетку пространственной группы Та —Р 43т с а = 9,43 А. В недавней неопубликованной работе Нордмана [478] показано, что предположение о произвольной ориентации молекул лучше согласуется с новыми данными рентгеноструктурного исследования монокристалла, чем структура, предложенная Новацким, которая, однако, почти так же хорошо согласуется с этими данными. Проведенное Мак-Коллом и Дугласом исследование спектра протонного магнитного резонанса [391] показало резкое уменьшение теплоемкости в другой точке, при 143° К, которое интерпретируется как вращательный переход с энергией активации около 5 ккал-моль . [c.88]

    Все фенолы при отсутствии пространственных затруднений способны к образованию водородной связи. Система О — Н. .. О является наиболее важной и имеется очень большое число природных продуктов с меж-и внутримолекулярными водородными связями такого типа. Хорошо известно, что водородная связь влияет на многие физические свойства (Пиментел и МакКлеллан [12]), например упругость пара, температуру плавления и кипения, растворимость, кристаллическую структуру, ультрафиолетовый и инфракрасный спектры и спектр ядерного магнитного резонанса. Некоторые из этих свойств лежат в основе методик по выделению и очистке, а также используются для идентификации. Вообще, для исследований соединения с внутримолекулярными водородными связями удобнее, чем соединения с межмоле-кулярными связями, многие из которых являются полимерными в твердой фазе. Полифенольные флавоноидные и хиноидные соединения, например, плавятся при высокой температуре и не растворяются в обычных растворите- [c.12]

    Инфракрасные спектры обычно снимают как в твердом состоянии (в суспензии или в таблетке), так и в жидкой фазе. В твердом состоянии, когда вещества, как правило, кристалличны, они существуют в одной конформации. Поэтому полезно определить, содержит ли спектр жидкости полосы, отличные от спектра твердой фазы. Если спектры жидкой и твердой фаз идентичны, это может рассматриваться как хорошее доказательство того, что вещество как в жидком, так и в твердом состоянии существует в одной и той же единственной конформации. Путем таких сопоставлений было установлено, что циклооктан существует в единственной конформации, одинаковой в жидкой и в твердой фазе [23]. Часто в спектре жидкости появляются полосы, отсутствующие в спектре твердого вещества. Это свидетельствует о том, что в растворе в состоянии равновесия с первой конформацией существует вторая конформация, отсутствующая в твердой фазе. Примером такого соединения может служить хлорциклогексан [75, 76]. При низкой температуре он образует твердую фазу, инфракрасный спектр которой, однако, полностью совпадает со спектром жидкости. При дальнейшем понижении температуры происходит переход из одного твердого состояния в другое, которое представляет собой уже единственный конформер. В твердой фазе, полученной при более высоких температурах, молекулы в кристаллической решетке сохраняют свою конформационную свободу. В связи с этим исследование твердого состояния при недостаточно низких температурах может привести к неправильным заключениям. Интересным примером с это11 точки зрения является фторциклогексан. Инфракрасные спектры соединения в твердой фазе даже при очень низких температурах идентичны со спектром жидкости. На основании этого факта было сделано заключение, что фторциклогексан существует в виде единственной конформации даже в растворе [75]. Несмотря на то что этот вывод согласуется со спектральными данными, он представляется маловероятным. В действительности, очевидно, оба конформера фтор-циклогексана изоморфны, т. е. они одинаково хорошо включаются в кристалл11ческую решетку. Этот факт не представляется неожиданным, поскольку размеры атомов фтора и водорода почти одинаковы. Правильность этого предположения может быть проверена, например, измерениями остаточной энтропии при 0°К. Жидкая фаза, очевидно, также представляет собой смесь конформеров, что подтверждается данными ядерного магнитного резонанса [77] (см. разд. 3-4, Г). [c.182]


    Все рассматриваемые здесь своеобразные исследования возникли в связи с тем, что можно назвать загадкой силиконов почему они ведут себя именно так, а не иначе Никакие сведения о химическом строении метилполисилоксана, никакие предварительные данные о связи кремний — углерод не могли объяснить особенных физических характеристик силиконовых полимеров. Химические свойства были понятны, даже ожидались заранее, физические же свойства оставались загадкой. Все особенности указывали на слабое внутримолекулярное взаимодействие и исключительную гибкость цепей. Предполагалось, что причина этого заключается во внутреннем движении необычного рода, но без прочной физической основы. Затем появилась новая техника ядерного магнитного резонанса, которая в условиях высокой разрешающей способности одна давала возможность исследовать внутреннее движение твердых тел наблюдением ширины и отклонения адсорбционной полосы или полос. Хотя эту аппаратуру трудно построить и еще труднее добиться устойчивых экспериментов, тем не менее она ясно показала, что действительно существует значительное количество внутреннего движения и в чистом кристаллическом метилсилоксане и в твердых силиконовых полимерах. Это движение не ограничивается колебанием или отклонением кремний-кислородной связи, но явственно включает вращение метильных групп вокруг связи кремний — углерод, причем оно сохраняется до низких температур [1]. Причины такой свободы вращения (по сравнению со связью углерод — углерод) еще не ясны, но почти определенно связаны с длиной связи. Энергетический барьер для вращения метильной группы в СНзСС1з равен 6 ккал/моль [2], в то время как для СНз81С1з он составляет примерно половину этого, а движение существует до 4° К. В полимере метилсилоксана с молекулярным весом 1 090 ООО барьер для вращения метильной группы составляет всего только 1,5 ккал/моль , т. е. меньше, чем в метаноле [2]. Если мы припишем это различие большему расстоянию связи углерод — кремний, то это должно вызвать дальнейшее усиление движения для аналогичных соединений германия. Поскольку связь германий — кислород будет неиз- [c.60]

    Дикалиевая соль была выделена в кристаллическом состоянии [37], и спектр ядерного магнитного резонанса этой и дилитиевой солей были сняты в растворе тетрагидрофурана. В спектрах обеих солей имеется единственный острый пик, незначительно смещенный от резонансного сигнала самого циклооктатетраена. Рассмотрение равновесия между циклооктатетраеном, его дианионом и радикал-анионом показывает, что наиболее вероятна структура дианиона. В соединениях типа нафталина равновесие сдвинуто в сторону радикал-анионов [38]. [c.76]

    Одиим из интереснейших событий в химии нашего времени является открытие соединений благородных газов. Методы получения соединений элементов нулевой группы периодической системы и результаты всестороннего изучения их свойств составляют содержание книги. Рассмотрены также вопросы их возможного практического применения. Большое внимание уделено изучению молекулярной и кристаллической структуры мето-да.м и дифракции нейтронов, электронов и рентгеновских лучей, исследованиям по спектрам электронного пара магнитного резонанса, ядерного магнитного резонанса, инфракрасным, комбинационного рассеяния и др. Значительная часть книги посвящена теоретическим исследованиям соединений благородных газов вопросам образования связей, применению метода ЛКАО-МО и т. д. [c.2]

    Бис (триметилсилил) амид лития легко отделяется при перекристаллизации. Бесцветный кристаллический трис[бис (триметилсилил) амино]алюман сублимируется в вакууме и растворим в неполярных растворителях. Соединение обладает высокосимметричной структурой — при 54 водородных атомах в спектре ядерно-магнитного резонанса, проявляется лишь один резкий сигнал. Шарообразная форма молекулы с экранированным центральным атомом алюминия делает невозможной димеризацию. Однако вода расщепляет соединение с выделением тепла, причем гидролиз идет по связям А1-М. [c.283]

    Для колхицина и некоторых его аналогов сообщались спектры поглощения в ультрафиолетовом, инфракрасном свете и при ядерно-магнитном резонансе 1255]. Максимум поглощения в ультрафиолетовом свете в 95%-ном этаноле отмечен при 350,5 ммк (log е 4,22) и 243 ммк (log 8 4,47). Колхицин растворим в воде (4,5%), бензоле (1%), хорошо растворим в спирте, хлороформе, нерастворим в петролейном эфире. С хлороформом образует два кристаллических соединения B- H I3 и В-2СНС1з, которые освобождают хлороформ только при нагревании в течение длительного времени до 60—70° С. На свету колхицин самоокисляется. [c.200]

    Приведенный цикл отражает простейший каталитический процесс. Как правило, каталитический цикл включает большее число реакций и ие одно, а несколько промежуточных соединений катализатора с реагентом или реагентами. Иногда образование таких промежуточных соединений удается обнаружить физико-химическими методами, чаще всего методами оптической спектроскопии илн методом ядерного магнитного резонанса. Иногда при удачном стечении обстоятельств, включающих экспериментальное искусство ученого, эти промежуточные соединения удается выделить в индивидуальной, кристаллической форме. Одному из авторов книги в лаборатории японского ученого Кунио Яги в университете г. Нагоя была продемонстрирована коллек ция из 13 веществ — промежуточных соединений биологического катализатора диаминоксндазы. Вот мы и подошли к одной из главных причин ускоряющего действия катализаторов на химические реакции — осуществлению реакции в присутствии катализатора по многоступенчатому пути. 94 [c.94]

    В теории кристаллического поля (ТКП) лиганды выступают только как Источник создаваемого ими поля. Химическая связь центральный ион — лиганд рассматривается как ионная (например, в [СоРе] ) или ион-дипольная ([Ре(Н20) ), электронная оболочка центрального иона— как автономная, а oбoJЮЧки лигандов вообще не рассматриваются. Такой подход является приближенным. Опыты по электронному парамагнитному резонансу показывают, что электронная плотность ие сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. что связь в координационных соединениях — ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбита-лей, как более общую, чем электростатическая теория ионной связи. В ней находят объяснение Т01якие магнитные эффекты, интенсивность спектров поглощения и другие свойства, не получившие объяснения в ТКП. Сама же ТКП оказывается частным случаем более общей теории МО ЛКАО, получившей в химии координационных соединений название теории поля лигандов (ТПЛ), основы которой заложены Ван-Флеком. [c.247]

    Информация об электронном строении соединения, имеющего неспаренные электроны, содержится в положении линий ЭПР, тонкой, сверхтонкой и супер-сверхтонкой структуре, ширине линий и др. По отличию g -фактора от 2 можно судить об орбитальном вкладе в магнитный момент, о характере спин-орбитального взаимодействия, знаке (и величине) константы Я, расщеплении в кристаллическом поле Л, а по анизотропии г-фактора — о строении окружения парамагнитного центра и прежде всего о его симметрии. Сверхтонкая и супер-сверхтонкая структуры спектров ЭПР представляют труднопереоценимую информацию о химическом строении соединения, о локализации неспаренных электронов, о ковалентности связей, о характере участия лигандов дифференцированно в а- и я-связях [305—307]. Дополнительные данные удается получить при исследовании так называемого двойного электронно-ядерного резонанса [308] и влияния электрического поля на спектры ЭПР [309]. [c.172]

    Джарретт [93] измерил спектры поглощения парамагнитного резонанса трифтор- и гексафторацетилацетонат-ных комплексов железа (III) и хрома (III). Резонанс наблюдался у Сг(ТФА)з, Ре(ТФА)з и Сг(ГФА)з и не наблюдался у Ре(ГФА)з, хотя измерения магнитной восприимчивости свидетельствуют о том, что это соединение парамагнитно. Кристаллическая структура гексафторацетилацетоната хрома (III) гексагональная, а аналогичный комплекс железа (III) кристаллизуется в виде двух модификаций тетрагональной и гексагональной. [c.64]

    Кристаллическая структура циклопентадиенилида марганца сама по себе не может служить доказательством типа связи, поскольку два иона СзН , расположенные симметрично по отношению к иону Мп , создадут такую же конфигурацию, как у сэндвичевого соединения ферроценового типа. И действительно, Вейсе и Фишер [28] установили подобную слоистую структуру для Мп(С5Н5)2, но они не учли другие его свойства, перечисленные выше. Что касается бис-циклопентадиенильных соединений ванадия и хрома, то их магнитные свойства находятся в соответствии с ферроценовым расположением молекулярных орбит однако для них можно написать также и ионные структуры с тем же числом неспаренных электронов, что и в молекулах с сэндвичевыми связями. Отсюда возникает возможность резонанса (в формальном химическом смысле) между двумя формами, чем объясняются промежуточные свойства. Более того, наличие многих незаполненных орбит у титана, ванадия и хрома (в противоположность железу, кобальту и никелю) делает возможной сольватацию атомов этих металлов донорными растворителями, изменяя структуру и вызывая сольволитическую диссоциацию, не отмечавшуюся у ферроцена [25а]. [c.266]


Смотреть страницы где упоминается термин Магнитный резонанс кристаллических соединени: [c.232]    [c.322]    [c.321]    [c.154]    [c.6]    [c.54]    [c.83]    [c.115]    [c.122]    [c.370]    [c.517]    [c.260]   
Графит и его кристаллические соединения (1965) -- [ c.104 , c.105 ]




ПОИСК





Смотрите так же термины и статьи:

Соединения кристаллические



© 2024 chem21.info Реклама на сайте