Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства фаз, составляющих дисперсную систему

    Нефти содержат твердые углеводородные частицы, построенные из молекул н-парафинов, высокомолекулярных ароматических или нафтеновых углеводородов. Эти частицы составляют дисперсную фазу в нефти, а сама жидкая часть нефти составляет дисперсионную среду. При нагревании нефти как дисперсной системы в ней меняется структура твердых частиц и это может влиять на свойства нефтяной дисперсной системы. При нагревании твердых н-парафиновых углеводородов с числом атомов С в молекуле от 16 до 24 и выше в них проявляется от одной до пяти модификаций (С. И. Колесников). В твердых н-парафиновых углеводородах при их нагревании или охлаждении происходит последовательно переход от одной структуры к другой в соответствии с правилом Оствальда, которое гласит В случае возможности протекания ряда фазовых переходов от менее устойчивого состояния к более устойчивому обычно вначале образуется более устойчивая модификация, а не самая устойчивая . [c.174]


    Водные дисперсные системы и увлажненные пористые тела составляют значительную часть материалов и продуктов естественного и искусственного происхождения, с которыми имеет дело техника и химическая технология. К ним относятся, например, адсорбенты и катализаторы, полимерные, строительные и конструкционные материалы, горные породы, почвы и грунты, биологические системы, пищевые, текстильные и сельскохозяйственные продукты. Физико-химические и механические свойства этих дисперсных систем зависят от содержания и свойств удерживаемой ими влаги. Кинетика массообменных процессов, составляющих основу многих технологий, определяется подвижностью и энергией связи влаги с твердой фазой. [c.4]

    Коллоидные системы представляют собой частный вид дисперсных систем. К коллоидным относятся системы со сравнительно высокой степенью дисперсности размер частиц составляет от 10 до 2000 А. Таким образом, коллоидные системы по степени дисперсности частиц должны быть помещены между грубодисперсными системами и молекулярно-дисперсными, т. е. истинными растворами (в последних растворенное вещество находится в растворителе в виде отдельных молекул или ионов). В коллоидных системах частицы не могут быть обнаружены с помощью обычного микроскопа. Таким образом, коллоидные системы являются системами гетерогенными (точнее — микрогетерогенными), так как частицы дисперсной фазы составляют самостоятельную фазу, обладающую некоторой поверхностью, отделяющей ее от дисперсионной среды. Вследствие малого размера частиц общая поверхность их в коллоидных системах очень велика и составляет десятки, сотни и тысячи квадратных метров на грамм дисперсной фазы. Очень сильное развитие этой поверхности раздела и обусловливает особенности в свойствах, присущие коллоидным системам. [c.504]

    Относительная ошибка экспериментов составляла 5%. Все опыты проводили в токе гелия высокой чистоты при атмосферном давлении. Практически все нефтяные дисперсные системы вследствие различной склонности к межмолекулярным взаимо действиям содержащихся в них высокомолекулярных углеводородов характеризуются аномальными свойствами. Изучение аномальных свойств НДС позволяет разработать методы оценки и регулирования энергетических параметров фазовых превращений в реальных нефтяных системах. [c.140]


    Все дисперсные системы гетерогенны, состоят по меньшей мере из двух фаз. Непрерывная фаза называется дисперсионной средой, раздробленная прерывная фаза — дисперсной фазой. Все дисперсные системы, составляющие предмет коллоидной химии, можно классифицировать по кинетическим свойствам дисперсной фазы на системы, в которых частицы дисперсной фазы могут свободно передвигаться (свободно дисперсные системы), и на системы, в которых эти частицы передвигаться практически не могут (связно-дисперсные системы). Существенно важна классификация по размерам частиц дисперсной фазы. По последнему признаку коллоидные системы подразделяются на ультрамикрогетерогенные, размер частиц которых составляет 1—100 нм, микрогетерогенные с размером частиц 100— 10000 нм (0,1—10,0 мкм) и грубодисперсные системы, размер частиц которых больше 10 мкм. [c.380]

    Коллоидная химия. В природе и промышленности мы встречаемся с огромным количеством микрогетерогенных дисперсных систем с высокоразвитой поверхностью границы раздела между фазами. Имеется большое число дисперсных систем, в образовании которых участвуют молекулы больших размеров (макромолекулы). Исследование физикохимических свойств и закономерностей их изменения в дисперсных системах составляет предмет коллоидной химии. [c.8]

    Однако всеобщность коллоидного состояния представляется в настоящее время не только возможной (стр. 5), но и действительной в том смысле, что реальные тела являются дисперсными системами. Так, флуктуации плотности в газообразной гомогенной среде, несмотря на короткое время жизни, представляют собой гетерогенные образования со свойствами дисперсной фазы. Дефекты решеток реальных кристаллов, достигающие коллоидных размеров, также являются дисперсной фазой и коллоидно-химическая интерпретация поведения дефектов успешно проводится в современных работах по физике твердого тела. Чистые жидкости, по-видимому, также не составляют исключения (ассоциаты, [c.11]

    Количественные изменения М приводят к изменениям качественным — появляются новые свойства, отсутствующие у низкомолекулярных соединений и весьма важные в практическом отношении, например высокая эластичность. Мы видели уже, что структурно-механические свойства являются функцией внутренней структуры дисперсной системы. И в настоящей главе основная задача состоит в установлении связи между строением (структурой) ВМС, с одной стороны, и практически важными свойствами их с другой. Решение этой задачи составляет основу той молекулярной архитектуры , которая необходима для конструирования полимерных материалов, обладающих требуемыми свойствами. [c.304]

    Однако всеобщность коллоидного состояния представляется в настоящее время не только возможной, но и действительной в том смысле, что практически все реальные тела являются дисперсными системами. Так, флуктуации плотности в газообразной гомогенной среде, несмотря на короткое время жизни, представляют собой гетерогенные образования со свойствами дисперсной фазы. Дефекты решеток реальных кристаллов, достигающие коллоидных размеров, также являются дисперсной фазой и коллоидно-химическая интерпретация поведения дефектов успешно проводится в современных работах по физике твердого тела. Чистые жидкости, по-видимому, также не составляют исключения (ассоциаты, жидкие кристаллы). Следовательно, в настоящее время весьма трудно представить себе реальное тело, не обладающее признаками и свойствами дисперсной системы. [c.13]

    Согласно современным представлениям, нефть — дисперсная система, т е раствор высокомолекулярных соединений в низкомолекулярных [403] Основу существующих технологий переработки нефти составляют процессы фазообразования (кипения, кристаллизации, стеклования и т д ), а формирование новой фазы в исходной (например, переход из жидкого состояния в твердое — образование парафина, кокса) осуществляется через дисперсное состояние Технология переработки нефти как дисперсной системы требует учета всех стадий образования фаз, возможности влияния внешних воздействий (температуры, давления, скорости нагрева и тд ) на кинетику и степень превращения исходных веществ в новые продукты Характер фазовых переходов в процессах технологической переработки предопределен составом исходной нефти и нефтепродуктов Для оптимизации качества продуктов необходимо знать взаимосвязи состава, ресурсов (выход на нефть) с основными показателями качества фракционным составом, температурой кристаллизации и застывания итд Сведений в литературе о таких зависимостях недостаточно Успешное решение этой проблемы возможно только на основе глубокого понимания взаимосвязи между свойствами нефтепродуктов, их составом и строением на молекулярном уровне, что требует привлечения спектроскопии ЯМР [c.249]


    В низкомолекулярных коллоидных системах сравнительно легко можно определить, какое вещество составляет дисперсную фазу, а какое непрерывную среду. Для этого либо определяют способность эмульсии смачивать гидрофобную поверхность, либо испытывают способность эмульсии разбавляться водой, либо определяют электропроводность эмульсии. Все эти методы мало пригодны для эмульсий полимер в полимере как вследствие высокой вязкости системы, так и вследствие того, что свойства компонентов (например, электропроводность) различаются незначительно. Проблема определения природы полимера, образовавшего непрерывную среду, является нерешенной, хотя в последнее время появилась публикация, позволяющая наметить путь решения этого вопроса [76]. [c.25]

    Дисперсные системы с очень высоким содержанием дисперсной фазы (более 74 об. %) составляют отдельную группу высококонцентрированных (в. к. э.) или желатинированных эмульсий, отличающихся по своим свойствам от концентрированных. Вследствие плотной упаковки капель они не способны к седиментации и обладают механическими свойствами, похожими на свойства гелей. В данной монографии высококонцентрированные эмульсии подробно не рассматриваются. [c.8]

    В сборнике обобщены достижения основных направлений коллоидной химии за последние годы. Книга составлена из оригинальных обзорных работ ведущих ученых, представляющих коллоидную химию в СССР, а также отдельные крупные зарубежные лаборатории. Наиболее полно освещены вопросы поверхностных явлений в дисперсных системах, строение и состав двойного слоя адсорбированных ионов и электрокинетические явления, физико-химия контактных взаимодействий и устойчивость дисперсных систем, структурообразование и физикохимическая механика, растворы поверхностно-активных веществ, свойства эмульсий и коллоидная химия полимеров. Наряду с фундаментальными вопросами коллоидной химии представлены отдельные приложения. [c.2]

    Получение различного рода дисперсных структур с заданными механическими (деформационными) свойствами составляет одну из важнейших задач современной коллоидной химии. В этом направлении накоплен большой экспериментальный опыт, требующий соответствующего анализа и теоретического обобщения. Уже сейчас во многих странах сделаны попытки увязать закономерности построения в пространственных дисперсиях каркасов с их упруго-пластично-вязкими показателями. Кроме того, проведено много научных исследований по регулированию механических характеристик таких систем. Разработаны некоторые аспекты формирования тиксотропно-коагуляционных контактов в дисперсиях глинистых минералов. Однако до настоящего времени в научной литературе недостаточно освещены механизм и закономерности образования коагуляционных структур в системе глина—вода как в обычных, так и в экстремальных условиях. [c.3]

    В этом смысле рассмотренные в предыдущих главах общие закономерности образования и разрущения дисперсных структур с атомными и коагуляционными контактами по существу составляют физико-химическую основу регулирования структурно-реологических свойств высококонцентрированных систем в реальных технологических процессах в дисперсных системах и в технологии получения дисперсных материалов. [c.264]

    Исключение могут составлять те процессы (например, производство некоторых видов катализаторов, химически чистых дисперсных систем), в которых нельзя применять ПАВ, поскольку они являются вредными примесями в таких дисперсных системах. Естественно, что регулирование структурно-реологических свойств таких систем можно осуществлять только с помощью интенсивных механических воздействий, в том числе вибрационных, в сочетании с температурными (для термочувствительных систем), ультразвуковыми и другими видами физических воздействий. [c.146]

    Указанные обстоятельства обусловливают третий подход к синтезу операторов ФХС, основанный на модельных представлениях о внутренней структуре процессов, происходящих в технологических аппаратах. Основу этого подхода составляет набор идеальных типовых операторов, отражающих простейшие физико-хими-ческие явления (модель идеального смешения, модель идеального вытеснения, диффузионная модель, ячеечная модель, комбинированные модели и т. п.). Математическое описание технологического процесса сводится к подбору такой комбинации простейших операторов, чтобы результирующая модель достаточно точно отражала структуру реального процесса [1 ]. Такой подход позволяет сравнительно просто учесть влияние важнейших гидродинамических факторов в системе на макроуровне (зон неидеальности смешения, циркуляционных токов, байпасных потоков и других гидродинамических неоднородностей в аппарате), а также стохастических свойств ФХС (распределения элементов потока по времени пребывания в аппарате, коалесценции и дробления частиц дисперсной фазы, распределения частиц по размерам, вязкости, плотности, поверхностному натяжению и т. д.). [c.14]

    Таким образом, гель состоит из двух фаз первая составляет его скелет, образованный частицами дисперсной фазы, обладающий механической прочностью и придающий всей системе свойства твердого тела, и вторая — жидкость, заполняющая все промежутки этого скелета. [c.253]

    С увеличением удельной поверхности возрастает и величина поверхностной энергии. Таким образом, результатом диспергирования (измельчения) вещества является увеличение роли поверхностных свойств в общих свойствах системы и одновременное увеличение абсолютного значения поверхностной энергии. Это обстоятельство определяет огромное значение поверхностных явлений для дисперсных систем. Поверхностные явления составляют основную причину высокой активности и термодинамической неустойчивости коллоидных систем, лежат в основе методов их приготовления и использования. [c.189]

    С использованием потенциальных (характеристических) кривых М. М. Дубинин разрешил проблему прогнозирования свойств микропористых сорбентов. При каталитических процессах, взаимодействии дисперсных материалов с полимерами и во многих других практически важных системах доля активной поверхности обычно составляет незначительную часть общей поверхности твердого вещества (часто менее 17о). В этих случаях для прогнозирования свойств твердых веществ необходимо относить адсорбционные характеристики к соответствующей доле активной поверхности, т. е. производить измерения при крайне низких давлениях или концентрациях адсорбтивов. Измерения упрощаются, если для исследования адсорбции компонентов окислительно-восстановительных систем использовать потенциометрию. При этом обязательным условием является химическая и электрохимическая обратимость процессов. Если твердое вещество обладает достаточной электронной проводимостью, то из него можно изготовить, например, прессованием, электрод и применить его как индикаторный при изучении адсорбционных характеристик. Более универсальна методика, основанная на применении индифферентного электрода в растворе солей железа (III) и (II), с помощью которой могут быть исследованы любые дисперсные и пористые материалы. [c.204]

    Таким образом, объекты коллоидной химии обладают поверхностной энергией. Рассмотрение превращения поверхностной энергии в другие виды энергии составляет содержание первой половины курса коллоидной химии — учения о поверхностных явленнях. Основное внимание в этом учении уделяется поверхностному слою, его строению и свойствам. Вторую половину курса составляет учение о дисперсных системах, в котором рассматриваются их синтез и свойства, связанные, главным образом, с дисперсным состоянием, когда поверхностная энергия во многом определяет объемные свойства тел. Две составные части курса также соответствуют двум признакам объектов коллоидной химии. Поверхностные явления — результат гетерогенности, дисперсность же в значительной степени определяет вклад поверхностных явлений в объемные свойства дисперсных систем. [c.12]

    До сих пор шла речь, в основном, вообще о структурно-механических (реологических) свойствах свободнодисперсных и связнодисперсных систем, обладающих коагуляционной и конденсационно-кристаллизационной структурой. Вместе с тем эти системы объедиияют большинство различных природных и синтетических материалов, используемых в народном хозяйстве. Поэтому знание общих закономерностей образования систем с определенными структурно-механич ескими свойствами помогает находить методы управления такими свойствами конкретных материалов. К важнейшим материалам относятся металлы, сплавы, керамика, бетоны, пластмассы и др. Как уже указывалось, их реологические свойства описываются типичной для твердообразных систем зависимостью деформации от напряжения (см. рис. VII. 15). Несмотря на небольшую пористость или даже ее отсутствие, все эти материалы полученные в обычных условиях, являются дисперсными система ми. Их структуру составляют мельчайшие частицы (зерна, кри сталлики), хаотически сросшиеся между собой. Технология пере численных материалов, как правило, предусматривает предвари тельный перевод исходного сырья в жидкообразное состояние которое позволяет различными методами регулировать структур но-механические и другие свойства продукта. Технологам, занимающимся получением материалов, очень важно знать механизм образования тех или иных структур, а также методы регулирования их свойств, в частности механических. [c.382]

    В этой главе рассматриваются вопросы учета сырой нефти при ее дальнейшей транспортировке, не затрагивая вопросов измерения дебита нефтяных скважин. Под сырой нефтью будем подразумевать любую нефть (жидкость), полученную после сепарации, без всякого ограничения содержания каких-либо примесей (воды, солей, механических примесей и т.д.) и перекачиваемую на установки подготовки нефти. Эта жидкость представляет собой сложную смесь нефти, растворенного газа, пластовой воды, содержащей, в свою очередь, различные соли, парафина, церезина и других веществ, механических примесей, сернистых соединений. При недостаточном качестве сепарации в жидкости может содержаться свободный газ в виде пузырьков - так называемый окклюдированный газ. Все эти компоненты могут образовывать сложные дисперсные системы, структура и свойства которых могут быть самыми разнообразными и, самое главное, не постоянными в движении и времени. Например, структура и вязкость водонефтяной эмульсии могут изменяться в широких пределах в процессе движения по трубам, в зависимости от скорости, температуры, давления и других факторов. Всё это создаёт очень большие трудности при учете сырой нефти, особенно при использовании средств измерений, на показания которых влияют свойства жидкости, например, турбинных счетчиков. Особенно большое влияние оказывают структура потока, вязкость жидкости и содержание свободного газа. Частицы воды и других примесей могут образовывать сложную пространственную решетку, которая в процессе движения может разрушаться и снова восстанавливаться. Поэтому водонефтяные эмульсии часто проявляют свойства неньютоновских жидкостей. Измерение вязкости таких жидкостей в потоке представляет большие трудности из-за отсутствия методов измерения и поточных вискозиметров. Измерения, проводимые с помощью лабораторных приборов, не дают истинного значения вязкости, так как вязкость отобранной пробы жидкости отличается от вязкости в условиях трубопровода из-за разгазирования пробы и изменения условий измерения. Содержание свободного газа зависит от условий сепарации и свойств жидкости. Газ, находясь в жидкости в виде пузырьков, изменяет показание объемных счетчиков на такую долю, какую долю сам составляет в жидкости, то есть если объем газа в жидкости составляет 2 %, то показание счетчика повысится на 2 %. Точно учесть содержание свободного газа при определении объема и массы нефти очень трудно по.двум причинам. Во-первых, содержание свободного газа непостоянно и может изменяться в зависимости от условий сепарации (расхода жидкости, вязкости, уровня в сепараторах и т.д.). Во-вторых, технические средства для непрерывного измерения содержания газа в потоке в настоящее время отсутствуют. Имеющиеся средства, например, устройство для определения свободного газа УОСГ-ЮОМ, позволяют производить измерения только периодически и дают не очень достоверные результаты. Единственным способом борьбы с влиянием свободного газа является улучшение сепарации жидкости, чтобы исключить свободный газ или свести его к минимуму. Для уменьшения влияния газа УУН необходимо устанавливать на выкиде насосов. При этом объем газа уменьшается за счет сжатия. [c.28]

    На основе этих исследований и работ Веймарна, Во. Оствальда и др. было установлено, что в коллоидных растворах частицы находятся при высокой степени раздробления или диспергирования, но что они гораздо больше молекул было найдено, что во многих случаях размер частиц приблизительно составляет от 1 до100 И1х. Степень диспергирования частиц получила название дисперсности, диспергированные частицы — дисперсной фазы, среда, в которой они находятся, — дисперсионной среды, а вся система в совокупности — дисперсной системы эти названия применяются и в настоящее время. Веймарн, Во. Оствальд и др. высказали мысль, что свойства дисперсных систем определяются только размерами или степенью дисперсности частиц это представление получило выражение в предложении называть коллоидную химию дисперсоидологией. Развитие этого представления было обусловлено тем, что большинство известных в то время свойств коллоидных систем — оседание под действием силы тяжести, мутность, [c.9]

    Различие в свойствах системы получено при смешении полимеров на вальцах или в смесителе, в общем растворителе, на стадии латекса и т. д..В зависимости от условий смешения при одинаковом их соотношении получаются различные механические свойства. Физические свойства системы зависят от того, какой полимер составляет дисперсную фазу, а какой дисг]б рсионную сдеду. Поверхностные свойства материала — адгезия и сопротивле ние действию растворителей определяются свойствами полимера, являющегося дисперсионной средой. Распределение полимеров по фазам во многом зависит от вязкости и условий их смешения. [c.23]

    Он может быть истолкован с помощью механической модели материала, которая должна быть несколько сложнее рассмотренных ранее (рис. 3.78). В частности, сухое трение должно быть заменено трением через тонкий слой очень вязкой жидкости. С целью физико-химического толкования этих и др. реологических параметров необходимо установить причины появления пластических и прочих свойств, установить зависимость величины констант от состава и структуры деформируемой среды, вьывить пределы применимости тех или иных законов течения и т. д. Для этого необходимо определить физико-химическую сущность самого процесса деформирования дисперсных систем, которая связана, прежде всего, с понятием структура дисперсной системы и явлением структурирования. Следует иметь в виду, что не все упомянутые выше параметры, в том числе максимальная вязкость г)шах, на самом деле характеризуют исследуемый материал, несмотря на их достаточно широкое применение в научной и технической литературе, а также в программных продуктах ЭВМ для моделирования течения различных жидкостей. Вьиснение причин того или иного поведения дисперсных систем на основе их теоретических моделей, а также смысла и области применения различных параметров реологических законов составляет содержание последующих четырех подразделов. В частности, будет показано, что величина максимальной вязкости зависит от конструктивных параметров приборов, на которых она измеряется. [c.676]

    Понятие дисперсной системы. Под дисперсной системой подразумевается совокупность частиц дисперсной фазы (пузырей, капель или твердых частиц), взаимодействующих между собой непосредственно или посредством несущей среды (газа или жидкости). Применение концепции дисперсных систем имеет смысл в том случае, если необходимо учитывать различия свойств частиц, например при кристаллизации, конденсации, коагуляции, измельчении, смешении. Частица дисперсной фазы характеризуется, с одной стороны, положением ее центра тяжести х, поступательной н и угловой со скоростями и, с другой стороны, ее размером /, объемом V, формой Ч , плотностью концентрацией целевого компонента С и т. д. Для сокращения затшси параметры х, м/, 5>, I, V и другие можно считать компонентами некоторого обобщенного вектора а. Область изменения многомерного вектора 5, некоторой /-Й частицы составляет многомерное пространство Ai. Совокупность компонент векторов а множества дисперсных частиц составляет некоторое обобщенное фазовое пространство А. Если в дисперсной системе находится N частиц, а вектор а для каждой частицы состоит из Мм компонент, то пространства будут Л д мерными, а пространство А будет X Ж-мерным. [c.671]

    Газовые эмульсии — это пока малоизученный вид дисперсных систем, у которых дисперсная фаза — пузырьки газа, а дисперсионная среда — жидкость. Их свойства во многом отличаются от свойств как концентрированных газовых дисперсных систем — пен, так и обычных эмульсий типа жидкость в жидкости . Содержание газовой дисперсной фазы в газовых эмульсиях обычно составляет не более нескольких пропентов, редко достигая десятков процентов. В качестве примерного критерия отнесения дисперсной системы к газовым эмульсиям можно указать значительную толщину прослоек мел<ду пузырьками, в результате чего их поведение в определенной мере независимо друг от друга. Вследствие этого газовые эмульсии обладают текучестью, аналогичной текучести других жидкостей. [c.3]

    Следовательно в зависимости от дисперсности б, концентрации nIN, температуры граница лиофильности как некоторое критическое значение межфазной энергии а , соответствующее условию агрегативной устойчивости дисперсной системы, может лежать в очень широком интервале значений о (10 ч- ЮмДж/м ), что удается выразить численно и сопоставить с экспериментальными данными, В этой развиваемой нами системе представлений лиофильность (и как альтернатива — лиофобность) не есть свойство поверхности как таковой (и не есть, как правило, характеристика поведения отдельной частицы),— это понятие выступает как свойство системы, как одно из проявлений универсальной физико-химической закономерности — конкуренции потенциальной энергии сцепления частиц дисперсной фазы и кинетической энергии, связанной с их участием в тепловом движении. Вместе с тем, в основе развиваемой схемы лежит оценка глубины первичного (ближнего) потенциального минимума для индивидуального контакта, прежде всего, по отношению к величине кТ, и их сопоставление в широком интервале варьирования родственности среды и дисперсной фазы. При этом обнаруживается весь непрерывный спектр от лиофильности (самопроизвольного диспергирования, пептизации коагулята), когда щ составляет малые доли кТ, например, для гидро-фобизованных частиц диаметром 6=1- 10 м в жидком углеводороде, до совершенной лиофобности (коагуляции, с прочным закрепле- [c.44]

    Величина удельной межфазной поверхности в барботажной и дисперсной системах изменяется в очень широких пределах и существенно зависит не только от расходов фаз, но и" от конструктивных особенностей контактных устройств [24]. Например, для переливных контактных устройств на системе вода — воздух удельная поверхность контакта фаз в режиме крупноячеистой пены изменяется в пределах а = 200 270 м /м и определяется в основном задержкой жидкости и геометрическими размерами контактного устройства. Переход к подвижной пене сопровождается интенсивным ростом межфазной поверхности до значений а = 400 -Ь700 м /м . В режиме подвижной пены и переходной структуры при увеличении расхода газа межфазная поверхность меняется мало, достигая значения а = 800 м /м . В режиме диспергирования жидкости происходит дальнейшее увеличение поверхности контакта фаз по сравнению с пенным и барботажным режимами. Увеличение задержки жидкости также способствует возрастанию межфазной поверхности. Большое влияние на величину межфазной поверхности оказывают физические свойства газа и жидкости. Так, межфазная поверхность возрастает с, увеличением вязкости /1 уменьшением поверхностного натяжения жидкости из-за уменьшения среднего диаметра пузырей. Если для системы вода — воздух удельная поверхность контакта фаз составляет а = 800 1000 м /м , то для системы воздух — метанол 1500 м м и для системы воздух — керосин 3000 м /м . [c.159]

    Большинство важнейших материалов полученных в обычных условиях, является дисперсными системами. Их структуру составляют мельчайшие частицы (зерна, кристаллы), хаотичесю сросшиеся между собой. Технология перечисленных материалов, как правило, предусматривает предварительный перево.т исходного сырья в жидкообразное состояние, которое позволяет различными методами регулировать структурно-механп-ческие и другие свойства продукта. Механические свойства твердых тел непосредственно зависят пт свойств структуры, которая определяется как атомным и ),пекулярным строением отдельных кристаллов и зерен, так и их размерами, взаимным расположением, качеством связей между ними, наличием дефектов, пористости и другими факторами. [c.437]

    Значения ь Е2, 111, т]2, Рь составляют основные показатели механических свойств структурированных дисперсных систем в условиях не очень ёольщих деформаций. При значительных деформациях (течении) важно также найти минимальное значение Т12, соответствующее вязкости системы с полностью разрушенной структурой. [c.251]

    Компактные осадки с хорошими фильтрующими свойствами получаются при биохимической очистке хромосодержащих вод и при электрофизических методах обработки. Метод электрообработки с применением электроосмоса и электрофореза был использован для обработки осадка после реагентной схемы восстановления ионов шестивалентного хрома. Кроме того, была показана возможность электрокондиционирования осадков сточных вод гальванических цехов. Электрообработка осадков большой влажности проводится при плотности тока 30—55 мА/см с нерастворимыми электродами. Причиной положительного эффекта является дестабилизация дисперсной системы под действием электрического поля, дегидратация частиц оксигидратов железа и хрома. Скорость филь-тргщии после электрообработки увеличивается в 4—5 раз, скорость осаждения — в 6-7 раз, удельное сопротивление уменьшается в 4 раза, влажность составляет 75 %. Недостатком этого метода являются значительные энергозатраты — 60 кВт/м . [c.202]

    Эмульсии представляют собой дисперсные системы, состоящие из мельчайших капель одной жидкости, распределенной в другой, в которой первая жидкость нерастворима или мало растворима. Размеры капелек составляют несколько (1—50) микрон в поперечнике. Одна из фаз эмульсии обычно вода, другой может быть любая органическая жидкость, не смешивающаяся с водой. Эту жидкость принято называть маслом. Кроме воды и масла, устойчивая эмульсия обязательно содержит третий компонент, эмульгатор, сообщающий агрегативную устойчивость системе. В зависимости от того, какая фаза образует дисперсионную среду, различают эмульсию маслы в воде, м1в, и воды в масле б1м. Эмульсии получаются, главным образом, дисперсионным методом путем встряхивания или перемешивания. Разбавленные (меньше 1%) и концентрированные (больше 1%), эмульсии различаются по природе агрегативной устойчивости. В стабилизации первых главную роль играет электроки-нетический потенциал и связанная с ним толщина сольватной оболочки. Заряженные одноименно капельки отталкиваются и не слипаются. Эти эмульсии приближаются по свойствам к лиофобным коллоидным системам. В концентрированных эмульсиях, имеющих большое практическое значение, устойчивость определяется, главным образом, характером прочной межфазной поверхностной пленки, не разрывающейся при столкновениях. Пленка обычно образуется третьим веществом, эмульгатором. Значение пленки эмульгатора сводится к понижению поверхностного натяжения на границе двух фаз и уменьшению, таким образом, работы образования поверхности раздела при диспергировании, согласно уравнению/ =5 а. При понижении поверх- [c.227]

    Исходя из теории образования нефти как результата длительных превращений органических остатков, основную часть нефти составляют углеводороды различного строения. Однако выходящая на поверхность нефть выносит с собой попутный газ, воду и механические частицы песка, горной породы и т. д. Количество этих компонентов для различных месторождений различно. Эти компоненты нерастворимы, олеофобны и образуют дисперсную систему, которая подвергается разделению. Но и после отделения нерастворимых компонентов, согласно химической природе самой нефти, она не является молекулярным раствором, или ньютоновской жидкостью. Наличие в нефти гетероатомных соединений, а также высокомолекулярных соединений, большинство которых содержат серу, азот, кислород и металлы, сообщает нефти, нефтяным фракциям и остаткам специфические свойства, присущие коллоидным и дисперсным системам. В зависимости от размеров частиц дисперсной фазы такие системы могут быть как ультрагетерогенными (размер частиц от 1 до 100 нм), так и грубодисперсными (размер частиц > 10 ООО нм). [c.28]

    Следовательно, установленные закономерности и механизм образования, устойчивости и разрушения таких систем составляют основу методов физико-химического управления их структурнореологическими свойствами в ходе разнообразных технологических процессов в таких системах и процессов получения дисперсных материалов. Вместе с тем, эти закономерности лежат в основе методов интенсификации технологических процессов в высококонцентрированных дисперсных системах и повышения качества (прежде всего, прочности и долговечности) дисперсных материалов. [c.299]

    Целью модификации битумов полимерами является получение композиционного материала (компаунда) с преобладающими свойствами полимера, такими, как высокая прочность, широкий интервал рабочих температур - , высокая химическая стойкость, хорошая переносимость больших пластических деформаций, стойкость к действию климатических факторов и т.п.Температурный диапазон работоспособности дорожных битумов (алгебраическая сумма температуры размягчения по КиШ и температуры хрупкости по Фраасу) составляет обычно 50-65°, что обусловлено главным образом природой нефти, т.е. низкотемпературными свойствами ее низкомолекулярных компонентов и групповым химическим составом тяжелых остатков (сырья для производства битумов).Битумы малоэластичны, т.к. их пространственная структура, создаваемая за счет коагуляционных контактов между частицами дисперсной фазы (асфальтеновых ассоциатов), обусловливает минимальные по сравнению с недисперсными системами величины обратимых деформаций . В то же время условия эксплуатации дорожных, мостовых, аэродромных асфальтобетонных покрытий диктуют необходимость обеспечить трещиностойкость при температурах до -50°С и ниже, теплостойкость до 60-70°С и весьма существенно увеличить долю обратимых деформаций (эластичность). Для решения этих задач исследователи пошли по пути изменения структуры битума за счет создания в нем дополнительной эластичной структурной сетки полимера способного распределяться в битуме на молекулярном уровне. [c.51]

    И смеси, и растворы — многокомпонентные системы. Принципиальная разница между ними состоит в наличии у первых и отсутствии у вторых поверхностей раздела между компонентами, первые гетерогенные, а вторые — гомогенные системы. Обычно при рассмотрении свойств механических смесей наличием поверхностей раздела и их свойств пренебрегают. Однако если степень дисперсности увеличивать, то роль поверхностных свойств возрастает. Ведь очевидно, что атомы (молекулы, ионы и т. п.) поверхностного слоя находятся в иных энергетических условиях, что внутри тела, и поэтому их свойства отличаются от объемных свойств. Например, поверхностная энергия 1 моль хлорида натрия при условном дроблении кристалла на кубики от размера ребра 0,77 см (1 г Na l) до минимально возможных размеров частиц (1 нм) возрастает с 3-10 Дж/моль до 25,2-10 Дж/моль, т. е. в миллионы раз. Вместе с энергией ребер частиц это составляет около 35 кДж/моль — порядок энтальпии многих реакций. [c.254]


Смотреть страницы где упоминается термин Свойства фаз, составляющих дисперсную систему: [c.36]    [c.116]    [c.7]    [c.322]   
Смотреть главы в:

Справочник инженера - химика том второй -> Свойства фаз, составляющих дисперсную систему




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Системы свойства

Системы составляющие



© 2025 chem21.info Реклама на сайте