Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьмы соединения, восстановление

    Восстановление соединений сурьмы (V) металлами. Соединения сурьмы (V) восстанавливаются металлами — оловом, железом, цинком, алюминием и магнием — с образованием черного осадка металлической сурьмы, так же как и соединения сурьмы (ПГ). [c.319]

    Восстановление соединений сурьмы (111) до металла. Олово, железо, цинк, магний и другие металлы, стандартные потенциалы которых меньше стандартного потенциала сурьмы (Sb -(- HjO = = SbO+ + 2H + 3e ° = +0,21 В), восстанавливают в кислой среде соединения сурьмы до металла. [c.317]


    Получение простых веществ из их природных соединений есть всегда окислительно-восстановительный процесс, кроме тех случаев, когда простые вещества встречаются в самородном состоянии. В последнем случае их обычно выделяют из смесей физическими методами (разгонка сжиженного воздуха при получении N2, Оз, благородных газов, процессы флотации и т. п.). Все металлы (кроме самородных) находятся в природе в окисленном состоянии и их выделение из соединений сводится к восстановлению. Неметаллы в природных соединениях могут находиться как в окисленном, так и в восстановленном состоянии. При этом наиболее активные неметаллы (галогены, кислород) находятся в природных соединениях исключительно в восстановленном состоянии. Халькогены находятся преимущественно в восстановленном состоянии, хотя, например, в сульфатах сера окислена. Азот, фосфор, кремний, бор, сурьма, висмут в природе встречаются всегда в окисленной форме (нитраты, фосфаты, силикаты, сульфиды сурьмы и висмута и т. п.). [c.43]

    Арсин и стибин образуются также при восстановлении соединений мышьяка и сурьмы в растворах активными металлами (обычна цинком в кислой среде)  [c.427]

    Чтобы ускорить процесс восстановления или окисления (см. раздел о факторах, влияющих на восстановление и окисление, стр. 329—330 и 346), помимо веществ, необходимых для создания проводимости раствора, в раствор добавляют небольшие количества солей и других соединений. Промоторами восстановления являются соли меди, титана, олова, свинца, ванадия и молибдена, окислы мышьяка и сурьмы и кетоны. Промоторами окисления служат различные окисляющие агенты, например, феррицианид калия и соли четырехвалентного церия II трехвалентного марганца. [c.322]

    Если величина аФ больше для компонента с более отрицательным потенциалом, потенциалы выделения металлов на катоде сближаются. Примером взаимодействия компонентов при образовании сплава являются олово — никель, олово — сурьма медь — цинк и медь — олово. Учитывая смещение равновесного потенциала в сторону положительных значений при образовании сплава типа твердого раствора или химического соединения и изменение перенапряжения при восстановлении ионов на поверхности осаждающегося сплава, уравнение (8) можно написать, в следующем виде  [c.255]

    Метод , применяемый для микроаналитического определения фосфора и мышьяка в органических веществах, был позднее видоизменен для макроопределения и применен для разложения органических соединений сурьмы. Для восстановления мышьяка (V) до мышьяка (III) прибавляют гидразин, растворенный в концентрированной серной кислоте. Избыток гидразина разрушают при 254°С в сильно сернокислотном растворе, причем выделяется азот и частично образуется аммонийная соль. Для того чтобы разложение проходило достаточно быстро, необходимо избегать какого бы то ни было разбавления (даже слишком большим количеством перекиси водорода). После окончания разложения прибавляют соляную кислоту и бромид калия, а мышьяк отделяют от сурьмы отгонкой. Оба элемента определяют броматометрическим методом, причем для титрования мышьяка применяют а-нафтофлавон в качестве обратимого восстановительно-окислительного индикатора. Подробности приведены в оригинальной работе. [c.87]


    Кулонометрическое титрование имеет в ряде случаев значительные преимущества перед обычным титрованием. Не нужно заранее готовить рабочие растворы и устанавливать их точную концентрацию. В качестве генерирующих титрующих веществ могут применяться вещества, мало устойчивые в обычных условиях и непригодные поэтому для приготовления рабочих растворов. Различные окислители легко определять генерированными ионами двухвалентного олова, одновалентной меди, трехвалентного титана, двухвалентного хрома и др. Так титруют, например, хром, марганец, ванадий, уран, церий и некоторые другие элементы после предварительного перевода их в соединения высшей валентности. Для титрования восстановителей, например, трехвалентных мышьяка и сурьмы, одновалентного таллия, двухвалентного железа применяют генерированные свободный бром и иод, ферри-цианид и др. Подбирая соответствующие индикаторные системы для установления конца электролиза, можно также определять два или более окислителей или восстановителей в смеси, если их потенциалы восстановления различны. Известны, например, методы кулонометрического титрования урана и ванадия, хрома и ванадия, железа и ванадия, железа и титана в смеси. Наконец, кулонометрический метод допускает автоматизацию процесса титрования и управление им на расстоянии, что имеет важное значение при определении, например, различных искусственных радиоактивных элементов. [c.273]

    Осаждение мышьяка в элементном виде часто является удобным способом его отделения, особенно в случае его последующего тит-риметрпческого определения (см. гл. IV). Восстановление проводят обычно в кислой среде, обеспечивающей получение чистых осадков элементного мышьяка, ие загрязненных малорастворимыми гидроокисями металлов, образующимися в нейтральных и щелочных растворах. В качестве восстановителей наиболее часто используют гипофосфит натрия или кальция и хлорид олова(П). Соли хрома(П) предложено использовать для выделения мышьяка из органических соединений [450]. Однако при использовании солей хрома(П) вместе с Аз выделяется также 8Ь. Гипофосфит натрия (кальция) позволяет отделять мышьяк от сурьмы и большинства других металлов. Кроме мышьяка гипофосфит натрия и кальция восстанавливают до элементного состояния 8е, Те, Ag, Hg, Аи, Р1. [c.117]

    Восстановление кислородных соединений углем, окисью углерода или водородом (получение железа, цинка, титана, мышьяка, сурьмы, хрома, марганца, молибдена и др.). Восстановителем может быть алюминий (алюминотермия — при добывании марганца, хрома) и даже сернистые металлы (например, при получении меди, никеля, свинца). [c.228]

    Сурьма и висмут получаются обжигом их природных сернистых соединений в присутствии воздуха и восстановлением получаемых кислородных соединений углем  [c.544]

    Опыт 33. Получение мышьяковистого водорода (сурьмянистого кодорода) и его распад (ТЯГА1). Прибор для получен>1я арснна (стибина) восстановлением соединений водородом изображен на рис. 43. В колбу 1 с гранулами цинка (10 г) через воронку 2 прилейте 20%-ную серную кислоту (60—70 мл). Когда воздух будет вытеснен из прибора, зажгите водород у выхода трубки 3. Затем через воронку 2 в колбу I добавьте раствор какого-либо соединения мышьяка (сурьмы) (следите, чтобы во время опыта в прибор не попал воздух ). Объясните появление голубоватого пламени и выделение белого дыма в трубке 4. Суженное место выходной трубки нагрейте. Объясните образование на ее холодных частях черного зеркала. [c.74]

    Химические процессы, связанные с добычей металлов, сводятся главным образом к восстановлению соединений металла — обычно окисла или сульфида. Главным восстановителем является уголь, часто в виде кокса. В качестве примера можно привести восстановление окисла железа коксом в доменной печи (гл. 19). Иногда применяют и другие восстановители так, сурьму получают из стибнита ЗЬгЗз нагреванием с железом [c.327]

    Стибин обладает сильными восстановительными свойствами и быстро окисляется даже слабыми восстановителями, разлагается концентрированными кислотами и щелочами. Образуется стибин при восстановлении растворимых соединений сурьмы цинком [c.15]

    В настоящее время разработаны способы химического восстановления металлов из их соединений для получения пленок серебра, меди, золота, платины, никеля, кобальта и сурьмы. Кроме того, химическим путем готовят пленки сернистого свинца, сернистого серебра и т, п. [c.45]

    Металлическую сурьму получают восстановлением антимонита ЗЬгЗз, продуктов прокаливания антимонита или соединений трех-либо пятивалентной сурьмы (полученных гидрометаллургической переработкой руд, бедных сурьмой), а также катодным восстановлением различных соединений сурьмы. [c.477]

    Сурьма, висмут и их соединения. Сурьма — белый, хрупкий металл с плотностью 6680 кг/м . Висмут — металл с красноватым отливом, хрупкий, легкоплавкий (температура его плавления 271°С.) Сурьма легко соединяется с хлором с выделением большого количества теплоты, образуя хлориды 5ЬС1з и 5ЬС15. Порошкообразный висмут соединяется с хлором со вспышкой. Подобно гидриду мышьяка, гидрид сурьмы (стибин) может быть получен при восстановлении сурьмянистых соединений атомарным водородом  [c.338]


    Необратимые индикаторы — это соединения, которые разрушаются при введении избыто реагента и цвет которых не восстанавливается от дополнительного прибавления раствора определяеуого вещества. Тот же метиловый оранжевый может быть примером необратимого индикатора в реакциях окнсления — восстановления. Трехвалентную сурьму тигруют раствором бромата калия с метиловым оранжевым, до тех пор, пока в растворе нет избытка окислителя, индикатор окрашен в красный цвет. После точки эквивалентности некоторое количество растюра бромата калия приводит к окислению индикатора, вследствие чего раствор обесцвечивается. Естественно, что после прибавления раствора трехвалентной сурьмы окраска не восстанавливается, так как весь индикатор разрушен. Необратимые индикаторы менее >добны и применяются редко. [c.143]

    Сурьма (Stibium). Сурьма обычно встречается в природе в соединении с серой — в виде сурьмяного блеска, или антимонита, ЗЬгЗз. Несмотря на то, что содержание сурьмы в земной коре сравнительно невелико [0,00005% (масс.)], сурьма была известна еще в глубокой древности. Это объясняется распространенностью в природе сурьмяного блеска и легкостью получения из него сурьмы. При прокаливании на воздухе сурьмяный блеск превращается в оксид сурьмы ЗЬгОз, из которого сурьма получается путем восстановления углем. [c.449]

    Составление уравнений реакций окмсления—восстановления соединений мышьяка, сурьмы и олоиа [c.325]

    Реакция Марша [1284, 1285, 13201, Эта реакция основана на восстановлении соединений ЗЬ до ЗЬНд, который при нагревании без доступа воздуха разлагается на На и сурьму, отлагающуюся на холодной поверхности прибора в виде блестящего темного лалета (зеркала). [c.21]

    Реакция восстановления ионов сурьмы метаплическим железом. Подкислите исследуемый раствор соллной кислотой, прибизьте к нему мелко ияр. . занную железную пр )Волоку (предварительно очищенную наждачной бумагой) и нагрейте. В присутствии соединений сурьмы выделяются черные хлопья элементарной сурьмы  [c.331]

    Соединения сурьмы в тех же условиях восстанавливаются с образованием сурьмянистого водорода bHg, который точно также восстанавливает ионы серебра до металлического серебра. Мешают также сульфиды, вызываюш ие почернение пятна вследствие образования AgjS. Для устранения мешаюш его влияния сурьмы по второму варианту метода восстановление соединений мышьяка до мышьяковистого водорода проводят в щелочной среде ( 20%-ный раствор NaOH), используя в качестве восстановителя порошок металлического алюминия или цинковую пыль. В последнем случае тигель с раствором предварительно нагревают. Сурьма в этих условиях восстанавливается только до металла и сурьмянистого водорода не образует. [c.29]

    Для восстановления соединений мышьяка до арсина, кроме металлических цинка и олова, а такн е электрохимического восстановления используют металлический магний в кислой среде, который имеет некоторое преимущество перед цинком, так как практически не содержит мышьяка. Металлический алюминий также практически не содержит мышьяка, а исиользование порошка алюминия для восстановления в среде 20%-ного раствора NaOH позволяет определять мышьяк в присутствии сурьмы, которая в этих условиях восстанавливается только до металлической сурьмы. [c.64]

    Предупреждение обесцинкования латуней должно планироваться из знания механизма коррозии в данных условиях. Обесцинкование, связанное с осаждением меди, можно предупредить введением добавок ПАВ, которые тормозят катодное восстановление ионов меди. Причем содержание растворимых продуктов окисления в коррозионной среде (в случае замкнутой системы) не должно быть высоким. Этого можно достичь установкой в системе цинковых пластин, на которых будет осаждаться медь. Наиболее эффективным способом является легирование латуней мышьяком, который растворим в а-латунях примерно до 0,1 %. Чаще в латунь мышьяк вводят в количестве 0,05 %, однако и 0,01 % As оказывается достаточным, чтобы предупредить обесцинкование а-латуни Л70 в 0,5 н. Na l. При содержании мышьяка выше 0,1 % по границам зерен латуни образуются прослойки хрупкого химического соединения UgAs. Сурьма и фосфор также предупреждают обесцинкование латуней, но в меньшей степени, fio они плохо растворимы в а-латуни, образуют хрупкие соединения и резко снижают пластичность. [c.217]

    По данным классической полярографии и осциллополярографии хорошо выраженные волны дают во многих органических растворителях ионы трехвалентных сурьмы и висмута [892, 1153, 722, 1052, 904, 1123, 1066, 146, 1047, 785]. Процесс восстановления в основном изучен на галогенидных солях. Наблюдалось как одноступенчатое [1052, 1128, 785, 226], так и многоступенчатое [722, 146] восстановление до металла. Потенциалы выделения, как правило, более положительны, чем в водных растворах, что свидетельствует о низкой энергии сольватации ионов в соединениях Sb(III) и Bi(III) в органических средах. В случае двухступенчатого разряда ионов соединения Sb(III) медленной ступенью служит первая ступень присоединения двух электронов [146]. Для обоих металлов процесс электровосстановления имеет преимуще-ственно диффузионный характер. В результате исследования электрохимического поведения иона Bi(III) в спиртовых и водноспиртовых растворах отмечено нарушение пропорциональности между концентрацией Bi la и величиной предельного тока [1123]. [c.95]

    Поскольку активными при вулканизации по нитрильным группам являются соединения меди и сурьмы высшей валентности, протекающие процессы не относятся к реакциям восстанавления. Вероятно, ЯЛ1ИДЫ образуются в результате гидратации комплексов цианогрупп с атомами металла на поверхности частицы оксида (сульфида) металла [82, с. 3 24]. В случае МпОг реакция активизируется, так как одновременно идет восстановление нитрилов по механизму реакции Стефена [82, с. 319]. Ампдные группы реагируют друг с другом (эти реакции также активируются оксидами и сульфидами исследуемых металлов) с образованием имидов. В полимерах такая реакция соответствует образованию поперечной связи при большом избытке цианогрупп (который всегда имеет место при сшивании в бутадиен-нитрильных каучуках). Оправданы и реакции [82, с, 127, 144], протекающие по уравнениям (19) и (20) [c.176]

    В случае трудноразлагающихся проб можно применить смесь азотной и серной кислоты, вообш,е же добавлять окислители нежелательно, так как мышьяк и сурьма должны оставаться в трехвалентном состоянии. Кроме того, при высоком содержании сурьмы не исключена возможность выпадения части ее в осадок при действии азотной кислоты. После разложения пробы добавляют 1 —1,5 г гидразина для восстановления пятивалентных мышьяка и сурьмы (если они присутствовали в пробе), упаривают раствор до влажных солей, что необходимо для разрушения избыточного количества гидразина. После охлаждения добавляют сегнетову соль или винную кислоту для предотвращения гидролиза соединений мышьяка и сурьмы в количестве, превышающем величину навески в 5—8 раз приливают 20—30 мл воды, переносят содержимое стакана, не отфильтровывая осадка, в мерную колбу емкостью 50 — 100 мл, доводят водой до метки. Перемешивают, дают отстояться и отбирают две аликвотные [c.268]

    В качестве добавки при восстановлении ароматических нитросоединений часто используют хлористое олово. После окисления оно регенерируется на катоде. Для ускорения процесса восстановления применялись добавки многих других вендеств. Выше упоминалось, в частности, о применении никелевых проволок в качестве катода для восстановления нитробензола до анилина в соляной кислоте 153]. Возможно, что это восстановление протекает успешно вследствие катализа. Выход N,N-димeтилбeнзилaмннa при восстановлении N.N-диметилбензамида на свинцовом катоде в серной кислоте сильно увеличивается при добавке к католиту небо и,ших количеств окислов мышьяка или сурьмы 173]. Примером применения органического соединения в качестве промотора может служить восстановление 2-нитро-/г-цимола до 2-амиио-5-окси--//-цимола, проводимое в концентрированной серной кислоте на катоде из, юнель-металла 174] ароматические или смешанные кетоны, например бензо-фенов или ацетофенон, увелич1шают выход продукта. [c.330]


Смотреть страницы где упоминается термин Сурьмы соединения, восстановление: [c.427]    [c.68]    [c.452]    [c.251]    [c.285]    [c.519]    [c.554]    [c.5]    [c.54]    [c.82]    [c.21]    [c.38]    [c.45]    [c.554]    [c.385]   
Химия гидразина (1954) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление сурьмы

Сурьма соединення

Сурьмы соединения



© 2025 chem21.info Реклама на сайте