Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектры орго-Эффект

    Соответственно орто-замещенные бензоаты элиминируют ROH благодаря общему орго-эффекту, описанному выше для ароматических кислот. Так, максимальный пик в спектре метилсалицилата находится при т/е 120 этот ион отщепляет далее СО, давая интенсивный пик иона с т/е 92. [c.73]

    Методы оптич. отбеливания в осн. аналогичны методам крашения орг. красителями (см. Крашение волокон)-, однако для достижения нужного эффекта требуется значительно меньшее кол-во О. о., чем красителей. Водонерастворимые О. о. можно применять в высокодисперсной форме или в виде р-ра в орг. р-рителях. Отбеливающий эффект обычно оценивают визуально на практике можно также измерять интенсивность флуоресценции по спектрам отражения на приборах с ксеноновой лампой. [c.423]


    Наблюдаемое различие в эффектах замены растворителя (изооктана на этанол) на спектры изомеров также находится в соответствии с произведенным отнесением., Действительно, меньшую чувствительность к замене растворителя следует связать с орго-изомером, так как только в этом случае возможна сильная внутримолекулярная водородная связь, приводящая к относительной инертности этого изомера к межмолекулярным взаимодействиям с активным растворителем (спиртом)  [c.76]

    Л. а. орг. соел затруднен, т. к. их спектры люминесценции, как правило, неспецифичны. Однако предложены методы количеств определения порфиринов, витаминов, антибиотиков, хлорофилла и др. в-в, в спектрах к-рых имеются характеристичные полосы. При использовании лазеров пределы обнаружения достигают 10" -10""%. Ароматич. соед в замороженных р-рах алифатич. углеводородов при т-рах 77 К дают характерные для каждого соед, квазилиней-чатые спектры люминесценции (эффект Шпольского). Этот метод используют для определения полициклич. ароматич. углеводородов в экстрактах растений, почв, продуктов питания, горных пород и т. д. с пределом обнаружения 10" -10 %, а также для определения бензола, его гомологов и производных, ароматич. аминокислот при т-рах жидкого воздуха, азота, гелия в водно-солевой матрице с пределом обнаружения 10" -10" %. [c.614]

    Масс-спектры мета- и /гара-замещенных нитробензолов качественно очень близки, хотя в них всегда имеются количественные различия. В то же время спектры пх орго-изомеров имеют некоторые особенности. Наиболее резкие различия наблюдаются тогда, когда в орго положении находится группа, содержащая атомы водорода. На примере нитросоединений брлло врлполнено большое число работ по изучению в.нияния этого так называемого орго-эффекта на фрагментацию [242]. Ниже будут отмечены некоторые из них. [c.146]

    Ионы того же происхождения наблюдаются и в случае о-то-луиловой кислоты. Однако у последней основной peaкциeй, приводящей к максимальному пику в спектре с m z 118, является элиминирование из М+ молекулы воды, что могло быть следствием орго-эффекта . [c.233]

    При установлении относительного расположения функциональных групп, способных к завязыванию водородных связей (например, ОН и С=0-групп), в некотором известном углеродном скелете обращение к анализу эффекта замены растворителя на спектры таких соединений позволяет выявить структуры, допускающие образование внутримолекулярных водородных связей между указанными группами. Например, в спектрах о- и л<-оксибензальдегидов при замене растворителя, (гек-сана на диэтиловый эфир) наблюдаемые смещения полос ПЭ сильно разнятся по величине в случае орго-изомера смещение вообще отсутствует, а в случае л ета-изомера в соответствии с ожиданием наблюдается заметный батохромный сдвиг =4 нм). Нечувствительность полосы ПЭ в спектре орго-изоМера к замене растворителя обязана отсутствию взаимодействия молекул активного растворителя (диэтилового эфира) с функциональными группами о-оксибензальде-гида, так как последние связаны внутримолекулярной водородной связью  [c.70]


    Внеш. магн. поле влияет на выход продуктов р-ции, скорость элементарных процессов взаимод. парамагнитных частиц (рекомбинации радикалов, аннигиляции триплетно-возбужденных молекул, тушения триплетных молекул радикалами и т.п.), интенсивность флуоресценции и хеми-люминесценции, темновую и фотопроводимость мол. кристаллов и орг. полупроводников. Магн. изотопный эффект сопровождается разделением магн. и немагн. изотопов (напр., С и С, о и О). Хим. поляризация электронов и ядер проявляется в спектрах ЭПР и ЯМР продуктов р-ций (радикалов и молекул), при этом положит, поляризация приводит к аномально сильным линиям поглощения, а отрицательная-к линиям эмиссии. В последнем случае создается инверсная населенность зеемановских уровней электронов или ядер (см. Зеемана эффект. Лазер). Когда химически индуцированная отрицат. поляризация ядер достигает значит, величины, превосходящей порог генерации, происходит самовозбуждение радиочастотного излучения и хим. система становится мол. квантовым генератором-хим. радиочастотным мазером. Внеш. высокочастотное резонансное поле стимулирует изменение спина и, следовательно, выхода продукта р-ции или интенсивности люминесценции. Это позволяет регистрировать спектры ЭПР короткоживущих пар парамагнитных частиц по изменению выхода электронов, дырок, возбужденных молекул. На этом принципе основан новый метод магн. резонанса-двойной магн. резонанс (ДМР). [c.624]

    ОТБЁЛИВАТиШ ОПТЙЧЕСКИЕ, флуоресцентные отбеливающие в-ва. О. о.-бесцв. или слабоокрашенные орг. соед., обладающие способностью поглощать УФ составляющую солнечного света (X 300-400 нм) и преобразовывать полученную энергию в видимый свет, преим. в голубой или фиолетовой части спектра (X 400-500 нм) максимум флуоресценции, определяющий цвет,-в интервале 415-466 нм. С.о. должны флуоресцировать с высоким квантовым выходом, излучать в той же области спектра, в к-рой поглощают содержащиеся в отбеливаемом субстрате загрязнения, и равномерно распределяться в субстрате, не образуя крупных мол. агрегатов, снижающих эффект белизны. [c.422]

    Применение. Методом ЭПР можно определять концентрацию и идентифицировать парамагн. частицы в любом агрегатном состоянии, что незаменимо для исследования кинетики и механизма процессов, происходящих с их участием. Спектроскопия ЭПР применяется в радиационной химии, фотохимии, катализе, в изучении процессов окисления и горения, строения и реакционной способности орг. своб. радикалов и ион-радикалов, полимерных систем с сопряженными связями. Методом ЭПР решается широкий круг струк-турно-динамич. задач. Детальное исследование спектров ЭПР парамагн. ионов d- и /-элементов позволяет определить валентное состояние иона, найти симметрию кристаллич. Поля, количественно изучать кинетику и термодинамику многоступенчатых процессов комплексообразования ионов. Динамич. эффекты в спектрах ЭПР, проявляющиеся в специфич. уши-рении отдельных компонент СТС, обусловленном модуляцией величины констант СТВ за счет внутри- и межмол. хим. р-ций, позволяют количественно исследовать эти р-ции, напр, электронный обмен между ион-р калами и исходными молекулами типа + А. < А + Д , лигандный обмен типа LK + L + L, внутримол. процессы вращения отдельных фрагментов в радикалах, конформац. вырожденные переходы, внутримол. процессы перемещения атомов или Фупп атомов в радикалах и т. д. [c.450]

    Последние 50 лет уходящего столетия ознаменовались крупными достижениями в области лечения заболеваний, вызываемых различными инфекционными агентами. К числу таких достижений относится создание антибиотиков и синтетических химиотерапевтических средств, воздействующих на патогенный возбудитель. Однако, постоянное и широкое, при этом не всегда оправданное, примепепие антибиотиков и синтетических химиотерапевтических средств, приводит к ряду явлений, осложняющих возможность их рационального использовапия. К ним относятся возникновение аллергических реакций от примепепия большинства антибиотиков и, как следствие, аллергизация населения, особенно детей наличие серьезных побочных (токсических) эффектов на системы и органы развитие лекарственной резистентности микроорганизмов к известным антимикробным средствам нарушение нормального состава микрофлоры макроорганизма, приводящее в конечном итоге к расширению спектра патогенной микрофлоры за счет микроорганизмов, ранее относившихся к условно-патогеппым, и появлению новых инфекционных процессов (дисбактериозы, бактерионосительство и выделение патогенного возбудителя в окружающую среду). Поэтому актуальность разработки оригинальных антимикробных средств иной природы, с новыми свойствами и принципиально другим механизмом действия является несомненной. Проводимые во Всероссийском научно-исследовательском институте лекарственных и ароматических растений исследования привели к созданию эффективных лечебных средств, среди которых достойное место занимает препарат широкого антимикробного спектра действия - Сапгвирит-рип . [c.328]


    ОПТИЧЕСКИ ОТБЕЛИВАЮЩИЕ ВЕЩЕСТВА (оптические отбеливатели), бесцветные флуоресцирующие орг. соед., напр, производные стильбена, оксазола, имидазола, поглощающие УФ излучение (X 300—400 нм) и преобразующие его в видимое, преимущественно фиолетовое и голубое (X 400—500 нм). О. о. в. должны флуоресцировать с высоким квантовым выходом, излучать в той же области спектра, в к-рой поглощают содержащиеся в отбеливаемом субстрате загрязнения, и равномерно распределяться в субстрате, не образуя крупных мол. агрегатов, снижающих эффект белизны. Подобно красителям, О. о. в. должны обладать хим. сродством к субстрату (иногда их называют белыми красителями). В отличие от красителей, для них, однако, существует оптимум концентрации, превышение к-рого приводит к ослаблению или даже полному подавлению флуоресценции. На эффективность О. о. в. влияют также отражат. способность субстрата (особенно в ближней УФ области) и содержащиеся в нем в-ва, способные поглощать УФ излучение или гасить флуоресценцию (напр., соли тяжелых металлов). [c.412]

    В спектрах Н-ЯМР ароматических альдегидов на химические сдвиги альдегидного протона оказывают влияние два противоположных фактора 1) дезэкранирующий эффект ароматического кольца и 2) конъюгативный экранирующий эффект увеличения электронной плотности на карбонильном углеродном атоме. Дезэкранирующий эффект преобладает, так что сигналы ароматических альдегидных протонов расположены в более слабом иоле (б 9,65—11,5), чем алифатических в полициклических ароматических альдегидах, где наблюдаются большие кольцевые токи, эти протоны дезэкранированы еще сильнее [2]. Электроноакцептор-кые заместители в ароматическом кольце увеличивают дезэкранирование. Для орто-замещенных альдегидов сигнал альдегидного протона наблюдается в значительно более слабом поле, возможно в результате выведения формильной группы из плоскости молекулы и уменьшения тем самым конъюгатизного экранирующего эффекта. Это явление особенно ярко выражено в случае орго-ди-замещенных ароматических альдегидов и полициклических альдегидов, таких как 9-антральдегид (бсно 11,51) [2]. [c.695]

    Спектроскопические различия между алифатическими и ароматическими кетонами относительно невелики. Влияние ароматического кольца на положение полосы валентных колебаний карбонила в ИК-спектре выражается в сдвиге от 5,8 мкм (алкилкетоны, раствор в ССЦ) до 5,92 мкм (ацетофенон) и 6,0 мкм (бензофенон). Электронодонорные заместители в мета- и параположениях приводят к поглощению при больших длинах волн, электроноакцепторные заместители проявляют противоположный эффект наблюдается хорошая корреляция длин волн карбонильного поглощения с константами а Гаммета [1]. Во многих случаях орто-заместитель вызывает сдвиг, аналогичный соответствующему для пара-изомера, но если возможно хелатообразование с участием карбонильной группы, то наблюдается поглощение при более длинных волнах (например, 4-ЫН2СбН4СОМе 5,96 мкм 2-ЫН2СбН4СОМе 6,06 мкм). Б ряде случаев, в частности для орго-галогенированных кетонов, наблюдаются две карбонильных полосы [2] это обусловлено существованием при комнатной температуре различных устойчивых конформаций и аналогично явлению, описанному для ароматических альдегидов (см. гл. 5.3). Ацетофеноны, замещенные в а-положении к карбонильной группе, также имеют карбонильный дублет в ИК-спектре за счет цис/гош-изомерии [схема (1)], причем цис-конформации соответствует поглощение при более низких длинах волн (например, РЬСОСНгРЬ (12), цис- 5,89 мкм, гош- 5,94 мкм). [c.768]

    УФ-спектры всех обычных ди- и триазанафталинов, многих азафенантренов и -антраценов определены и хорошо освещены в литературе. Теоретические исследования в этой области достаточно хорошо коррелируются, и в обзоре Масона [64] дается их исключительно исчерпывающая трактовка. В общем виде низшая энергия я->л -полос поглощения азанафталинов не сильно варьирует в зависимости от положения, но п- -я -полосы поглощения прогрессивно смещаются в длинноволновую область с увеличением степени аза-замещения. Последовательное аннелирование сдвигает л - л -полосы трех азинов в сторону меньших частот примерно вдвое сильнее, чем и- л -полосы, и в предельном случае п л-линии с их малой интенсивностью могут маскироваться сильным я л -поглощением (см. табл. 16.7.1). В орто-диазинах неподеленные атомные орбитали соседних атомов азота перекрываются, образуя связанные и антисвязанные неподеленные молекулярные орбитали. Вследствие этого орго-диазины всегда поглощают в более длинноволновой области, чем другие изомерные диазины. Результаты этих эффектов и уменьшение тонкой структуры, наблюдаемые с возрастанием аза-замещения [c.310]

    Широко исследовались также орто-алкилфенолы [22, 29—31, 109, 110], причем Ингольд и Тейлор [29] привели наиболее подробные таблицы с данными по частотам и интенсивностям поглощения этих соединений. Интересной особенностью этих спектров является дублетность полосы 0Н в случае орго-замещенных фенолов с грег-бутильной группой. Этот факт обнаружен также другими исследователями [22, 30, 31, 109, ПО] полосы в спектре 2-трет-бутилфенола находятся при 3647 и 3607 м . Общепринято, что эти полосы соответствуют двум конформерам, причем более низкочастотная полоса, характеризующаяся обычным для фенолов значением частоты колебаний ОН, относится к гранс-конформации. Это было доказано исследованиями влияния растворителя и изучением зависимости поглощения от температуры. Причины повышения частоты колебаний цис-изомера представляют, однако, особый интерес, так как в этом случае частота наиболее близка к частоте, характерной для первичного спирта. Было выдвинуто предположение, что при этом группа ОН повернута относительно плоскости цикла, так что атом кислорода возвращается, по существу, в состояние как в случае этанола. Однако это нелегко согласовать с тем, что 2-бутилфенол является еще сравнительно сильной кислотой, а интенсивность полосы ОН имеет величину, характерную для типичных фенолов [29, 32]. Небольшой поворот с выходом из плоскости цикла не мог бы заметно изменить степень резонанса [29], так как величина этого эффекта является функцией соз О (где 0 — угол поворота), но тогда было бы маловероятно существенное изменение частоты. Беллами [31] предложено другое возможное объяснение, согласно которому группа ОН остается в плоскости, а изменяется валентный угол С—О—Н. Если это верно, то определенную поддержку получают взгляды Далтона и др. [33], в соответствии с которыми важную роль в определении значений уОН играют кон-формационные эффекты. В известной мере подобные эффекты наблюдались и в других системах, таких, как трициклогексилкарби-нол [35], в спектре которого проявляются две четко выраженные полосы -0Н при 3632 и 3614 см  [c.112]

    Как уже говорилось в гл. 9, синий свет, поглощаемый, повидимому, флавопротеидом, может вызывать фототропический изгиб цилиндрических органов растения путем индукции латерального переноса ауксина, который приводит к неравномерному росту органа с двух сторон. Синий свет влияет также на множество других процессов и параметров, таких как открывание устьиц и сложенных листьев, движение цитоплазмы в клетках колеоптиля овса, вязкость цитоплазмы в клетках листьев водяного растения ЕШеа, движение хлоропластов у ряски (Ьетпа) и плоскость деления клеток в молодых спорофитах папоротника (рис. 11.20). Во всех этих реакциях соблюдается закон реципрокности, т. е. эффект зависит от общей энергии и произведение интенсивности света на время (14=К) является величиной постоянной. Таким образом, облучение при относительной интенсивности света 100, 10 и 1 даст одинаковый эффект при длительности соответственно 0,01, 0,1 и 1 с. Так как спектры действия для всех этих процессов удивительно сходны, мы можем заключить, что один и тот же пигмент образует один и тот же фотопродукт, способный регулировать различные физиологические процессы. Природа зтого фотопродукта еще не известна, хотя в различных растениях после фотоактивациифла-вина синим светом было обнаружено химическое восстановление определенного цитохрома. В этом процессе могли бы участвовать и промежуточные формы фитохрома. [c.355]


Смотреть страницы где упоминается термин спектры орго-Эффект: [c.239]    [c.40]    [c.534]    [c.328]    [c.411]    [c.183]    [c.174]    [c.174]    [c.240]    [c.183]    [c.768]    [c.310]    [c.34]   
Металлоорганические соединения переходных элементов (1972) -- [ c.288 ]




ПОИСК







© 2025 chem21.info Реклама на сайте