Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографическое разделение магния

    Кроме хроматографического разделения ионов одного и того же знака заряда методом ионного обмена в динамических условиях можно отделять ионы одного знака от ионов другого знака. Примером такого разделения является отделение на катионите катионов железа(1И), алюминия(П1), кальция (И) и магния (И), мешающих определению фосфат-ионов при анализе природных фосфатов. [c.322]


    Широко применяются в хроматографии силикагели различных марок. Силикагели применяют для хроматографического разделения смесей нефтепродуктов, высших жирных кислот и их сложных эфиров, нитро- н нитрозопроизводных, ароматических аминов и других органических соединений. Нейтральный силикагель, который получают промыванием дистиллированной водой промышленного силикагеля, используют при хроматографировании нестабильных веществ. Несколько меньшее применение находят активированные угли, гидроокись кальция, силикаты кальция и магния, окись магния, гипс, сульфат магния, кизельгур, целлюлоза и др. [c.62]

    Применение тирона для хроматографического разделения железа, алюминия, титана, олова и сурьмы от кальция, магния, цинка и меди (I) [566]. [c.260]

    Хроматографическое разделение лития и магния [1186]. [c.272]

    На рис. 35 приведена общая схема определения азота после хроматографического разделения пробы на компоненты. Система с кранами позволяет направлять отдельные компоненты для специального анализа на углерод и азот во второй хроматограф. Содержание водорода не определялось, и образовавшаяся при сжигании вода поглощалась в осушителе с перхлоратом магния. Однако авторы указывают на возможность определения и водорода при замене перхлората магния карбидом кальция. [c.144]

    На рис. 3 даны результаты опытов хроматографического разделения ароматических углеводородов и сернистых соединений на адсорбентах — некоторых силикатах магния, железа и молибдена. Из приведенных графиков следует, что указанные силикаты как адсорбенты не дают никаких существенных преимуществ по сравнению с силикагелем АСМ. Содержание серы в первых фракциях в случае применения любого из адсорбентов практически одинаково. Некоторое фракционирование сернистых соединений при применении силикатов металлов намечается в области полициклических ароматических углеводородов. [c.131]

    Как и в случае обмена в присутствии хлоридов, при добавлении неводных растворителей значительно возрастает ассоциация между ионами металлов и нитрат-ионами, что приводит к увеличению сорбции на анионитах. Так, например, коэффициент распределения бария на сильноосновном анионите в растворе 90%-ном по диоксану и 0,002 М по азотной кислоте составляет 500. Смесь магния, кальция, стронция и бария хорошо разделяется с помощью 60—90%-ного раствора диоксана при скачкообразном уменьшении концентрации азотной кислоты [57]. При добавлении ацетона и метанола улучшается хроматографическое разделение [c.213]


    Краус с сотр. [36] добился количественного хроматографического разделения щелочных металлов (натрий, калий, цезий) от щелочноземельных (магний, кальций, стронций, барий) на колонке размером 2,0 см х 0,2 см , заполненной фосфатом циркония. [c.292]

    Всеобщее признание для разделения смеси каротиноидов в количественном анализе завоевала адсорбционная хроматография на колонках с окисью алюминия, окисью магния, смесью окиси магния и силикагеля с диатомовой землей [11]. Четкость хроматографического разделения пигментов на колонке зависит от многих факторов активности адсорбента, размера колонки, количества пигментов, присутствия других компонентов в разделяемой смеси. [c.202]

    Из многочисленных адсорбентов, исследованных при хроматографическом разделении каротиноидов, наибольшее распространение получили окись алюминия, гидроокись кальция, окись магния, карбонат кальция, волокнистый глинозем, активный уголь, сахарный порошок, кремнезем, сульфат натрия и другие вещества. Из растворителей имеют наибольшее применение петролейный эфир, бензин, бензол, смесь бензина с бензолом, хлористый метилен, сероуглерод, дихлорэтан, смесь бензола с петролейным эфиром, хлороформ, эфир, смесь бензина с эфиром и др. [c.93]

    Первое сообщение о хроматографии в тонких слоях содержала работа Измайлова и Шрайбер Капельные хроматографические методы анализа и их использование в фармакологии [9], опубликованная в 1938 г. Авторы применили этот метод для проверки качества тинктур 7-й русской фармакопеи. Анализ осуществляли на стеклянных пластинках, покрытых слоем сорбента толщиной 2 мм. Слой готовили из пасты окиси алюминия, окиси магния или кальция и воды. При приготовлении таких слоев авторы испытывали известные затруднения из-за недостаточной технической оснащенности при использовании толстых слоев на их поверхности возникали трещины, разделение веществ не отличалось высоким качеством и воспроизводимостью. [c.13]

    Из хроматографических методов отделения наиболее важны методы ионообменной хроматографии как на катионитах, так и на анионитах. Отделение на катионитах основано на регулировании кислотности раствора и на различии в прочности комплексов магния и сопутствующих элементов. При разделении на анионитах используется различие в прочности комплексов. [c.50]

    Я уже свыше 10 лет интересовался проблемой разделения содержимого растительной клетки и занимался поисками метода, пригодного для этого. Содержимое исследуемых растительных железистых волосков в соответствии с их объемом составляет менее 0,1 [is, и поэтому я сразу мог констатировать, что ни один из тогдашних хроматографических методов не позволяет добиться желательного результата. Микрофотография показала, что железистый волосок меньше отдельного зернышка разделительного слоя или волокна целлюлозы бумаги. Чтобы продвинуться вперед, я перешел к открытым колонкам из тонкоизмельченного материала и стал использовать известные палочки и желобки из окиси магния. Полученные результаты оказались достаточно хорошими, но адсорбционная активность была слишком мала. [c.13]

    В нашей работе для разделения бария, стронция, кальция и магния использовалась система растворителей пиридин — этиловый спирт — 1,5 н. уксусная кислота (4 4 2) (I), которую А. Е. Петров-Спиридонов и В. М. Гусева предлагают для разделения Са, Mg, К, На. В качестве неподвижного носителя использовалась хроматографическая бумага ленинградская № ЗМ и английская ватман № 52 (последняя плотнее и удобнее для нанесения образцов). Хроматографирование проводили восходящим методом в плотно закрытой камере. [c.56]

    Ход кривых показывает, что в слое смолы происходит концентрирование ГК, которое снижается по мере отработки катинообменника по минеральному иону. К моменту полной отработки ион -1тового фильтра по иону Мд++ вся ГК оказывается вытесненной из <олонки. Таким образом, в фильтрующем слое сорбента формируется зона ГК и минеральных веществ, которые оказывают выталкивающее действие на ГК. Этот процесс может быть положен в основу хроматографического разделения ГК и минеральных ионов. Для наиболее полного их разделения не-обход1 1Мы условия, при которых перекрытие зоны сорбированных веществ (смешанная зона) будет минимальным. С этой целью изучалась зависимость размытости фронта сорбции ГК оТ скорости фильтрации рабочего раствора в присутствии минерального иона. Были испытаны скорости 2, 4, 6, 8 и К) м ч. Фильтрат собирали до исходного содержания магния. Результаты опыта представлены графически на рис. 6. Анализ полученных в1 ходных кривых показывает, что при увеличении скорости фильтрации рабочего раствора снижается обменная емкость по ГК, проскок наступает значительно раньше. С возрастанием скорости увеличивается размытость зоны сорбции ГК. Таким образом, скорость фильтрации 4—5 м ч является наилучшей. [c.209]


    Различные типы адсорбентов проявляют неодинаковую селективность по отношению к соединениям разных типов. Полярные адсорбенты (окислы металлов, силикат магния и т.д.) селективно адсорбируют ненасыщенные, ароматические и полярные молекулы, такие, как спирты, амины и кислоты. Полярные адсорбенты можно далее подразделить на Кйслот плс, основные и нейтральные в соответствии с величиной pH поверхности. Двуокись кремния, силикат магния и катионообменные смолы относятся к числу кислотных адсорбентов, и они хемосорбируют основания. Хотя хемосорбшя является эффективным методом концентрирования, количественное хроматографическое разделение в этом случае невозможно из-за трудности десорбции. Основания лучше всего разделяются на адсорбентах основного характера, например окиси магния. Аналогично адсорбенты основного характера хемосорбируют кислоты, и последние лучше разделять на кислотных адсорбентах. На поверхности окиси алюминия содержатся как кислотные, так и основные центры, но она является отличным адсорбентом для ненасыщенных и ароматических соединений  [c.58]

    Смеси ионов щелочных и щелочноземельных металлов наиболее эффективно разделяют методом хроматографии на неорганических ионообменниках, таких, как фосфат и вольфрамат циркония. Коэффициенты распределения этих ионов между ионообменником и раствором различаются между собой так сильно, что для успешного проведения хроматографического разделения необходимо по мере вымывания каждого из ионов увеличивать концентрацию промывного раствора. Хорошо известны ранние работы Крауса с сотрудниками, в которых из колонки с вольфра-матом циркония литий был вымыт 0,05 М раствором хлорида аммония, натрий 0,1 М, калий 0,5 М, рубидий 1,0 и цезий 3,0 М растворами хлорида аммония [1] на колонке с молибдатом циркония кальций, стронций, барий и радий были разделены слегка подкисленными растворами хлорида аммония с концентрациями соответственно 0,2, 0,5, 1,0 и 4,0 М [21 (рис. 36). Аналогичное эазделение на молибдате циркония было выполнено Кемпбеллом 3] сначала ионы магния были вымыты сульфатом аммония, ионы кальция, стронция и бария вымывались затем нитратом аммония. [c.195]

    Адсорбенты. Выбор адсорбента до настоящего времени частично производится опытным путем. В то же время накапливается все больше данных о пригодности тех или иных адсорбентов для разделения веществ с определенным химическим строением, приводится несколько примеров применения специфических адсорбентов. В каждом отдельном случае выбирают такой адсорбент, который обладает наибольшей избирательностью по отношению к отдельным компонентам смеси, подлежащей разделению. Выбор адсорбента частично зависит от характера применяемых растворителей. Для анализа веществ с полярными группами в молекуле могут применяться окись алюминия и окислы других металлов. Для разделения кароти-1ЮНД0В обычно используются окись алюминия, гидрат окиси кальция, углекислый цинк и углекислый кальций, адсорбирующая способность которых уменьшается в приведенной последовательности. Стрейн исследовал последовательность адсорбции некоторых каротиноидов на колонках из сахара, целита и окиси магния. Относительная способность к адсорбции в значительной мере определялась избирательным сродством адсорбентов к характерным группам или частям молекул пигментов. Сахар преимущественно притягивает полярные гидроксильные группы ксантофиллов, а окись магния — ненасыщенные части молекул каротинов и ксантофиллов, а также и гидроксильные группы ксантофиллов. Стрейн применил колонки пз окиси магния для исследования ксантофиллов и хлорофиллов и показал, что распределение растворенных веществ в зонах адсорбции зависит от многих условий. Например, пигменты, образующие обычно одну окрашенную зону, могут образовать две зоны, в присутствии некоторых бесцветных примесей. Для разделения карбонильных соединений в виде 2,4-динитрофенилгидразонов был применен порошкообразный сернокислый магний.Брокманн показал, что растворимые в воде соли, например сульфаты меди и цинка, могут служить хорошими адсорбентами для хроматографического разделения производных азобензола. Сернокислый алюминий можно применять для разделения оксиантрахинонов, причем очень прочно адсорбированные вещества удается выделить только после растворения адсорбента в воде. [c.1491]

    Органические кислоты и их соли , например лимоннокислый магний, также применяются в качестве адсорбентов. Большую перспективу как адсорбенты имеют, повидимому, специфические органические реактивы, такие как о-оксихинолин и виолуровая кислота. Последняя представляет собой 5-изонитрозобарбиту-ровую кислоту С4Нз04Ыз (мол. вес 157,09 мало растворима в воде, растворима в спирте) применяется для хроматографического разделения катионов щелочных и щелочноземельных металлов, а также некоторых тяжелых металлов. [c.81]

    Б. Г. Савинов и Ф. Л. Гринберг150 изучили вопрос о подборе и активации адсорбентов, пригодных для хроматографического разделения изомеров каротина и продуктов его окисления. Ими были получены на колонках из окиси магния хроматограммы свежеприготовленного масляного раствора каротина. Установлено, что наилучшей разделяющей способностью для природных изомеров каротина обладает окись магния, полученная из углекислого магния прокаливанием при 600—700° в течение 4 час. На хроматограммах можно наблюдать процесс изменения пигмента в зависимости от условий обработки и хранения различных продуктов, содержащих каротин. Получены также хроматограммы лигроинового и бензинового растворов окисленного каротина па колонках из гидрата окиси кальция, прокаленного при 460—480° в течение [c.182]

    Т. А. Белявская и Э. П. Шкробот [25] разработали ряд методов отделения алюминия от железа и титана, основанные на амфотерности алюминия. После поглощения анализируемой смеси катионитом СБС в Н-форме алюминий избирательно извлекался из колонки 10 %-ным раствором едкого натра, титап или железо десорбировали 2 N раствором соляной кислоты в фильтратах железо определяли колориметрически с роданидом аммония, титан — колориметрическ1г с перекисью водорода, алюминий в форме оксихинолипата. Эти же авторы показали возможность разделения смеси алюминия и цинка 5%-пой лимонной кислотой с pH И в этом случае алюминий быстро вымывался из колонки катионита, а цинк оставался в сорбированном состоянии в форме комплексного аммиаката. Разработанные методики Т. А. Белявская и Э. П. Шкробот успешно применили к определению железа, алюминия и цинка в их сплавах, причем продолнжтельность анализа сокращалась примерно в 2 раза. При изуче-нг ТИ хроматографического разделения смесей меди, алюминия и магния Д. И, Рябчиков и В. Ф. Осипова [26] показали, что магний и алюмииий. легко разделяются путем промывания колонки щелочью если пропускать через колонку щелочной аммиачный раствор, то медь поглощается в форме комплексного аммиаката, а алюминий в форме алюмината переходит в фильтрат. [c.131]

    Г. Б. Масловой, Э. А. Сусловой и К. В. Чмутовым [57] был предложен оригинальный метод хроматографического разделения смесей лития и магния, состоящий в промывании колонки катионита КУ-2 с анализируемой смесью 0,15УУ раствором едкого натра прн этом литий переходит в фильтрат, а магний вымывается затем 0,65 Л 1)аствором соляной кислоты. [c.149]

    Нельсон и Краус [631 определили коэффициенты распределения ш елочноземель-ных элементов на анионите дауэкс-1 при различных концентрациях раствора цитрата аммония и на основе полученных данных предложили следующую методику хроматографического разделения смесей этих элементов. В колонку (сечение 0,27 см , высота слоя сорбента 44 см) анионита дауэкс-1, предварительно переведенного в цитратную форму при помощи 0,05 М раствора цитрата аммония с pH примерно 7,5, вводили аликвотную часть (2 мл) раствора, 0,014 М по хлористым барию, стронцию и кальцию и 0,03 М по хлористому магнию и содерн ащего следы [c.156]

    Хроматографическое разделение низших спиртов затрудняется обычно присутствием в пробе воды, часто в виде основного компонента. Это затруднение связано с тем, что спирты труднее отделить от воды, чем соединения,, содержащие другие функциональные группы, из-за близости упругостей их паров, расторимостей и реакционной способности. В некоторых случаях спирты концентрируют путем перегонки с паром и экстракции или выделяют в виде 3,5-динитробензоатов, но, как правило, их приходится хроматографически разделять в присутствии воды, а иногда требуется также определять количество воды. При хроматографическом разделении водных растворов низших спиртов используют три основные методики. По первой из них применяют неполярную жидкую фазу, так что вода элюируется первой, а затем элюируются спирты в порядке увеличения числа атомов углерода в молекуле. Трудность, связанная с использованием этой методики, состоит в том, что вода на большинстве хроматограмм выходит в виде большого асимметричного пика с размытым хвостом. Это весьма усложняет количественный анализ соединений, пики которых следуют непосредственно за пиком воды, поскольку они могут оказаться на хвосте пика воды. По второй методике применяют высокополярную неподвижную жидкость, например глицерин или полиэтиленгликоль такие жидкости удерживают воду втечение длительного времени, так что низшие спирты элюируются до нее. Здесь, следовательно, устраняются осложнения, связанные с размытием хвоста пика воды. Третья методика, используемая в ряде случаев, связана с выбором детектора,, не чувствительного к воде. Например, пламенный водородный детектор дает небольшой положительный сигнал по отношению к воде, тогда как сигнал по отношению к спирту бывает значительно выше (фиг. 95). Следовательно, относительно небольшое Количество спирта можно увидеть на хвосте пика воды. Можно также применять термический детектор и сжигать пробу в трубке с СиО, расположенной после колонки [55]. Воду, введенную с пробой, и воду, полученную при сгорании, улавливают в осушительной колонке с перхлоратом магния до входа газа-носителя в детектор. Таким образом, измеряют только углекислый газ, полученный из спирта. При использова- [c.284]

    Высоконенасыщенные тетратерпены, обнаруженные в высших растениях, грибах, фотосинтезирующих бактериях и водорослях, обычно входят в состав сложных смесей фотосинтезирующих лигментов. Эти так называемые Пигменты хлоропластов представляют собой интенсивно окрашенные соединения, что и послужило главной причиной их выбора в качестве объектов на которых впервые был продемонстрирован принцип хроматографического разделения Фракционирование терпенов этой группы проводилось на самых разнообразных сорбентах, в том числе и таких достаточно распространенных, как силикагель, оксид алюминия, карбонаты цинка и кальция, оксид магния, гидроксид кальция, целлюлоза и сахароза. Элюентами обычно слуЯсили смеси углеводородов, содержащие более полярный растворитель, -например диэтиловый эфир, ацетон, метанол или пропанол. [c.248]

    С другой стороны, при работе с металлосодержащими производными тетрапиррола необходимо избегать условий, благоприятствующих деметаллированию этих комплексов. Большинство металлопорфирииов с трудом подвергается деметаллированию, однако это правило имеет и некоторые исключения. Например, магнийсодержащие порфирины теряют ион металла в присутствии даже следовых количеств соляной кислоты, которые содержатся в хлороформе, а также под воздействием сульфата магния, иногда используемого в качестве осушителя. Легкость деметаллирования магнийсодержащих хлорофиллов и бактериохлорофиллов с образованием соответствующих феофи-тинов создает одну из основных проблем, с которой приходится сталкиваться в ходе выделения и хроматографического разделения пигментов фотосинтезирующих клеток. К тому же, будучи ди- и тетрагидропорфиринами, эти соединения весьма склонны к окислению до порфиринов, изомеризации и ряду других превращений с образованием модифицированных хлорофиллов. В сущности, именно чрезвычайная чувствительность производных тетрапиррола к внешним воздействиям и заставила разработать описанные ниже очень мягкие методы выделения и хроматографирования этих соединений. [c.204]

    Хроматографическое разделение. Для разделения антиоксидантов в качестве адсорбента применяют смесь силикагеля с кизельгуром (25 5), а в качестве подвижного растворителя — смесь гексана с ледяной уксусной кислотой (80 20) [85]. При этом необходимо двукратное проявление. При использовании одного силикагеля растворителем служит система петролейный эфир— бензол — ледяная уксусная кислота (40 40 20) [86]. Хроматограмму опрыскивают 91 % раствором Л -хлоримин-2,6-дихлорхинона в безводном спирте и затем нагревают при 110°С или 20% раствором фосфорномолибденовой кислоты в спирте с последующим нагреванием до 50—70 °С. Предложено также обрабатывать хроматограмму специфичным и более чувствительным реактивом — 2% раствором 3,7-диметил-1,3,6-октатриена в гексане, который перед употреблением фильтруют через слой силиката магния [87]. Хроматограмму выдерживают при комнатной температуре в течение 1 ч или при 50 С в течение 10—15 мин и обрабатывают 2% раствором 2,4-динитрофенилгидразина в 30% хлорной кислоте. [c.87]

    Азот, так же как углерод, водород и сера, может определяться, по данным Рейтсема и Оллфина (1961), путем комбинации аппаратуры для сжигания с хроматографической колонкой и катарометром. Применяемая авторами аппаратура состоит из следующих узлов, соединяемых последовательно дозатор — колонка I — трубка для сжигания — устройство для осушки — колонка II — детектор. Это аппаратурное устройство дает возможность быстрого (в процессе одного анализа) определения азота. Исследуемая проба может вводиться без предварительного взвешивания или непосредственно в трубку для сжигания (минуя колонку I), которая заполнена окисью меди, нанесенной на инертный материал, или в хроматографическую колонку. Дополнительное применение колонки I, включаемой между дозатором и трубкой для сжигания, дает возможность расширить область применения метода. При помощи этой колонки можно отделять присутствующие в смесях соединения азота от сопровождающих их веществ и затем исследовать содержание азота в них. Разделение продуктов сгорания производят на колонке II при помощи силикагеля. Чтобы упростить определение, возникающую при сгорании воду адсорбируют перед колонкой II в устройстве для осушки при помощи перхлората магния. Для количественной интер- [c.253]

    Очистка растворителя. Поскольку коммерческий метанол весьма высокого качества, его используют без какой-либо предварительной обработки. Возможными примесями могут быть ацетон, метилаль, метилацетат, формальдегид, этанол, ацетальдегид, эфир и вода. Воду можно удалить нагреванием с обратным холодильником вместе с эквивалентным количеством металлического магния. Осушка инициируется добавкой малых количеств иода (0,5 г J2 на 5 г Mg). При выдерживании раствора реакция возникает спонтанно и протекает бурно и экзотермически [4]. Анализ воды в метаноле удобно проводить газовым хроматографическим методом. Хроматографирование на колонке длиной 1,8 м, заполненной Рогарак Q , при 100 °С дает хорошее разделение воды от воздуха, СО2 и метанола. [c.38]

    Тонкослойная хроматография является эффективным методом для разделения малых количеств веществ на небольшом слое адсорбента и за короткое время. Хроматографирование можно проводить в закрепленном и незакрепленном слое адсорбента. В качестве адсорбента для приготовления закрепленных слоев применяют оксиды магния, алюминия, кальция, карбонат магния, силикагель в смеси со связующими компонентами, такими, как сульфат кальция, рисовый крахмал и вода. Для приготовления хроматографической пластинки с закрепленным слоем адсорбента на стеклянную пластинку (9Х12 см, 13X7 см) наносят смесь адсорбента со связующим веществом (5% от массы адсорбента) и водой в виде кашицы Специальным валиком (см ниже) смесь равномерно раскатывают в слой толщиной 2 мм Затем пластинку высушивают при 110—120°С. После высушивания пластинки на ней не должно быть трещин [c.50]

    Хлорофилл представляет собой зеленое красящее вещество высших растений. Для очистки и разделения его на хлорофилл а и хлорофилл Ь лучше всего использовать хроматографические методы (Цвет, 1906 г.). Оба соединения обычно содержатся в соотношении 5 2. Хлорофилл а является зеленым воскоподобным веществом (т.пл. 117—120°С). Оба хлорофилла оптически деятельны. Установление их строения было предпринято в 1906 г. Вильштеттером. Он установил, что имеет дело с комплексами магния. При действии кислот магний удалялся и образовывались феофитин а и феофитин Ь. Эти соединения могут быть омылены с образованием соответственно феофорбида а и феофорбида Ь и спирта фитола (см. раздел 3.6.3.). Решающий вклад в дальнейшее установление структуры был сделан Г. Фишером (1929—1940 гг.). Превращение феофорбида в этиопорфирин позволило увидеть связь между красителем крови и красителем зеленых листьев. [c.613]

    Уже давно было найдено, что окись алюминия непригодна для хроматографического анализа флавоноидов, поскольку образуются довольно стабильные комплексы с изменяющейся окраской. Более подходящим, по-видимому, является сульфат кальция, который был использован в колоночной хроматографии антоцианов [26]. Хороший результат был достигнут при разделении катехинов [6, 7] и синтетических антоипанидинов [49а] с использованием влажного силикагеля в качестве неподвижной фазы и эфира в качестве подвижной фазы. В качестве весьма подходящего сорбента во многих работах рекомендуют магнезол — гидрат трисиликата магния [24, 42]. На колонках, заполненных магнезолом, можно разделять смеси флавоноидов, используя в качестве растворителя этилацетат,насыщенный водой. Для очистки сырых экстрактов использовали также ионообменные смолы [с 14]. Разделение на колонках, заполненных целлюлозным порошком, протекает удовлетворительно только в случае простых смесей. Для препаративного предварительного разделения вместо обычной бумаги с большим успехом используют фильтровальный картон. В последние годы делаются попытки оценить возможности использования сорбционных свойств полиамидных порошков (нерлон, ультрамид, силон и др.). [c.375]

    По хроматографическим свойствам силикаты магния близки к силикагелям (см. разд. 1). Применяют их для разделения липидов, гликозидов, ацетилиро-ванных сахаров, азотсодержащих веществ, алкалоидов, нуклеотидов, углеводородов, терпенов, стероидов, витаминов, пестицидов, канцерогенных веществ идр. Наибольшую популярность приобрел флорисил — силикат магния со сравнительно низким содержанием окиси магния. Элюотропный ряд растворителей для адсорбционной хроматографии на флорисиле дан в разд. 166. [c.29]

    В качестве адсорбента употребляют гидроокись алюминия, углекислый кальций, углекислый магний, тальк, крахмал, сахарную пудру и многие другие вещества. Каждое вещество обладает свойственной ему способностью адсорбироваться и концентрируется в строго определенном слое адсорбента. Вещества, не адсорбируемые данным адсорбентом, проходят сквозь колонку и таким путем освобождаются от адсорбируемых веществ. В адсорбционной колонке получается несколько полос, окрашенных в разные цвета. Пигменты, разделенные на хроматографической колонке, послойно извлекают соответствующими растворителями (элюируют). Количественное определение пигментов, содержащихся в каждой элюированной фракции и в фильтрате, лроизводят калориметрическим методом. Хроматографический адсорбционный анализ в настоящее время широко применяют для разделения самых разнообразных веществ, в том числе и не обладающих окраской. [c.305]


Смотреть страницы где упоминается термин Хроматографическое разделение магния: [c.296]    [c.1491]    [c.260]    [c.472]    [c.23]    [c.101]    [c.288]    [c.181]    [c.312]   
Аналитическая химия циркония и гафния (1965) -- [ c.100 ]




ПОИСК







© 2024 chem21.info Реклама на сайте