Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амины жирные

    Химические свойства. Реакции за счет аминогруппы. Основные свойства. Подобно аминам жирного ряда, ароматические амины, будучи производными аммиака, проявляют свойства оснований и с кислотами образуют соли замещенного аммония (стр. 271, 272). Например  [c.387]

    Неподеленная электронная пара на атоме азота обусловливает основные свойства пиридина. Однако его основность выражена значительно слабее, чем у аминов жирного ряда. В отличие от пиррола неподеленная электронная пара атома азота не принимает участия в образовании ароматической системы. С кислотами пиридин и его гомологи легко образуют соли, которые в водных растворах сильно гидролизованы  [c.367]


Рис. 59. Схема адсорбции на металле молекулы амина жирной кислоты Рис. 59. <a href="/info/28494">Схема адсорбции</a> на <a href="/info/984029">металле молекулы</a> <a href="/info/55879">амина жирной</a> кислоты
    АМИНЫ ЖИРНОГО РЯДА [c.73]

    Амины жирного ряда, содержащие простые углеводородные радикалы, встречаются в продуктах распада белков. [c.496]

    Амины жирного ряда, подобно аммиаку, являются основаниями они ионизированы в водных растворах сильнее, чем аммиак, и, таким образом, превосходят его по своей основности. [c.159]

    Из ранних исследований, которые привели к возникновению понятия о пространственных препятствиях при реакциях, отметим здесь классические работы по реакционной способности первичных и вторичных аминов жирного, алицикличе-. ского и ароматического рядов и некоторых гетероциклических оснований [223]. Этими исследованиями был открыт обширный класс медленных молекулярных реакций второго порядка, которые идут замедленно, несмотря на малые энергии активации, вследствие аномально низких величии предэкспоненциальных множителей, что обусловлено большими пространственными препятствиями- при этих реакциях. [c.165]

    Ароматические амины, в отличие от аминов жирного ряда, легко окисляются. Например, хромовая смесь превращает анилин в черный анилин — краситель черного цвета, который применяется в технике. Так, пигмент глубоко-черный — продукт окисления анилина, используется для окраски полимеров. [c.302]

    Ароматические амины, как и амины жирного ряда, могут быть первичными (I), вторичными (II) и третичными (III)  [c.298]

    На том же месторождении применяли ингибитор более сложного строения — амин жирной кислоты (рис. 59). [c.310]

    По химическим свойствам ароматические амины в общем близки аминам жирного ряда (стр. 165 и сл.). Как и последние, ароматические амины можно обычны.м путем алкилировать до четвертичных аммониевых солей  [c.567]

    Различают амины жирного, ароматического рядов и смешанные. Первый тип образован радикалами с открытой цепью (жирный ряд), второй — ароматическими. Если с аминогруппой связаны радикалы обоих типов, то образуются смешанные (жирно-ароматические) амины. В зависимости от числа углеводородных радикалов независимо от их природы амины делят на первичные (К—ННз), вторичные (К—N—К,) и третичные (Я—N—К,)  [c.351]


    Это явление было замечено для аминов жирного и жирно-ароматического рядов. Например, изоамиламин над N -катализатором при 300° реагирует по двум направлениям  [c.298]

    Включая амины жирного ряда, соли аминов жирных кислот и жирные производные азотистых оснований. [c.208]

    Амины жирного ряда [c.402]

    Основные свойства выражены у ароматических аминов значительно слабее, чем у аминов жирного ряда. Бензольный остаток, усиливающий кислотность гидроксильной группы (в результате чего фенолы являются более сильными кислотами, чем спирты), ослабляет основной характер аминогруппы. Ариламины нейтральны на лакмус, но с минеральными кислотами образуют устойчивые соли, водные растворы которых имеют кислую реакцию вследствие частичного гидро лиза. Очевидно, образованием таких солей объясняется способность ароматических аминов, несмотря на незначительную основность, осаждать гидраты окисей металлов из растворов соответствующих солей при этом кислота, образующаяся в результате гидролиза соли металла, связывается амином, что способствует дальнейшему образованию гидрата окиси. [c.567]

    Как уже было указано, первичные ароматические амины при действии азотистой кислоты превращаются в солн диазония, а вторичные ароматические амины, подобно аминам жирного ряда, образуют нитрозамины  [c.570]

    Открытие аминов и аминокислот. Амины растворяются в кислотах. Часто обладают характерным запахом. Амины жирного ряда, кроме того, имеют основную реакцию на лакмус и другие индикаторы. [c.125]

    Ароматические амины, как и амины жирного ряда, вступают в реакции алкилирования и ацилирования. В первом случае образуются алкильные, а во втором — ацильные производные  [c.301]

    При переходе от аммиака к аминам жирного ряда основные свойства усиливаются. Объясняется это тем, что радикал, будучи электронодонором, смещает электронную плотность в сторону азота. Вследствие этого неподеленная пара электронов становится более доступной для взаимодействия с протоном. Амины, подобно аммиаку, присоединяют протон и переходят в замещенный ион аммония  [c.352]

    В водных растворах органических веществ адсорбционные скачки потенциала значительно больше, чем в растворах неорганических солей. Это связано с положительной адсорбцией органических веществ на границе раствор — воздух. Для растворов спиртов, кислот, простых эфиров и аминов жирного ряда АЕ>0. Возникновение положительного адсорбционного скачка потенциала связано с тем, что органические вещества образуют адсорбционные слои, в которых их диполи обращены положительным концом к газовой фазе. Зависимость Г и от концентрации органического вещества в большинстве случаев выражается кривыми, имеющими пределы, причем адсорбционные скачки потенциала растут в первом приближении прямо пропорционально адсорбции (рис. 49). Из этих результатов можно сделать два вывода. Во-первых, о том, что адсорбция органического [c.92]

    В водных растворах органических-веществ адсорбционные скачки потенциала значительно больше, чем в растворах неорганических солей. Это связано с положительной адсорбцией органических веществ на границе раствор — воздух. Для растворов спиртов, кислот, простых эфиров и аминов жирного ряда Аф > 0. Возникновение положительного адсорбционного скачка потенциала связано с тем, что органические вещества образуют адсорбционные слои, в которых их диполи обращены положительным концом к газовой фазе. [c.94]

    Флотация растворимых минералов применяется взамен более сложных и менее экономичных методов галлургии, основанных на различной растворимости компонентов разделяемой системы. Основная особенность флотации растворимых минералов (как правило, солей) заключается в том, что средой для флотации служит насыщенный раствор солей, входящих в состав обогащаемого сырья. Разделение солей ведется при аэрировании пульпы и при помощи селективных флотореагентов — собирателей. Реагенты-пенообразователи при флотации растворимых солей применяются не всегда, так как многие насыщенные солевые растворы сами по себе обладают пенообразующей способностью. Особо важное значение имеет регулирование pH среды при помощи реагентов-регуляторов, которые способствуют действию реагентов-коллекторов. Метод флотации применяется, например, для получения хлорида калия из сильвинита (минерал Na l-K l), из насыщенного солевого раствора, содержащего примерно до 100 г/дм КС и 250 г/дм Na l. Реагентами-коллекторами служат амины жирного ряда с числом углеродных атомов С б—С20. [c.17]

    При переходе от аммиака к аминам жирного ряда основные свойства усиливаются. Объясняется это тем, что радикал, будучи электронодонором, смещает электронную плотность в сторону азота. Вследствие этого неподеленная пара электронов становится более доступной для взаимодействия с протоном. [c.403]


    Поэтому водные растворы аминов имеют щелочную реакцию и окрашивают лакмус в синий цвет. Более того, под влиянием простейших алкильных радикалов основные свойства аминогруппы увеличиваются, поэтому низшие амины жирного ряда являются значительно более сильными основаниями, чем аммиак. [c.272]

    Производные ароматических углеводородов, содержащие в бензольном ядре взамен атома водорода остаток аммиака — аминогруппу, представляют собой ароматические амины, подобно аминам жирного ряда, ароматические амины можно рассматривать и как производные аммиака, в котором атомы водорода замещены углеводородными радикалами, но по крайней мере один из этих радикалов является ароматическим. [c.385]

    Вторичные ароматические амины, подобно вторичным аминам жирного ряда (стр. 274), с азотистой кислотой образуют нитрозамины СНз [c.388]

    Третичные ароматические амины, в отличие от третичных аминов жирного ряда (стр. 274), взаимодействуют с азотистой кислотой. Третичная аминогруппа проявляет себя как заместитель I рода, поэтому остаток азотистой кислоты — нитрозогруппа — легко замещает водород в бензольном ядре в пара-положении к аминогруппе [c.388]

    Напишите уравнения реакций действия азотистой кислоты на следующие вторичные и третичные ароматические амины а ) этиланилин б) бензилфениламин в ) диэтиланилин г) метилэтиланилин. Назовите продукты реакций. В чем особенность действия азотистой кислоты на третичные жирно-ароматические амины сравнительно с третичными аминами жирного ряда  [c.105]

    I. Амины жирного ряда. Пх в нобтях очень м ло, но они обнаружены в буровых водах. [c.133]

    Лучше протекает реакция восстановления натрием и спиртом, и этот способ оказал большие услуги (в особенности Краффту) при синтезе высших аминов жирного ряда. В последнее время более подробно было изучено каталитическое восстановление нитрилов никелем и водородом, а также палладием или платиной и водородом (Сабатье и Сандеран, Рупе и др.). Оказалось, что в зависимости от характера нитрила получаются либо первичные, либо вторичные амины, либо смесь обоих соединений. Объяснение хода реакции образования первичных аминов не представляет трудности, но синтез вторичных аминов уже не столь ясен. Вероятно, он протекает так, что из нитрила при присоединении молекулы водорода образуется альдимин, который затем частично гидролизуется до альдегида и частично восстанавливается до первичного амина. Оба эти вещества соединяются с образованием шиффова основания, которое при дальнейшем действии водорода превращается- во вторичный амин. Возможно также, что альднмин реагирует с одной молекулой образовавшегося первичного амина, причем сразу получается шиффово основание  [c.162]

    Ослабление основных свойств у ароматических аминов по сравнению с аминами жирного ряда, вероятно, обусловлено тем, что необобщенная пара электронов N-aтoмa вступает в обмен с л-электронами ароматического ядра в результате такого сдвига электронов Ы-атон приобретает более положительный характер и его склонность к присоединению протонов снижается  [c.567]

    Существует достаточно доступный метод синтеза производных акрилонитрила - это реакция присоединения по двойной углерод-углеродной связи спиртов, псрвичпы.х аминов, жирных кислот и т.д. [1-3]. Однако  [c.145]

    Бензилдифенил eH5 H2 eH4 eHs. Мол. вес 244,34, т. плавл. 54° С, т. кип. 285° С при 110 мм рт. ст., плотн. 1,171 при 20° С, показатель преломления 1,609, полярность по Роршнейдеру 40. Рабочая температура колонки 60—120° С. Рекомендуемый растворитель—дихлорметан. Применяется для разделения ароматических углеводородов и их изомеров, аминов, жирных кислот. [c.282]

    Кривая 2 (рис. 19.5) характеризует зависимость о от с для водных растворов полярных органических веществ с углеводородными цепями не очень большой длины и недиссоциирующими или слабодиссоциирующими группами алифатических спиртов, аминов, жирных кислот. Для таких веществ падение а в области малых концентраций имеет линейный характер, а затем идет по логарифмическому закону. Этот тип зависимости поверхностного натяжения от концентрации ПАВ хорошо описывается эмпирическим уравнением Б. А, Шишковского [c.309]

    Нормальные алкильные цепи, содержащие от 8 до 18 и более атомов углерода, получают из природных жирных кислот, которые можно применять непосредственно или же преобразовать в хлоран-. гидриды для использования в реакциях ацилирования. Кислоты или их сложные эфиры могут быть также восстановлены в соответствующие спирты жирного ряда или через нитрилы в амины жирного ряда. Амины же используют как промежуточные соединения во многих реакциях для введения длинной алкильной цепи. Таким образом, природные жирные кислоты являются наиболее важным источником получения гидрофобных радикалов. Из них прямо или косвенно получают различные моющие средства. [c.64]

    Поверхностно-активными веществами по отношению к воде (подавляющее количество полезных ископаемых обогащается в воде) являются многие органические вещества-эфиры, амины, жирные кислоты, мыла и др. Молекулы ПАв содержат полярную группу и неполярный радикал, т. е. ПАВ являются веществами, в молекулы которых одновременно входят какие-либо полярные гидрофильные группы (ОН, СООН, МНаЗОзН и т. д.) и неполярная углеводородная цепь. Таким образом, молекула ПАВ имеет двойственную природу (дифильна). Полярная группа вызывает сродство молекул ПАВ к полярной фазе данной системы, например [c.193]

    Для разделения воды, аминов, жирных кислот, полярных соединений, спиртов, хелатов металлов. Максимальная рабочая температура 180°С Хорошее разделение слабо и среднеполярных соединений. Механически очень прочен, стойкий до 1000°С Используется в препаративной хроматографии Для анализа полярных соединений [c.111]

    Реакция с аэотистой кислотой. Первичные ароматические амины в реакции с азотистой кислотой НЫОа отличаются от первичных аминов жирного ряда. В последних, как известно, при действии азотистой кислоты аминогруппа заменяется на гидроксил, выделяется азот и образуются спирты (стр. 274). Если же азотистой кислотой действовать на холоду на соль первичного ароматического амина, то при этом вначале образуются диазо- [c.387]


Смотреть страницы где упоминается термин Амины жирные: [c.203]    [c.62]    [c.205]    [c.568]    [c.576]    [c.203]    [c.299]    [c.584]    [c.351]   
Органическая химия Издание 3 (1963) -- [ c.310 ]

Органическая химия (1956) -- [ c.309 ]

Курс органической химии (0) -- [ c.0 , c.20 , c.159 , c.160 , c.162 , c.164 , c.165 ]

Противоизносные присадки к маслам (1972) -- [ c.115 , c.154 , c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Азотистые соединения жирного ряда (амины, нитрилы, изонитрилы, нитросоединения)

Амины жирно-ароматические

Амины жирно-ароматические смешанные

Амины жирного ряда

Амины жирного ряда первичные

Амины жирного ряда сушка

Аммонолиз жирных спиртов, получение жирных аминов

Ацетилирование, методы для ацидиметрического определения аминов жирных оксикислот

Выделение и очистка высших жирных аминов

Выделение третичного амина из смеси жирных аминов с помощью азотистой кислоты

Высшие амины жирного ряда

Гидрирование каталитическое нитрилов в жирные амины

Жирные амиды превращение в жирные амины в паровой фазе

Жирные амины алкилированные, ароматизированные, ацилированные и превращенные в четвертичные соединения

Жирные кислоты продукты взаимодействия с аминам

Жирный амин из кислот кокосового

Жирный амин из кислот кокосового обработанный окисью этилена

Жирных кислот амины как антиокислители

Образование аминов жирного ряда

Образование и свойства аминов жирного ряда

Окиси жирных аминов

Опыт 128. Свойства аминов жирного ряда

Получение аминов жирного ряда

Получение аминов жирного рядп

Свойства аминов жирного ряда

Смирнов, А. А. Петров. Исследование деэмульгирующей способности высших жирных аминов



© 2025 chem21.info Реклама на сайте