Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсия акустическая

    Допустим теперь, что взаимодействие трансляционных и ориентационных колебаний, за которое ответственна функция В (к), мало при всех к. Опустим вовсе последнее слагаемое в (3.36), т. е. будем считать, что законы дисперсии полностью определяются соотношением (3.37). Если lAi (к) < /лЛа (к) при всех к, то подобное заключение не приводит к трудностям в истолковании результатов. Возникающие законы дисперсии акустических и оптических колебаний [c.88]


    В результате пересечения в точке к = происходит скачкообразное изменение поляризаций колебаний двух ветвей. Действительно, из рассмотрения (3.7) при 5 (к) =0 вытекает, что закон дисперсии /лш = (к) относится к чисто трансляционным колебаниям (ф = 0), а закон дисперсии 1щ — А , (к) — к ориентационным колебаниям (ц = 0). Скачкообразная смена поляризаций колебаний и появление изломов на графиках законов дисперсии акустических и оптических колебаний является следствием полного пренебрежения взаимодействием трансляционных и либрационных колебаний при (0) > та (0). Учет даже малой величины В в (3.36) полностью снимает оба недоразумения, так как точка пере-. сечения исчезает, графики в окрестности к = к раздвигаются, законы дисперсии приобретают регулярный вид (рис. 31, б), а поляризации трансформируются непрерывно. [c.89]

    Каждый член суммы в уравнениях (1У.63) и (1У.64) представляет собой вклад в акустическую дисперсию акустически наблюдаемой нормальной реакции. Механизм естественных реакций, сочетание которых дает активную в акустическом спектре нормальную реакцию, должен быть таким, чтобы тепловой эффект АНр или объемный эффект АУ , либо оба этих эффекта /-й нормальной реакции были отличны от нуля, [c.70]

    Измерение времён релаксации молекул многоатомных газов производилось до последнего времени только на основе изучения дисперсии акустических волн в соответствующих газах. Недавно [319] времена релаксации были определены на осно- [c.123]

    Кавитационно-акустическое разрушение частиц внутренней фазы дисперсии в АГВ обусловлено способностью аппарата генерировать непрерывный поток кавитационных пузырьков в среде. Эта способность обеспечивается своеобразной конструкцией и позволяет управлять концентрацией пузырьков. Феноменологическая основа кавитационно-акустического диспергирования заключается во взаимодействии кавитационного пузырька с частицей дисперсии. В силу особенностей динамики пузырька в среде возбуждается ряд акустических эффектов, которые являются движущей силой диспергирования. [c.103]

    Особенностью кавитационно-акустического диспергирования следует признать многостадийность процесса, связанного и с изменением числа участников процесса (частиц, пузырьков), и с изменением размеров частиц дисперсной системы. Действительно, кавитационные пузырьки прекращают свое существование как вследствие взаимодействия с частицами дисперсии, так и [c.103]


    Возбуждение колебаний за счет энергии относительного движения сталкивающихся молекул и обратный процесс рассеяния колебательной энергии вследствие малой вероятности обмена поступательной и колебательной энергии находят отражение в дисперсии и поглощении ультразвука. Как это следует из теории Эйнштейна распространения звука в многоатомных газах [735], при достаточно больших частотах звука, когда время релаксации становится больше периода акустических колебаний, состояние газа в момент прохождения звука отклоняется от равновесного. Результатом этого является дисперсия звука, выражающаяся в зависимости скорости распространения звуковых колебаний от частоты, а также аномальное поглощение звука газом, отличающееся от обычного (классического) как своей величиной, превышая последнее в 10—100 раз, так и иной зависимостью коэффициента поглощения от частоты-звука. [c.177]

    Не следует думать, что энергия, требуемая для проведения этих процессов, расходуется только на развитие межфазной поверхности. В реальных условиях большая доля энергии затрачивается на преодоление внутреннего трения и приведение жидкости в движение. Для совершения элементарных актов диспергирования жидкостей необходимо реализовать в микрообъемах такую гидродинамическую обстановку, в результате которой возникали бы необходимые растягивающие и сдвигающие напряжения, приводящие к образованию и отрыву капель. Поэтому, если иметь в виду как цель получение дисперсии с узким распределением частиц заданного размера, акустические и электрические методы представляются предпочтительными. [c.121]

    Полная обработка данных измерений включала время-им-пульсный анализ определяли значения среднего интервала между импульсами и дисперсии интервалов на однородных областях, автокорреляционные функции импульсных потоков, спектры их огибающих, взаимно корреляционные функции для акустической эмиссии, регистрируемой на различных каналах. [c.192]

    Датчики акустической эмиссии устанавливали вдоль оси трещиноподобного дефекта под углом 45 град, к его вершине и 90 град, относительно центра дефекта. Регистрировали активность эмиссии в полосе частот 80-180 кГц. При обработке результатов использовали статистические характеристики активности (среднее значение, дисперсия и коэффициент вариации активности на заданном интервале времени). [c.194]

    Скорость распространения акустических волн для жидкостей или газов определяют при заданном состоянии среды (температуре, давлении) постоянной с=У(др/др) =УКр, где р — давление в веществе р — его плотность К — модуль всестороннего сжатия, равный отношению давления к деформации изменения объема с обратным знаком. Индекс 5 показывает, что производная берется при постоянной энтропии. Как правило, скорость не зависит от частоты, однако в некоторых веществах в определенном диапазоне частот наблюдают дисперсию скорости. Это объясняется тем, что скорость зависит от числа степеней свободы колебательного движения молекул. В упомянутом диапазоне частот в колебания начинает вовлекаться дополнительная степень свободы взаимное движение атомов внутри молекул. Исследование свойств веществ и кинетики молекулярных процессов по скорости (и затуханию) акустических волн составляет предмет молекулярной акустики. [c.30]

    В кристалле существуют различные типы упругих волн, отличающиеся характером поляризации и законом дисперсии среди них имеются так называемые акустические волны, частота которых стремится к нулю при стремлении длины волны к бесконечности  [c.74]

Рис. 46. Кривые дисперсии а — Nal 6 — алмаз. Буквами L, Т, О, А обозначены соответственно продольные, поперечные, оптические н акустические ветви Рис. 46. <a href="/info/18622">Кривые дисперсии</a> а — Nal 6 — алмаз. Буквами L, Т, О, А обозначены соответственно продольные, поперечные, оптические н акустические ветви
    Основой математического описания кавитационно-акустического диспергирования составили элементы математической теории эволюции и, в частности, теории взаимодействия двух конкурирующих популяций Ni- популяции частиц внутренней фазы дисперсии и N2 - популяции кавитационных пузырьков. [c.13]

    Дисперсия опорного сигнала Стабильность акустического контакта [c.204]

    В [425, с. 767/097] рассматривалось распространение поверхностных волн, когда объект находится под землей. При этом возникает дисперсия скорости. Отмечается возможность увеличения фазовой скорости до 40 % и влияния на нее акустических свойств окружающей среды. [c.334]


    Для контроля металлов посредством определения их поверхностных механических свойств применяют акустические твердомеры. Основной принцип, реализуемый при рассматриваемом подходе, заключается в наблюдении за реакцией диагностического щупа, приводимого в соприкосновение с контро ли-руемой поверхностью. Реакция обусловлена механическим (в частности акустическим), электромагнитным или электрохимическим взаимодействием щупа с объектом контроля. Механические характеристики определяют на основе регистрации изменения резонансных частот механических колебаний стержня после приведения его в контакт с контролируемой поверхностью при задании определенного усилия прижима, что обеспечивается конструкцией щупа. Используя колебания разных типов (продольные, изгибные, крутильные), можно определить, кроме числа твердости, степень анизотропии поверхностных слоев материала, которая в частности содержит информацию о величине внутренних напряжений в материале. В настоящее время методики развиты применительно к шероховатым поверхностям, что позволяет проводить измерения при минимальной подготовке контролируемой поверхности или вообще без нее. Основу этого обеспечивает статистическая обработка данных, получаемых в близких, но различных точках. Установлена устойчивая статистическая связь между дисперсией приращений при многократном повторении измерений и параметрами шероховатости. [c.27]

    Указанная область может находиться в диапазоне частот, на которых проводятся акустические, обычно ультразвуковые, измерения, поэтому изменения скорости и поглощения ультразвука, вызванные релаксационными явлениями, следует учитывать при создании и эксплуатации соответствующей контрольноизмерительной аппаратуры. Вместе с тем изучение релаксационных явлений при измерении дисперсии скорости звука и релаксационного поглощения ультразвука является эффективным методом исследования свойств тепло- и энергоносителей. [c.42]

    Распространение акустических импульсов по звукопроводам. Скорость передачи сигнала (импульса) определяет групповая скорость. При отсутствии дисперсии скорости звука (т.е. ее зависимости от частоты), групповая скорость с р равна фазовой скорости с. В противном случае [c.122]

    Фононы, длины волн которых много больше межатомных расстояний, представляют собой обычные упругие волны и называются поэтому акустическими. Решетка в этом случае колеблется в целом как сплошная среда. Соответственно трем независимым поляризациям упругих волн в твердом теле (одной продольной и двум поперечным) различают три ветви спектра акустических фононов, для каждой из которых характерен в общем случае свой закон дисперсии и = ф(со). [c.12]

    Подобные измерения обычно производятся либо с разделенными излучающим и принимающим пьезоэлектрическими преобразователями, либо с общим преобразователем и акустическим отражателем. Для измерения времени распространения используют ультразвуковую волну, модулированную импульсом. Несмотря на то что скорость ультразвука можно определить по времени распространения на известное фиксированное расстояние, многие исследователи предпочитают установки с изменяющейся длиной пути. В этих установках либо преобразователь, либо отражатель перемещаются на известное расстояние, а измеряется изменение времени возврата сигнала. Такая установка особенно удобна и в случае, когда измеряется поглощение ультразвука, так как коэффициент поглощения можно вычислить из изменения интенсивности сигнала с расстоянием. В отсутствие дисперсии скорости несущая частота ультразвуковой волны, модулированной импульсом, о зино заключена в пределах 10 - 10 Гц. Выбор частоты не является решающим и обычно определяется различными факторами, относящимися к оптимизации точности и воспроизводимости [11], а также желанием значительно сократить объем жидкости. [c.428]

    Измерения дисперсии и поглощения ультразвука лежат в основе одного из наиболее широко применяемых методов изучения процессов обмена колебательной (реже вращательной) энергии при столкновениях молекул — акустического метода. Этот метод обычно применяется при температурах, близких к комнатной. [c.180]

    Особенность конструкции аппарата гидроакустического воздействия состоит в том, что в нем одновременно и неразделимо реализуется несколько механизмов воздействия на дисперсные системы механическое разрушение частиц внутренней фазы дисперсии в условиях стесненного удара, разрушение частиц вследствие их фрикционных взаимодействий с потоком, разрушение частиц как результат кавитационно-акустического воздействия. В отношении кинематики взаимодействия частиц с узлами аппарата более сложным представляется механизм разрзтпения частиц в условиях стесненного удара, поэтому в постановке задачи он обсуждается более подробно. [c.101]

    Действительно, при отсутствии дисперсии акустических волн фазовая скорость ш/ оказывается равной групповой скорости йЫйд [см. (114)] при этом обе они не зависят от д и, согласно (31), [c.114]

    Данные по скоростям ультразвука в водных растворах электрог литов накапливались постепенно в течение многих лет [1, 2] . Существенный интерес к неводным растворам [3, 4] и расплавам солей [5] проявился совсем недавно. Измерение скорости в среде с т-> вестной плотностью является стандартным способом определения сжимаемости жидкостей. Сжимаемость растворов можно вычислить, исходя из ион-ионных взаимодействий и взаимодействий иона с растворителем. В случае расплавов солей можно исходить из одной из теорий жидкости. Частотная дисперсия акустической скорости в прш-ципе позволяет изучать релаксационные явления в такой системе. Однако в растворах электролитов преобладает дисперсия поглощения звука, и поэтому почти всегда предпочитают прямые измерения затухания звуковых волн. [c.419]

Рис. 30. Экспериментальные кривые закона дисперсии акустических (Л) и оптических (0) колебаний для алмаза в направлениях [100] и [111] (Уоррен, Венцель, Ярнелл, 1965). Рис. 30. <a href="/info/330316">Экспериментальные кривые</a> <a href="/info/466382">закона дисперсии</a> акустических (Л) и оптических (0) колебаний для алмаза в направлениях [100] и [111] (Уоррен, Венцель, Ярнелл, 1965).
    Мы уже отмечали, что характерные частоты трансляционных и либрационных волн имеют одинаковый порядок величины 1а (0) та (0). Поэтому вполне возможны кристаллы, для которых 1а (0) > та (0) и (Oi< со . Тогда графики законов дисперсии (3.38) и (3.39) вдоль направления [П1] пересекутся в некоторой точке (см. рис. 31, а) и возникнет кроссовая ситуация (от английского ross — крест, пересечение). Формально, следуя (3.36), законы дисперсии акустических (низкочастотных) и оптических (высокочастотных) колебаний мы должны представить так  [c.89]

    Сопоставление результатов оптического эксперимента с литературными данными по скорости ультразвука /2, 44/ показывает, что в н-парафинах в пределах точности эксперимента акустическая дисперсия не набпюдаотса. Однако в н- ексане, где измерения были выполнены в более широкой области температур (при относительно высоких температурах), обнаруживается дисперсия и скорость гиперзвука заметно превышает скорость ультразвука ( на 13%)(рис. П.1.5) [c.18]

    Вихревые акустические гомогенизаторы предназначены для высокоэффективного перемешивания жидких продуктов и получения дисперсий, обладающих повьпиенной устойчивостью к расслоению. [c.58]

    Исследования С.П. Перевалова [257] показали, что предпочтительный способ изготовления зарубок - эрозионный. При нем достигаются максимальный коэффициент корреляции между различными зарубками и минимальная дисперсия результатов. Подбор правильной формы электродов позволяет довольно точно выполнить требуемый отражатель. Оптимальный металл для изготовления электродов - вольфрам. Представляет опасность црижог металла образца. В связи с шероховатостью отражающей поверхности при электроэрозионной обработке наблюдается ослабление эхосигнала на -0,5 дБ. Предлагается проводить акустическую аттестацию зарубок, т.е. сравнивать амплитуды эхосигналов от них со стандартными значениями. На амплитуду эхосигнала влияет акустическое поле каждого индивидуального преобразователя. Аттестацию рекомендуется проводить с помощью преобразователя, который обеспечивает монотонное убывание амплитуды эхосигнала от боковых цилиндрических отверстий на разной глубине. [c.176]

    Следует упомянуть также работы Б.А. Конюхова, Н.Е. Никитиной и др. (Нижегородский филиал Института машиноведения РАН), посвященные использованию нелинейного взаимодействия упругих волн для контроля напряжений в условиях структурной неоднородности материала [84, 101, 107]. Необходимо отметить, что этой группой разработаны несколько вариантов методики диагностирования деталей машин и определения дисперсии внутренних напряжений акустическим методом. [c.20]

    Тонкую проволоку диаметром до 1 мм, на которой недопустимы ни продольные, ни поперечные трещины, ни раковины, ни неметаллические включения, можно контролировать различными способами. В устройстве по Бёме [159 переходный участок к искателю имеет на очень малой длине сухой контакт с проволокой. Изгибные волны, возбуждаемые при этом особенно интенсивно, заметно ослабляются и отражаются дефектами типа продольных трещин глубиной более 10% диаметра, а также раковинами и включениями, занимающими более 10% площади поперечного сечения. Колебания акустического контакта при частотах 1—2,5 МГц составляют всего 10% высоты зхо-импульса. Импульсы распространяются как волны в пластинах, частично вследствие дисперсии. [c.489]

    Таким образом, прозвучивание перпендикулярно к поверхности лишь в редких случаях приводит к успеху, тогда- как распространение волн вдоль поверхности еще открывает перспективные возможности. Если поперечная скорость звука в слое -Меньше, чем в подложке, то толщина слоя изменяет скорость распространения поверхностных волн и волн Лава (Love—Wellen, Хойслер [592]). В какой мере, несмотря на дисперсию фазовой скорости, измерение импульсными приборами при этом еще оказывается возможным, пока неясно и будет установлено дальнейшими исследованиями. К сожалению, волны Лава имеют тот недостаток, что они могут быть возбуждены только в случае твердой или по крайней мере очень вязкой среды акустического контакта. [c.635]

    При наблюдении за надземной аркой-компенсатором с прилегающим участком газопровода установлено, что регистрируемая акустическая эмиссия может быть описана как стационарный случайный процесс со статистически неизменными федним значением и дисперсией. Уровень зарегистрированных сигналов не превышал утроенного среднеквадратического значения аппаратурного шума, что свидетельствует о низкой активности процессов повреждения, не характерной для потенциально опасного состояния материала трубопровода. Данное заключение должно приниматься с учетом сделанных выше замечаний [c.278]

    Изменение измеренной электрозвуковой акустической амплитуды ЭАА/С для водной дисперсии пигмента У как функции количества добавляемого ОМТ при 25 °С. Положение стрелки соответствует насыщению границы монослоя, определенное из изотермы адсорбции на рис. 5.18. Объемная фракция пигмента — около 0,0135, pH непрерывной фазы — 5,05, ионная сила — 0,05 М [c.171]

    В заключение заметим, что очень часто предпринимаются попытки использовать простые модели Максвелла или Кельвина — Фойхта для описания динамических вязкоупругих свойств полимерных материалов. Из изложенного выше следует, что такой подход является прин ишиально неверным, так как формулы (7.45) и (7.49) даже качественно не могут описать динамические вязкоупругие свойства полимеров. Для качественной оценки вязкоупругого поведения полимеров в некоторых случаях молено использовать модель линейного стандартного вязкоупругого тела или модель, приведенную на рис. 57. Две последние модели можно применять лишь для описания одного релаксационного процесса, в котором распределение времен релаксации может быть в первом (весьма грубом) приближении заменено одннм усредненным, эффективным временем релаксации. Выражения (7.50) — (7.59) качественно правильно описывают динамические вязкоупругие и акустические свойства полимеров они указывают на дисперсию (частотную зависимость) динамического модуля упругости (или дисперсию скорости звука) приводят к конечным значениям динамического модуля как в случае низких частот (со—>О), так и в случае высоких (со—иоо) указывают, что для каждого релаксационного процесса должен существовать максимум на частотной зависимости tgo. [c.248]

    Независимо от изучения акустических свойств в последнее время были проведены исследования по распространению волн в пузырьковой жидкости за пределами акустической области, когда возмущения заданного равновесного состояния уже не являются бесконечно малыми. Влияние нелинейности, дисперсии и диссипации, обсуждаемое в разд. 6, приводит (как и для волн в плазме и на воде) к математическому описанию явления с помощью уравнений Бюргерса и Кортевега — де Вриза. Нелинейность, дисперсия и диссипация в совокупности обуславливают формирование ударных волн в жидкостях с пузырьками газа. К настоящему времени структура таких волн достаточно хорошо изут1ена (см. разд. 6). [c.69]


Смотреть страницы где упоминается термин Дисперсия акустическая: [c.164]    [c.76]    [c.22]    [c.83]    [c.232]    [c.637]    [c.170]    [c.241]    [c.250]    [c.177]    [c.313]   
Механизмы быстрых процессов в жидкостях (1980) -- [ c.66 , c.72 ]




ПОИСК





Смотрите так же термины и статьи:

Акустическая дисперсия простая область

Акустическая дисперсия сложная реакция

Шум акустический



© 2025 chem21.info Реклама на сайте