Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Однородные кристаллы

    При кристаллизации из расплава растворимость металлов друг в друге сохраняется. Образуются однородные кристаллы. В этом случае твердая фаза носит название твердого раствора (рис. 12.3). При этом для одних металлов их взаимная растворимость в твердом состоянии неограниченна, другие же растворимы друг в друге лишь до определенных концентраций. [c.346]


    Введение в кристаллический кремний примесных атомов фосфора, имеющих по пять валентных электронов, также нарушает энергетическую однородность кристалла. В этих условиях каждый атом фосфора уже при сообщении ему энергии порядка 4,4 кДж/моль способен ионизироваться, перебрасывая один из своих электронов в зону проводимости и превращаясь в положительно заряженный ион. Аналогично ведут себя в кристаллах кремния и германия примесные атомы мышьяка, сурьмы и золота, обычно называемые донорными примесями. Для получения полупроводника с определенной концентрацией носителей (электронов или дырок) необходимо, чтобы количество собственных переносчиков тока в кристалле было примерно на два порядка ниже. [c.89]

    Как показано на рис. III.7, примесные атомы алюминия и фосфора замещают атомы кремния в узлах решетки. Энергетическая однородность кристалла при этом нарушается. Атомы алюминия имеют лишь по три валентных электрона, что приводит к дефициту одного электрона в каждом занимаемом ими узле кристаллической решетки. Однако при сообщении атому алюминия небольшой энергии порядка 5,5 кДж/моль он захватывает недостающий электрон, превращаясь в отрицательно заряженный ион и образуя вблизи себя положительно заряженную дырку. Электрическая нейтральность кристалла при этом сохраняется. Аналогичное алюминию действие оказывают на свойства полупроводниковых кремний и германия примеси и других элементов, таких, как бор, галлий, индий, цинк, железо, марганец. Их называют акцепторными примесями. [c.80]

    Охлаждение раствора в спокойном состоянии, без перемешивания, приводит к образованию более крупных кристаллов. Однако многие кристаллы при спокойной кристаллизации склонны выделяться главным образом на стенках и дне кристаллизатора, образуя сростки (друзы). Такие сросшиеся кристаллы, как правило, содержат трудно отмываемые включения маточного раствора, "и продукт в результате оказывается менее чистым. По этой причине следует стремиться получить не более крупные, а правильно оформленные и однородные кристаллы среднего размера. [c.117]

    Если расплавленные металлы смешиваются друг с другом в любых соотношениях (как спирты в воде), т. е. неограниченно растворяются друг в друге, то при кристаллизации взаимная растворимость металлов сохраняется и образуются однородные кристаллы. Это характерно для металлов, кристаллизующихся в однотипных пространственных решетках и имеющих близкие радиусы атомов, например для систем серебро — золото, платина — золото, медь — никель и др. При кристаллизации таких расплавов получаются так называемые твердые растворы — однородные сплавы, которые по сравнению с исходными металлами более тверды и химически стойки, но пластичны, хорошо проводят электрический ток. В твердых растворах атомы обоих металлов образуют общую пространственную кристаллическую решетку. [c.268]


    Специфичность разделительного действия цеолита зависит от однородности кристаллов. Наибольшей специфичностью обладают кристаллы цеолита одного какого-либо типа, нанример, шабазита или морденита и др. Если имеется смесь цеолитов разных типов, то у кристаллов цеолитов этих типов размеры входных окон будут неодинаковы. [c.312]

    Как показано на рис. 38, примесные атомы алюминия и фосфора замещают атомы кремния в узлах решетки. Энергетическая однородность кристалла при этом нарушается. Атомы алюминия имеют лишь по три валентных элект- Рис- 38- Решетка кремния с приме-рона, что приводит к дефициту од- алюминия и фосфора [c.89]

    Хорошо образованные, достаточно однородные кристаллы, по мнению А. Ф. Иоффе, лишены заметного упругого последействия. Таким образом, явление замедленной упругости (несовершенной упругости или неупругости), от которой зависит степень неоднородности структуры твердого тела, развивающейся вблизи разрушения, особенно характерно при деформировании в поверхностно-активной среде. [c.181]

    Введение в кристаллический кремний примесных атомов фосфора, имеющих по пять валентных электронов, также нарушает энергетическую однородность кристалла. В этих условиях каждый атом фосфора уже при сообщении ему энергии порядка 4,4 кДж/моль способен ионизироваться, перебрасывая один из своих электронов в зону проводимости и превращаясь в положительно заряженный ион. Аналогично ведут себя в кристаллах [c.80]

    Фазой называют совокупность гомогенных частей системы, одинаковых по своим макроскопическим свойствам, не зависящим от массы. Таким образом, кристаллический осадок соли, состоящий из большого числа однородных кристаллов, — это одна фаза. Газовые смеси и водные растворы неорганических веществ являются гомогенными независимо от количества входящих в них компонентов. Поэтому, например, вводных солевых системах могут присутствовать лишь одна жидкая и одна газовая фаза (водяной пар или его смесь [c.128]

    Кварц и кварцевое стекло. Кристаллы кварца бывают природные, а в настоящее время их готовят искусственно, причем качество кристаллов, полученных в промышленных условиях, выше, так как они более однородны. Кристаллы кварца вращают плоскость поляризации вправо или влево в зависимости от расположения тетраэдров [ЗЮц]" , образующих зеркальную симметрию (правый и левый кварцы). Кристалл кварца — шестигранная призма, завершенная двумя пирамидами, с рядом дополнительных граней. Оптическая ось 2 является главной осью симметрии. Оси х и у, перпендикулярные оси I и показанные в сечении на рис. 196, формируют пьезоэлектрический эффект, так как кварц является сегнетоэлектриком. Специальным образом вырезанные из кристалла пластинки позволяют преобразовывать механические напряжения в электрические и наоборот. Поэтому кварц является весьма ценным материалом (пьезодатчики, генераторы ультразвуковых колебаний, стабилизаторы частоты и т. д.). [c.419]

    Значение тщательной конструктивной проработки элементов адсорбционной установки возрастает вследствие отсутствия расчетных методов, основанных на физической сущности явления процесса адсорбции. Реальные закономерности процесса взаимодействия частиц улавливаемого газа с поверхностными частицами адсорбента в общем случае не поддаются физико-математическому описанию. Даже после введения большого числа упрощающих предположений удается строго описать только самые простые модели, такие как адсорбция отдельного атома на чистой поверхности однородного кристалла. Подобные модели в принципе непригодны для инженерных расчетов адсорбционных установок, предназначаемых для обработки многокомпонентных газовых выбросов с нестабильными характеристиками при помощи реального адсорбента. Имеющего множественные загрязнения и дефекты поверхности. [c.389]

    Твердые растворы. При охлаждении расплава образуются однородные кристаллы. В узлах их кристаллических решеток находятся различные атомы металлов. [c.281]

    Бесцветные однородные кристаллы в форме призм, т. пл. 82—83°. Вещество растворимо в диоксане нерастворимо в холодных спирте, воде, эфире, четыреххлористом углероде, хлороформе и бензоле. [c.170]

    Перемешивание и охлаждение необходимо для получения мелких, однородных кристаллов в противном случае кислота выделяется в виде масла, которое застывает в сплошную кристаллическую массу. [c.90]

    Размеры кристаллизационного объема выбираются таким образом, чтобы скорость движения пересыщенной жидкости была достаточно низкой, что создает лучшие условия для роста кристаллов Нижняя часть аппарата—кристаллизационный объем — имеет конфигурацию, обеспечивающую плавное уменьшение скорости потока снизу вверх, благодаря чему создается классифицированный слой кристаллов Пересыщенный раствор, проходя через такой слой кристаллов снизу вверх, встречается сначала с более крупными, а затем с более мелкими кристаллами, вследствие чего система обеспечивает получение весьма крупных кристаллов Крупные однородные кристаллы собираются в нижней части кристаллизационного объема и в виде суспензии, содержащей около 20% твердой фазы, откачиваются насосом 9 в сгустители 19 и 22. Здесь происходит дальнейшее уплотнение суспензии до содержания твердой фазы 50—60%, после чего она поступает на центрифуги 20 и 23 Маточный раствор после центрифуг собирается в сборниках 21 и 24, откуда возвращается в испаритель-кристаллизатор 8 и 14. Кристаллы сульфата аммония с влажностью около 2% из центрифуг транспортером 25 подаются в сушилку 26. [c.213]


    Если X > 1, то концентрация микрокомпонента уменьшается в направлении от центра кристалла к поверхности при Я, < 1 концентрация в этом направлении увеличивается. При X = получается однородный кристалл. [c.320]

    В давние времена считалось, что кристаллы представляют собой большую редкость. Действительно, нахождение в природе крупных однородных кристаллов — явление нечастое. Однако мелкокристаллические вещества встречаются весьма часто. Выше было сказано, что твердое состояние материи обычно эквивалентно кристаллическому состоянию. Так, например, почти все горные породы граниты, песчаники, известняки и т. п. кристалличны. Кристалличны почти все руды, являющиеся сырьем металлургической промышленности. Кристалличны также и те продукты металлургической [c.10]

    Кроме того, растрескивание кристаллов при нагревании иногда обусловлено разрешением внутренних напряжений в кристалле. Часто визуально однородные кристаллы растрескиваются, что в той или иной форме фиксируется на криптограмме, которая может быть характерным признаком для данного минерала, находящегося в конкретной геологической обстановке. [c.42]

    Получаемые на опытном производстве партии визуально однородных кристаллов начали систематически поставляться промышленности для массовых испытаний в производстве резонаторов. В ходе этих работ было установлено, что кристаллы из различных циклов выращивания не вполне идентичны по свойствам и различаются величиной внутреннего трения при упругих гармонических колебаниях, в результате чего изготовленные из них резонаторы обладают различной добротностью. В условиях опытно-промышленного производства кварца имели место случаи получения [c.11]

    Систематических исследований зависимости скорости роста от давления в автоклаве в период роста кристаллов до настоящего времени не проводилось. Тем не менее имеющиеся отдельные экспериментальные и литературные данные позволяют сделать оценку влияния этого фактора. Несомненно, что повышение давления при сохранении неизменными остальных условий кристаллизации увеличивает скорость роста кварца. По-видимому, повышение скорости роста кристаллов с увеличением давления, а следовательно, и степени заполнения автоклава следует объяснить увеличением растворимости кварца и образующегося одновременно силиката натрия вследствие повышения плотности растворителя при высоких давлениях. В настоящее время мы не располагаем еще точным аналитическим выражением, связывающим изменение плотности раствора, давления и растворимости кварца, однако линейная зависимость между температурой и растворимостью силикатов натрия при постоянном давлении дает основание предполагать, что такая зависимость должна существовать и между давлением, плотностью раствора и растворимостью силикатов. На линейный характер зависимости скорости роста от коэффициента заполнения указывает Р. Лодиз [17] (см. рис. 7). Он отмечает, что такой характер зависимость имеет при низких степенях заполнения как для содовых, так и для щелочных сред. Если же степень заполнения в растворах гидроксида натрия превышает 82%.то, начиная с температуры 380 °С (давление порядка 200 МПа), эта зависимость отклоняется от линейного вида. При этом небольшое увеличение степени заполнения сосуда приводит к существенному повышению скорости роста. Р. Лодиз также указывал, что постановка опытов в растворах ЫаОН при высоких степенях заполнения позволяет выращивать однородные кристаллы с высокими скоростями роста без признаков вырождения растущей поверхности. [c.40]

    Необходимо подчеркнуть, что температурный фактор играет решающую роль в процессе вырождения плоских поверхностей. Именно температурный барьер> вырождения быстрорастущих ( с , кс/с ) граней препятствовал освоению методики выращивания крупных однородных кристаллов на ранних стадиях разработки проблемы синтеза кварца. Поэтому для познания основных закономерностей, управляющих ростом качественных крис- [c.169]

    Изучение оптической однородности кристаллов ИАГ с различной Степенью огранения поверхности показало, что плотность рассеивающих центров в кристаллах прямо пропорциональна развитию гранных форм. [c.219]

    Таким образом, наблюдается переход от статистической однородности, когда по узлам геометрически правильной решетки атомы распределены в каотическом беспорядке, к однородности кристалла индивидуального химического соединения, т. е. к геометрически правильной решетке, в узлах которой правильно чередуются образующие ее атомы. Это превращение протекает при постоянной температуре п сопровождается тепловым эффектом, подобно фазовому переходу первого рода. Если общий состав твердого раствора близок к составу Р1С[1б, но не совпадает с ним, то кристаллическая решетка тоже перестраивается, но эта перестройка протекает уже в некотором интервале темпера- [c.413]

    При кристаллизации из расплава растворимость металлоо друг в друге сохраняется. Образуются однородные кристаллы. Б этом случае твердая фаза носит название твердого раствора (рис. 144). При этом для одних металлов их взаимная [c.543]

    Поэтому, как правило, для ускорения переноса вещества твердофазные реакции проводят при повышенной температуре. Реакцию можно проводить и при относительно низкой температуре, если структурные элементы исходных веществ остаются неизменными (разд. 33.9.2). В процессе присоединени частицы к исходной структуре энергия должна подводиться в таком количестве, чтобы, с одной стороны, обеспечить достаточную подвижность присоединяющейся частицы, с другой стороны — не нарушить структуру исходной решетки. Исследование кинетики реакций в твердой фазе показывает, что химическая активность твердых тел в первую очередь зависит от степени совершенства структуры реального кристалла. Под несовершенством структуры понимают общее число дефектов решетки, причем можно различать макродефекты кристалла (границы зерен, смещения (дислокации), примесные атомы) и микро, (ефекты (точечные) однородного кристалла. [c.430]

    ГОРНЫЙ ХРУСТАЛЬ (греч. кг1з-1а11о5 — лед, кристалл) — минерал, бесцветный, прозрачная разновидность кварца, одна из кристаллических модификаций кремнезема 3102. Известны кристаллы Г. X. весом в несколько тонн. При нагревании до 1700° С Г. X. теряет кристаллическую форму, становится мягким и при охлаждении превращается в кварцевое стекло. Чистые однородные кристаллы Г. X. встречаются редко. Практическое значение имеют кристаллы размером не менее 3—5 см. (В СССР лучшие образцы Г. X. найдены на Урале, Украине, Кавказе, Памире, Алдане). Монокристаллы Г. X. выращивают в автоклавах. Прибавляя различные добавки, можно изменять свойства Г. х. например, Ое увеличивает показатель преломления, А1 — уменьшает его, Ре + придает зеленую окраску, Ре + — бурую, Со — синюю. Г. X. издавна применяют для изготовления ваз, чащ, скульптур однородные кристаллы Г. X. являются ценнщм техническим сырьем их используют в радиотехнике для производства излучателей ультразвуковых волн, изготовления призм спектрофотометров, линз, в оптических приборах, в точной механике и т. д. Окрашенные кристаллы Г. X. — драгоценные камни. [c.79]

    Изоморфизм 2-го рода наблюдается при одновременном замещении катионов и анионов, если образующие их соли имеют одинаковые химические формулы, хотя зарядность замещенных ионов может быть различной. Например, перманганат калия образует смешанные кристаллы с сульфатом бария, селенатом бария, хроматом бария и сульфат бария — с КВ 4 (твердые растворы). Смешанные кристаллы выделяются из раствора, содержащего две изоморфные соли. При этом образуются однородные кристаллы переменного состава в зависимости от соотношения двух изоморфных солей. Изоморфизм карбонатов магния и кальция с карбонатами марганца, железа, цинка и кадмия может способствовать совместному осаждению этих ионов в 3-й аналитической группе катионов. Вследствие этого катионы магния, кальция и кадмия могут выпасть вместе с марганцем (И), железом (Н), цинком в осадок в виде карбонатов. Образование твердых растворов сильно затрудняет ход качественного, гравиметрического и микрокристаллоскопи-ческого анализов ( 39). [c.79]

    Почти все виды описанного в литературе кристаллизационного оборудования были разработаны для получения крупных однородных кристаллов неорганических веществ. Аппараты в осповном крупногабаритны, часто работают периодически. В кристаллизаторах некоторых конструкций кристаллы удаляются только после того, как достигнут минимального требуемого размера такие кристаллизаторы называются классифицирующими, или сортирующими. Кристаллизаторам этого типа посвящены весьма подробные обзоры [68, 78]. При процессах очистки углеводородов весьма крупных кристаллов не требуется (а по экономическим соображениям даже нежелательно) в большинстве случаев выдержка продукта в кристаллизаторе в течение 24 час. для получения четко выраженных кристаллов, центрифугированием которых можно получить продукт чистотой 95%, оказывается менее экономичной, чем применение двухступенчатого процесса, При котором продукт такой же чистоты может быть получен с продолжительностью выдержки в кристаллизаторе всего по 4 часа на каждой стунени. Следовательно, задача сводится к получению кристаллов, наиболее легко отделяемых от жидкой фазы,, в условиях, обеспечивающих вй сокую производительность. Для этого применяется такое же оборудование, как в иромышленности неорганической химии, но значительно большей производительности. [c.84]

    Какие условия необходимо соблюдать для осажбенш крупных однородных кристаллов сульфата кальция  [c.242]

    Горный хрусталь — минерал, бесцветная, прозрачная разновидность кварца, одна из кристаллических модификаций кремнезема (SiOa). Чистые однородные кристаллы Г. X. встречаются редко. Практическое значение имеют кристаллы размером 3—5 см. Месторождения в СССР Урал, Украина, Памир, Алдан. Монокристаллы Г. X. выращивают в автоклавах. Добавление Ge увеличивает, а AI уменьшает показатели преломления, Fe + придает зеленый, Fe + — бурый. Со — синий цвет. Г. X. применяется в радиотехнике для получения ультразвуковых колебаний. Изготовляют призмы спектографов, линзы. Окрашенные кристаллы Г. х. применяются как полудрагоценные камни. [c.43]

    Добавление ОЭДФ в процессе получения двойного суперфосфата позволяет сократить удельный расход фосфорной кислоты, уменьшает длительность конверсии и способствует получению более крупных и однородных кристаллов безводного монокальцийфосфата, благодаря чему слеживаемость продукта уменьшается. [c.485]

    В твердых растворах замещения атомы растворенного тела замещают атомы растворителя (атом за атом). Это явление было открыто в 1819 г. Э. Митчерлихом при наблюдении за кристаллизацией из водного раствора солей К2НРО4 и K2HASO4. Если в растворе находились фосфат и арсенат калия, то выпадали однородные кристаллы смешанного состава. Это явление было названо изоморфизмом. Такие соединения по отношению друг к другу называются изоморфными. [c.28]

    При малых пересыщениях зарождение и рост кристаллов протекают с меньшими скоростями. В этих условиях кристалл растет за счет присоединения отдельных ионов (или молекул) и двухмерных зародышей, его грани развиваются равномерно и форма приближается к совершенной. Наоборот, при больших пересыщениях раствора скорость роста кристаллов увеличивается в результате присоединения трехмерных зародышей (более толстых слоев) и микрообразований (блоков относительно большого размера). При этом увеличивается разность скоростей нарастания отдельных граней, и форма кристалла отклоняется от совершенной. Присоединение крупных блоков часто приводит к образованию разветвленных кристаллических агрегатов (дендритов) и к их загрязнению включенными прослойками маточника. С увеличением пересыщения раствора скорость роста кристаллов отстает от скорости образования зародышей (пересыщение расходуется преимущественно на образование новых зародышей), поэтому уменьшается средний размер образующихся кристаллов. Следовательно, для получения крупнокристаллического продукта приходится осуществлять процесс при малом пересыщении в ущерб производительности. На практике стремятся обычно к получению крупных и однородных кристаллов, так как они легче отделяются от маточного раствора путем фильтрации, а также удобнее для упаковки, хранения и дозирования. [c.688]

    Промышленному освоению методики гидротермальной перекристаллизации кварца в значительной мере способствовали геологические службы, обеспечивающие новое производство уникальными по размеру и однородности кристаллами, из которых были изготовлены первые партии крупноразмерных затравочных пластин различной, преимущественно базисной ориентации. В дальнейшем для выращивания пьезооптических кристаллов в массовом количестве стали применяться затравки из синтетических кристаллов, производство которых осуществлялось параллельно с выпуском товарной продукции для радиоэлектронной и оптической промышленности. Поскольку в процессе перекристаллизации нарастание кристаллов по граням гексагональной призмы практически не происходило и основная деловая пирамида роста плоскости базиса интенсивно выклинивалась положительным и отрицательным ромбоэдрами, для обеспечения технически приемлемых размеров синтетических кристаллов пьезокварца эпизодически требовалось пополнять затравочный фонд за счет природного кристаллосырья. Наряду с этим во ВНИИСИМС была разработана и внедрена рациональная каскадная система воспроизводства синтетического затравочного кварца, что позволило стандартизировать размеры и форму товарных затравок базисной ориентации. Принятая для серийного производства пьезокварца конфигурация затравок в виде прямоугольных пластин, значительно удлиненных в зоне оси г/, обеспечила максимальный выход делового кристаллосырья из базисной 50 [c.50]

    Устойчивость поверхности пинакоида в значительной степени зависит от состава исходного раствора и концентрации примеси алюминия. Так, в растворах бикарбоната натрия на базисных затравках ни разу не удалось получить однородные кристаллы. Материал пирамиды <с> таких образцов пронизан многочисленными тонкими трехгранными каналами, параллельными оптической оси. Вся поверхность базиса сразу же после начала наращивания покрывается треугольными неглубокими ямками, размеры и глубина (около 1 мм) которых почти не зависят от толщины наросшего слоя. Подобное строение рельефа грани с обнаруживается при кристаллизации кварца из низкоконцентрированных (2—3%) содовых растворов, а также в случае введения добавки СО2 (давление СО2 в системе при комнатной температуре равно 18 МПа) в 7 %-ный содовый раствор. Вырождение грани с происходит часто также в кристаллах, синтезированных из калиевых сред (К2СО3, КОН). В этих растворах твердые частицы осадка на поверхности затравки и в наросших слоях всегда дают начало тончайшим каналам, параллельным оси г. Экспериментально установлено, что при прочих равных условиях вырождение неустойчивых граней происходит более активно в растворах гидроокиси натрия по сравнению с растворами карбоната натрия. Поэтому выращивание из содовых растворов на одном и том же оборудовании (р = соп51) можно вести при более высоких температурах, что дает возможность снизить концентрацию примеси натрия в кварце. [c.170]

    Снижение давления не препятствует формированию аметистовых центров окраски, однако ромбоэдрические кристаллы в подобных условиях интенсивно растрескиваются из-за недостаточно эффективного предварительного гидротермального протравливания затравочных пластин н сохранения дефектного, аморфизиро-ванного слоя кварца. При прочих равных условиях использование затравок, параллельных г-грани, обеспечивает возможность массового производства однородных кристаллов аметиста с промышленно приемлемыми скоростями и необходимой интенсивностью и чистотой фиолетовой окраски. При этом следует создавать в гидротермальном растворе избыток трехвалентных ионов железа и снижать содержание примесных ионов алюминия, с которыми, как уже отмечалось, связаны дырочные центры дымчатой окраски. В облученном кристалле спектры поглощения от обоих типов центров накладываются один на другой, что, естественно, ухудшает чистоту аметистовой окраски. Поскольку коэффициент захвата структурной примеси алюминия находится в прямой зависимости от температуры выращивания, в то время как коэффициент поглощения примеси железа в исследованном температурном интервале существенно не зависит от температуры, предпринимались попытки получения аметистов без дымчатого оттенка окраски за счет температуры синтеза. Однако они не увенчались успехом из-за снижения скорости роста и растрескивания кристаллов на разных стадиях процесса. Задача была решена путем более тщательного подбора шихтового кварца с минимальным содержанием примеси алюминия, а также за счет специальной обработки выращенных кристаллов, устраняющей дымчатую составляющую окраски. [c.182]

    Установлено также, что влияние затравки может быть компенсировано за счет изменения ее ориентации. Если применять для разращивания аметиста в щелочных средах затравки базисной ориентации ограниченной площади, то после выклинивания быстрорастущей пирамиды <с> за счет нарастания граней основных ромбоэдров можно получать однородные кристаллы бипирамидального габитуса, головки которых могут служить заго-.товками ювелирных камней, полностью соответствующих по морфологическим и физическим характеристикам естественным аметистам. Таким путем полностью устраняется влияние несовершенств поверхностного слоя, поскольку базисные плоскости протравливаются в достаточной мере даже в калиевых средах. Нередко трещины в синтетическом аметисте возникают непосред-186 [c.186]

    В результате экспериментальных исследовании по использованию различных металлов, сплавов и других материалов для изготовления тиглей был найден сплав на основе молибдена, наиболее устойчивый к расплавам ИАГ в условиях вакуума. В спектрах оптического поглощення кристаллов граната, выращенных в тиглях из указанного сплава, и кристаллов, выращенных из иридиевых тиглей, имеется характерное отличие, В первом случае область прозрачности начинается с 0,28 мкм, во втором — с 0,24 мкм. По оптической однородности кристаллов видимой разницы не обнаружено. [c.204]

    Со, Оа, 5с в количестве 0,01—3% несущественно влияет на огра-ненне кристаллов ИАГ ионы в количестве до 1 % уменьщают степень огранення кристаллов примеси Ве до 0,05 % н Mg до 0,5% способствуют развитию граней 110 . Более высокие концентрации указанных компонентов ведут к ухудшению оптической однородности кристаллов. [c.219]


Смотреть страницы где упоминается термин Однородные кристаллы: [c.175]    [c.279]    [c.162]    [c.135]    [c.216]    [c.48]    [c.84]    [c.361]    [c.257]   
Кинетика гетерогенных процессов (1976) -- [ c.71 ]




ПОИСК







© 2025 chem21.info Реклама на сайте