Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства систем интенсивные

    Если состояние системы не меняется во времени или после малого кратковременного возмущения ее она снова самопроизвольно переходит в исходное состояние, то такая система находится в состоянии истинного (устойчивого) равновесия. Переменные, которые определяют термодинамическое состояние системы, называют параметрами состояния. Эти параметры могут отражать любое свойство системы, среди которых выделяют интенсивные и экстенсивные свойства, или параметры. Интенсивными называют такие свойства и параметры, их определяющие, которые при соприкосновении разных частей системы или разных тел выравниваются. Такими параметрами являются [c.7]


    Свойства системы можно подразделить на две группы экстенсивные и интенсивные. Экстенсивные свойства пропорциональны массе системы. Если массу системы удвоить, то и экстенсивные свойства соответственно увеличатся вдвое. К экстенсивным свойствам можно отнести внутреннюю энергию системы, ее объем, теплоемкость, энтропию и т. п. Интенсивные свойства, например температура, давление, молярная теплоемкость, молярный объем и др, не зависят от массы системы. [c.184]

    Характеризующие систему макроскопические признаки, значения которых могут быть прямо или косвенно измерены опытным путем, называются свойствами системы. Свойства, пропорциональные количеству вещества в системе, называются экстенсивными свойства же, полностью не зависимые от массы изучаемой системы, называются интенсивными. Примерами экстенсивных свойств являются вес, общий объем, энтальпия, энтропия примерами интенсивных — давление, температура, плотность, концентрация. [c.9]

    Величина к - константа Хаггинса - зависит от молекулярной массы и свойств системы полимер - растворитель и может служить характеристикой интенсивности взаимодействия полимера с растворителем. Значение к возрастает с ухудшением термодинамического качества растворителя и уменьшается с понижением температуры. [c.112]

    Физические характеристики термодинамической системы (масса, объем, температура, давление, состав, энергия, теплоемкость, поверхностное натяжение, удельные объем и теплоемкость и др.) называются термодинамическими свойствами. Последние подразделяют на две группы к одной из них относят свойства, используемые для выражения количественных характеристик термодинамической системы (масса, объем, энергия, теплоемкость и т. п.). Эти свойства называют экстенсивными. Другая группа объединяет свойства, используемые для выражения качественных характеристик термодинамической системы (температура, давление, состав, плотность, удельные объем и теплоемкость, коэффициент поверхностного натяжения и т. п.). Эти свойства называют интенсивными. [c.45]

    Термодинамические свойства системы (см. 56) обычно подразделяются на интенсивные и экстенсивные. К интенсивным относятся свойства равновесной системы, не зависящие от количества вещества и одинаковые для всей системы, такие, как температура, давление, концентрация, молярный объем и другие молярные свойства. В противоположность интенсивным экстенсивные свойства растворов н любых других систем пропорциональны количеству вещества, зависят от массы системы. К экстенсивным относятся такие свойства системы, как энтальпия, объем, теплоемкость и т. п. Если, например массы всех компонентов, составляющих систему, увеличить в п раа при постоянных температуре и давлении, то интенсивные свойства системы (концентрация, молярный объем и др.) не изменятся, а экстенсивные (общий объем, теплоемкость и т. д.) возрастут также в п раз. Величины, связанные такой зависимостью, в математике называются однородными функциями первой степени. Более строго одно- [c.345]


    Термодинамическая теория перегонки основана на использовании введенного в главе I понятия равновесного процесса, в котором интенсивные свойства системы приобретают определен-, ность, позволяющую вести расчеты с помощью диаграмм состояния и уравнений парожидкостного равновесия на основе материального и энергетического балансов. [c.63]

    Различают интенсивные параметры (или факторы интенсивности) и экстенсивные (или факторы емкости). Интенсивными называются такие параметры и определяемые ими свойства, значение которых не зависит от массы, например все молярные и удельные свойства, температура, давление и т. д. Интенсивные свойства могут иметь одно и то же значение во всей системе или изменяться от точки к точке, величины этих свойств не аддитивны. Интенсивные свойства — это специфические свойства системы в данном состоянии. Поэтому в качестве независимых термодинамических параметров используют обычно интенсивные свойства. [c.20]

    Состояние системы определяется совокупностью значений некоторого числа интенсивных свойств системы, могущих меняться независимо друг от друга (независимые переменные), называемых параметрами состояния. Каждая подобная совокупность значений свойств описывает некоторое фиксированное состояние системы. [c.10]

    Число независимых переменных или интенсивных свойств системы, которое должно быть зафиксировано, чтобы полностью определить значения всех остальных интенсивных свойств во всех фазах системы, называется числом ее степеней свободы. [c.8]

    Это допущение требует специального обоснования. Даже если согласиться с тем, что перемешивание газа обусловлено исключительно движением твердых частиц, указанные коэффициенты для газа и твердых частиц вряд ли будут совпадать. Дело в том, что интенсивность перемешивания газа, помимо прочих факторов, зависит еще п от физических свойств рабочих тел, определяющих адсорбционную способность твердого материала, толщину пограничной пленки газа около твердых частиц, долю гидродинамического следа в пузырях и тому подобные свойства системы. — Прим. ред. [c.266]

    Свойства, используемые на практике для определения со- стояния, в котором находятся фазы или система, можно разделить на две группы. К первой группе относятся свойства, зависящие от количества вещества, — объем, вес и др. Такие свойства называются емкостными или экстенсивными. Ко второй группе относятся свойства, называемые Интенсивными, — температура, давление, концентрация, удельный вес и др., не зависящие от массы, а только от химической природы вещества. Для описания состояния фазы или системы используются интенсивные свойства. При применении их для определения состояния системы или фазы они называются параметрами состояния. При рассмотрении условий равновесия между жидкостью и паром в качестве параметров состояния обычно принимаются температура, давление и составы фаз. [c.8]

    В этом уравнении под знаками дифференциалов стоят переменные, которые обладают аддитивными свойствами, а перед знаками дифференциала стоят переменные, которые определяют интенсивное свойство системы. [c.128]

    Образование пенной дисперсной системы в пенном аппарате зависит также от физических свойств компонентов. Физические свойства системы определяют значение Шр, при котором ячеистая пена переходит в подвижную, от них зависит степень развития и структура подвижной пены. В целом, в условиях интенсивного пенного режима физико-химические свойства системы играют значительно меньшую роль, чем гидродинамические параметры (см. стр. 47). Подробно этот вопрос рассмотрен в работах [234, 249]. [c.30]

    Во многих случаях изменение физических свойств системы по полкам аппарата незначительно и им можно пренебречь в производственных расчетах. Скорость газа при сильном изменении его объема вследствие изменения температуры или абсорбции (десорбции) регулируется устройством аппарата переменного сечения но его высоте. Интенсивность потока жидкости регулируется ее количеством или длиной сливного отверстия. Таким образом, в ряде случаев создаются все условия для равноценной работы полок многополочного аппарата. [c.204]

    Стационарные состояния. Ср>еди всех возможных состояний реагирующей системы очень важным является стационарное состояние, при котором никакие термодинамические свойства системы не изменяются во времени. Свойства могут изменяться в пространстве, а интенсивные свойства системы могут быть не непрерывны на ее границе, на которой может иметь место обмен массой и энергией между системой и окружающей средой. Если система пребывает в стационарном состоянии, соответствующие потоки массы и энергии постоянны во времени [5, 77]. Такая система находится под напряжением, так как некоторые параметры, особенно те, которые характеризуют состояние окружающей среды (Т, р, д —химические потенциалы), сохраняются постоянными или по крайней мере почти не изменяются под влиянием состояния системы. Различие между системой и ее окружением требует допущения, что последнее влияет на первое, но не наоборот. [c.10]


    Состояние равновесия. Равновесие определяется как стационарное состояние, в котором интенсивные свойства системы непрерывны при переходе через границу. Другими словами, потоки массы и (или) энергии равны нулю.на границе. [c.10]

    Совокупность свойств физической системы характеризует ее состояние. Особенно характерными являются интенсивные свойства системы, т. е. свойства, числовые значения которых не зависят от количества вещества (температура, давление, плотность и др.). Эти интенсивные свойства принято называть параметрами состояния системы. [c.71]

    Изменение состояния системы характеризуется изменением ее интенсивных свойств эти интенсивные свойства можно назвать переменными или параметрами системы. [c.74]

    Экстенсивные свойства обладают аддитивностью, суть которой состоит в том, что любое экстенсивное свойство системы равно сумме соответствующих свойств составляющих ее частей. Интенсивные свойства не обладают аддитивностью. [c.45]

    Интенсивные параметры системы — свойства системы, которые при соприкосновении разных частей системы выравниваются. Например температура, химический потенциал, поверхностное натяжение. [c.316]

    Химический состав и молекулярная структура КМ существенно определяются природой нефтяного сырья, процессами, условиями его карбонизации (температура, давление, объём и гидродинамическое состояние системы, удельная поверхность контакта со стенками аппарата, газопаровыми потоками, катализирующими, ингибирующими или инертными жидкими, жидкокристаллическими и твёрдыми фазами в объёме системы, интенсивность внешних воздействий волновой природы, активность, селективность и природа используемых химических реагентов, добавок и примесей и т.д.) и глубиной карбонизации. Используя эти факторы, можно в широких пределах изменять химический состав, структуру и свойства нефтяного углерода и в том числе пеков. [c.10]

    Удельная, молярная и объемная теплоемкости—это интенсивные свойства системы, в которой протекает конкретный термодинамический процесс, т. е. они не зависят от размеров системы (массы, объема и т. п.). Теплоемкость термодинамической системы в целом является экстенсивным свойством. Это следует и из вы- [c.54]

    Современная теория определяет жидкости, твердые тела [18] и газы с позиций изменения характера теплового движения, которое, в свою очередь, связано с изменением структуры. Структура, определяемая в самом широком смысле слова как взаимное расположение и взаимосвязь основных элементов системы (в данном случае — атомов или молекул), количественно характеризуется степенью порядка и плотностью упаковки этих элементов. Названные характеристики и подвижность, или интенсивность теплового движения, взаимосвязаны и лишь рассматриваемые одновременно позволяют судить о механических свойствах системы. [c.74]

    Свойства любой термодинамической системы определяются ее параметрами или, как их еще называют, независимыми перемен ными. Все параметры системы подразделяются на две группы Параметры, которые определяют свойства, зависящие от разме ров системы (объем, масса, энтропия), относятся к одной группе Другую составляют такие параметры, которые не зависят от раз меров системы (температура, давление, потенциал, молярный или удельный объем). Свойства системы, определяемые параметрами первой группы, называют экстенсивными, а определяемые параметрами второй группы — интенсивными. [c.49]

    В качестве основных параметров системы выбирают такие, которые могут быть непосредственно измерены и выражают интенсивные свойства системы. Сюда относятся давление, температура и объем. Эти параметры могут быть связаны друг с другом уравнением состояния. Таким образом, термодинамическое состояние системы определяется совокупностью ее термодинамических параметров. [c.49]

    Каждая конкретная проблема характеризуется своими особенностями, делающими ту или иную комбинацию свойств особенно удобной в качестве фиксированных степеней свободы. В этом смысле не все интенсивные свойства системы одинаково удобны, и поэтому при расчете верха укрепляющей колонны наиболее удобно задаваться суммарным давлением наровр, температурой ректификата и его составом г/д. [c.237]

    Свойства системы делятся на два больших класса, в зависимости от того, пропорциональны ли они массе системы илн не зависят от нее. Свойства, пропорциональные количеству вещества в системе, называются экстенсивными свойствами свойства же полностью независимые от количества вещества в системе называются интенсивными. Примерами экстенсивных свойств являются вес, масса, общий объем, общее теплосодержание. Примерами интенсивных свойств являются температура, давление, плотность, удельный объем, концеятрацин и т. д. Вообще, те свойства, значения которых остаются неизменными, когда количества всех компонентов системы увеличиваются илн уменьшаются в одно и то же число раз, являются интенсивными свойствами. [c.7]

    Подобно тому, как было опровергнуто представление о влиянии фазового состояния на крекинг-процесс, при дальнейшей работе было выяснено, что и другие параметры, считающиеся независимыми, являются скорее интенсивными, чем экстенсивными свойствами системы. Примером может служить температура реакции. Температура является главным фактором, контролирующим скорость крекинга, и вместе со временем реакции обусловливает глубину конверсии для данного вида аппаратуры. Основной аксиомой крекинг-процесса является то, что он представляет функцию времени и температуры и что эти параметры в широких пределах взаимозаменяемы, т. е. при увеличении температуры данный выход продуктов крекинга может быть нолучен за болое короткое время. Долго 3 Заказ 534. [c.33]

    При превращении одной фазы в другую удельные (интенсивные) свойства вещества (удельный или мольный объем, внутренняя энергия и энтропия одного грамма или одного моля) изменяются скачкообразно. Однако отсюда не следует, что внутренняя энергия всей двухфазной системы не является в этом случае непрерывной функцией ее состояния. В самом деле, система, состоявшая в начале процесса, например, из некоторого количества льда при О °С и 1 атм, при поотоянном давлении и подведении теплоты превращается в двухфазную систему лед—жидкая вода, в которой по мере поглощения теплоты масса льда постепенно и непрерывно убывает, а масса воды растет. Поэтому также постепенно и непрерывно изменяются экстенсивные свойства системы в целом (внутренняя энергия, энтальпия, энтропия и др.). [c.139]

    Одна иа характерных черт псевдоожиженных газами систем, соетлит в образовании газовых пузырей, способствующих циркуляции твердых частиц и обусловливающих высокую теплопроводность слоя, но вредных с точки зрения механических и химических свойств системы. Действительно, интенсивная турбулизация, вызванная движением пузырей, может привести к истиранию катализатора. Кроме того, поскольку газовые пузыри несут с собою лишь малое количестпво твердых частиц, то возможен проскок большей части газа через слой без контакта с твердой фазой, а значит, и уменьшение общей эффективности процесса по сравнению с реактором с неподвижным слоем при тех же объемной скорости газа и массе катализатора. [c.333]

    Надежность ХТС представляет собой свойство системы в данных условиях и при определенных характеристиках интенсивности отказов отдельных ее элементов выполнять заданные функции, сохраняя сво1И эксплуатационные характеристики в требуемых пределах в течение заданного промежутка времени или требуемой наработки. Необходимо отметить, что понятие надежности ХТС тесно связано со способностью системы в течение определенного интервала времени сохранять работоспособность (безотказность), со способностью ХТС приспосабливаться к обнаружению и устранению причин, вызвавших отказы (ремонтопригодность), и, наконец, со способностью ХТС к длительной эксплуатации (долговечность). [c.35]

    Экспериментальное определение интенсивности перемешивания жидкости. Гидродинамическая модель потока вытеснения с диффузией при соответствующих условиях удовлетворительно описывает течение реальных жидкостей в трубчатых аппаратах и в неподвижных слоях зернистого материала. Экспериментальное исследование таких аппаратов показало, что интенсивность продольной диффузии в них, выраженная безразмерным параметром 01иЬ, хорошо согласуется с гидравлическими и динамическими свойствами системы. Связь указанного параметра с другими критериями, характеризующими режимы работы подобных аппаратов, представляющие наибольший интерес, графически изображена на рис. 1Х-24—1Х-26 . [c.269]

    Как следует из рис. III. 13, с повышением скорости газа ijr несколько снижается — всего около 3% при увеличении от 0,75 до 2,5 м/с. При абсорбции аммиака водой и бензола каменноугольным маслом т]г уменьшается лишь на 1—2% при возрастании i r от 1 до 2,5 м/с. Таким образом, для выбора рациональной скорости газа в аппарате влияние ее на к. п. д. полки при абсорбции хорошорастворимых газов не существенно при постоянной интенсивности потока жидкости, высоте порога на полках аппарата (т. е. при йц = onst) и физико-химических свойствах системы. Этот вывод тем более верен при работе с постоянным соотношением G L (см. рис. III.16). [c.148]

    Нефтяные остатки представляют собой сложные углеводородные системы, различающиеся групповым и фракционным составом, степенью дисперсности и уровнем межфазных взаимодействий дисперсной фазы и дисперсионной среды [1]. Регулирование основных параметров нефтяных дисперсных систем (НДС) с помощью воздействия силовых полей и добавок разнообразной природы оказывается эффективным способом воздействия на поведение НДС в тех1Юлогических процессах и свойства получаемых при этом продуктов [2]. Для многих асфальтеносодержащих систем характерны полизкстремальные зависимости физико-химических свойств от интенсивности воздействия внешних факторов, что является следствием изменения дисперсного состояния и перестройки структурных единиц НДС. Кроме того, дисперсность НДС существенно зависит не только от степени воздействия внешних факторов, но и от состава дисперсионной среды [3]. [c.122]

    Практически важным является определение экстремального состояния нефтяной дисперсной системы в лабораторных условиях и нахождения ее активных состояний. График экстремальной зависимости усредненных размеров ССЕ (определенных из кривой распределения ССЕ), физико-химических, технологических свойств от интенсивности внешних воздействий предложено в работе [170] называть экстреграммой. В соответствии с этим различают следующие виды экстреграмм. [c.114]

    Среди свойств системы и ее частей следует различать такие, которые не зависят от количества вещества (т. е. от числа молей) давление, температура, удельный объем, химический состав и т. п., их называьэт интенсивными, и такие, которые от количества вещества зависят, — экстенсивные масса, объем и т. п. Очевидно, что экстенсивные свойства не могут быть одинаковыми для системы в целом и каких-либо ее отдельных частей. [c.14]

    Множественность химических элементов, многотипность, разнозвенность, разветвлённость, стерическая нерегулярность и полидисперсность молекулярных структур в нефтяных системах являются причиной их неоднородности по прочности химических (валентных) и невалентных внутри-и межмолекулярных связей [3,4, 34...40], что при данной интенсивности теплового движения определяет состав, фазовое и агрегатное состояния, структуру, физические, химические и другие свойства системы в целом и составляющих её фаз. Эти факторы обусловливают сложный характер механизма карбонизации нефтяного сырья. [c.10]

    Изменение дисперсности (размеров частиц) в результате коагуляции можно обнаружить но изменению оптических свойств системы, в частности по изменению интенсивности светорассеяния (опалесценции). С увеличением размеров частиц увеличивается интенсивность рассеянного света когда размеры частиц становят-120 [c.120]


Смотреть страницы где упоминается термин Свойства систем интенсивные: [c.104]    [c.244]    [c.305]    [c.86]    [c.29]    [c.245]    [c.39]    [c.368]    [c.17]    [c.79]   
Физическая и коллоидная химия (1974) -- [ c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Свойства интенсивные

Системы свойства



© 2025 chem21.info Реклама на сайте