Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Закон излучения Ламберта

    Основной закон поглощения. При прохождении потока излучения через частично поглощающую среду интенсивность прошедшего потока / согласно закону Бугера — Ламберта — Бера равна [c.56]

    Закон аддитивности — важное дополнение к закону Бугера — Ламберта — Бера. Сущностью закона аддитивности является независимость поглощения индивидуального вещества от наличия других веществ, обладающих собственным поглощением, или индиферентных к электромагнитному излучению. Таким образом, при данной длине волны оптическая плотность смеси компонентов, не взаимодействующих между собой, равна сумме оптических плотностей отдельных компонентов при той же длине волны  [c.17]


    Уменьшение интенсивности резонансного излучения в условиях атомно-абсорбционной спектроскопии подчиняется экспоненциальному закону убывания интенсивности в зависимости от длины слоя и концентрации вещества, аналогичному закону Бугера - Ламберта - Бера. Если /о - интенсивность падающего монохроматического света, а / - интенсивность этого света, прошедшего через пламя, то величину lg /о// можно назвать оптической плотностью. Концентрационная зависимость оптической плотности выражается уравнением [c.208]

    Спектрофотометрический анализ проводят с применением монохроматического излучения как в видимом, так и в примыкающем к нему ультрафиолетовом и инфракрасном участках спектра, что дает возможность работать с широким диапазоном волн. Спектрофотомет-рия, как и колориметрия, основана на законе светопоглощения— законе Бугера—Ламберта — Бера. Приборы, применяемые в спектро-фотометрии, более сложны, чем приборы, используемые в фотоколориметрии. Наиболее простым, точным и удобным в работе является спектрофотометр СФ-4. Прибор снабжен кварцевой оптикой и позволяет измерять оптическую плотность или пропускание в области 210—1100 нм, т. е. охватывает ближнюю ультрафиолетовую, видимую и ближнюю инфракрасные области спектра. [c.347]

    Закон Бугера—Ламберта — Бера строго справедлив лишь для разбавленных растворов при определенных условиях. Применительно к аналитическим целям условия таковы постоянство состава и неизменность поглощающих частиц в растворе, определяемые химизмом выбранной аналитической реакции и условиями ее проведения монохроматичность проходящего через пробу лучистого потока, его ограниченная интенсивность и параллельность, определяемые в основном конструктивными особенностями фотометрического прибора, в частности, способом монохроматизации излучения постоянство температуры. [c.57]

    Атомно-абсорбционный метод основан на резонансном поглоще-нни характеристического излучения элемента его невозбужден-нымн атомами, находящимися в свободном состоянии, т. е. в состоянии атомного пара . В результате поглощения кванта света валентный электрон атома возбуждается и переходит па ближайший разрешенный энергетический уровень, а резонансное излучение, проходящее через плазму, ослабляется. Ослабление резонансного излучения элемента, падающего на плазму с интенсивностью /о, до интенсивности / для выходящего светового потока происходит по экспоненциальному закону, который идентичен закону Бугера — Ламберта — Бера  [c.48]


    ФОТОМЕТРИЧЕСКИЙ АНАЛИЗ (ФА), совокупность методов мол.-абсорбционного спектрального анализа, основанных на избират. поглощении электромагн. излучения в видимой, ИК и УФ областях молекулами определяемого компонента или его соед. с подходящим реагентом. Концентрацию определяемого компонента устанавливают по закону Бугера -Ламберта - Бера (см. Абсорбционная спектроскопия). ФА включает визуальную фотометрию (см. Колориметрический анализ), спектрофотометрию и фотоколориметрию. Последняя отличается от спектрофотометрии тем, что поглощение света измеряют гл. обр. в видимой области спектра, реже - в ближних УФ и ИК областях (т. е. в интервале длин волн от 315 до 980 нм), а также тем, что для выделения нужного участка спектра (шириной 10-100 нм) используют не монохроматоры, а узкополосные светофильтры. [c.171]

    Закон Бугера — Ламберта — Бэра справедлив только для монохроматического излучения в средах с постоянным показателем преломления. При изменении концентрации вещества в растворе также могут проявляться отклонения от закона Бэра, в связи с возможностью полимеризации, гидролиза, диссоциации, ассоциации, комплексообразования и т. п. С ростом концентрации вероятность всякого такого рода изменений в растворе возрастает, поэтому отклонения от закона Бэра увеличиваются. Этот закон описывает поведение весьма разбавленных растворов. [c.374]

    УФ-спектроскопия изучает как спектры излучения, так и спектры поглощения. Для количественного определения по УФ-спектрам пользуются законом Бугера-Ламберта-Беера, из которого следует  [c.188]

    Следует отметить, что закон Бугера — Ламберта — Бера справедлив для всех областей спектра, т. е. не только для ультрафиолетового и видимого, но и для инфракрасного. Наблюдаемые иногда на опыте отклонения от этого закона могут быть вызваны физико-химическими или инструментальными причинами. Физико-химические причины включают в себя все явления, связанные с изменением состояния поглощающих частиц при изменении концентрации,—это диссоциация, ассоциация, полимеризация, комплексо-образоваиие в растворах. Инструментальные причины в основном сводятся к недостаточно строгой монохроматичности светового потока и неточной работе приемников излучения. [c.181]

    Инструментальные факторы, обусловливающие отклонения от закона Бугера — Ламберта — Бера, связаны с недостаточной монохроматичностью лучистого потока и проявляются чаще всего при работе на фотоэлектроколориметрах. Это объясняется тем, что монохроматизации в этих приборах достигается с помощью светофильтров, пропускающих излучение в определенных интервалах длин волн. При работе с обычными светофильтрами, пропускающими излучение в достаточно широком интервале длин волн, результатом измерения является интегральное поглощение. По мере увеличения концентрации поглощающего вещества может измениться контур полосы поглощения или какого-то участка спектра. Поэтому поглощение, измеренное в интервале длин волн, соответствующем этому участку, будет возрастать не вполне симбатно увеличению концентрации. При этом прямопропорциональная зависимость между интегральным поглощением и концентрацией поглощающего вещества нару-щается. Это явление наблюдается чаще всего для растворов желтого цвета и при работе на приборах старых моделей. При использовании светофильтров с меньшей полосой пропускания, например интерференционных, а также при работе на более совершенных приборах — спектрофотометрах этот эффект сильно уменьшается или устраняется вовсе. [c.58]

    ИК-спектрофотометрию используют для количественного определения содержания поглощающих ИК-излучение компонентов в растворе на основе закона Бугера — Ламберта — Бера (см. [c.187]

    Закон Ламберта. Изменение интенсивности излучения по различным направлениям определяется законом Ламберта. Согласно этому закону излучение энергии элементом поверхности в направлении элемента Р (рис. 6-3) пропорционально излучению dQ по направлению нормали к йР ), телесному углу под которым виден элемент Р из элемента dPу) и косинусу угла ф, образованного прямой, соединяющей элементы ёР и ёР . и нормалью к элементу ёР . При этом лучеиспускательная способность в направлении нормали в я раз меньше полной лучеиспускательной способности тела. [c.129]

    Объединенный закон Бугера—Ламберта—Бера вполне справедлив только для монохроматического излучения, поэтому строгим является его применение в спектрофотометрии. В фотоколориметрии, где измерения проводятся с помощью светофильтров, выделяющих сравнительно узкий интервал длин волн, этот закон применим лишь с большим или меньшим приближением в зависимости от степени постоянства величины [c.33]

    Большую часть спектрофотометрических измерений проводят с растворами, причем растворитель не должен поглощать в той же области, что и исследуемое вещество, или взаимодействовать с ним. Растворитель должен быть хорошо очищен и перед употреблением проверен на спектральную чистоту. Ароматические углеводороды непригодны для УФ-области ниже 300 нм, четыреххлористый углерод поглощает излучение, начиная с 250 нм. Наиболее прозрачными растворителями для УФ-области являются вода, этиловый и метиловый спирты, этиловый эфир. Идеальными растворителями, поглощающими свет в области длин волн ниже 200 нм, являются насыщенные углеводороды можно использовать хлороформ, этилацетат, дихлорэтан. Число подходящих растворителей ограничивается малой растворимостью полимеров, однако преимуществом их использования является простота расчетов на основании закона Бугера - Ламберта - Беера. [c.187]


    Отклонения от линейной зависимости оптической плотности от толщины поглощающего слоя и концентрации объясняются, с одной стороны, недостаточной монохроматичностью потока электромагнитного излучения, с другой — изменением состояния исследуемого вещества в растворе. Недостаточная монохроматичность потока электромагнитного излучения вызывает обычно отрицательное отклонение как от закона Бугера — Ламберта, так и закона Бера. [c.26]

    Если вместо рентгеновского излучения использовать излучение видимого спектра, то соответствующее оборудование можно сделать менее габаритным. Это является одним из дополнительных преимуществ, стимулирующих широкие исследования поглощения и рассеяния света аэрозолями [76, 77]. К сожалению, этот вопрос очень сложен [77]. К тому же в типичных технических приложениях требуется использовать надежные приборы в трудных эксплуатационных условиях, характерных для измерений в потоках, где, например, взвесь может быть полидисперсной. Поэтому представляется, что приборы лучше всего тарировать эмпирическим путем в соответствии с законом Бера — Ламберта 1)  [c.127]

    Когда элементарный монохроматический поток излучения /о, состоящий из параллельных лучей, проходит через плоский слой однородной поглощающей среды толщиной 5 см, коэффициент поглощения (абсорбции) которой выражают через к, см то величина выходящего из слоя элементарного потока /з выражается, согласно закону Бугера — Ламберта — Бэра, уравнением [c.68]

    АТОМНАЯ ЭНЕРГИЯ, то же, что ядерная энергия. АТОМНО-АБСОРБЦИОННЫЙ АНАЛИЗ (атомно-абсорбц. спектрометрия), метод количеств, элементного анализа по атомным спектрам поглощения (абсорбции). Через слой атомных паров пробы, получаемых с помощью атомизатора (см. ниже), пропускают излучение в диапазоне 190-850 нм. В результате поглощения квантов света атомы переходят в возбужденные энергетич состояния. Этим переходам в атомных спектрах соответствуют т. наз. резонансные линии, характерные для данного элемента. Согласно закону Бугера-Ламберта-Бера (см. Абсорбционная спектроскопия), мерой концентрации элемента служит оптич. плотность A = g(l jl), где /ц и /-интенсивности излучения от источника соответственно до и после прохождения через поглощающий слой. [c.216]

    В предыдущем разделе было показано, что излучение абсолютно черного тела, помещенного в изотермический объем, является изотропным, т. е. независимым от направления. На основе этого факта можно легко показать, что интенсивность излучения ь абсолютно черного тела выражается законом косинуса Ламберта [c.442]

    Для других геометрических форм подсчет лучистого теплообмена бывает очень сложным, если на излучательные свойства не наложить определенных ограничений. При последующих подсчетах будут сделаны допущения, что испускаемое излучение подчиняется закону косинуса Ламберта и что свойства излучения не зависят от длины волны (серые поверхности). [c.493]

    Для проведения количественного анализа на любую атомную группировку, благодаря своей высокой точности, чувствительности, быстроте, малому количеству требующегося вещества и возможности проведения измерений в потоке, очень удобным оказывается метод инфракрасной спектроскопии. В основе всех количественных измерений, проводимых по спектрам поглощения, лежит закон -Бугера—Ламберта — Бера, по которому оптическая плотность образца, равная натуральному логарифму отношения падающего на образец монохроматического излучения к прошедшему, пропорциональна числу поглощающих центров, приходящихся на один квадратный сантиметр сечения светового пучка. [c.178]

    Используется основной закон светопоглощения Ламберта-Бера, согласно которому количество поглощенного раствором монохроматического излучения прямо пропорцио-пальпо концентрации поглощающих частиц в этом растворе С и длине поглощающего слоя /  [c.24]

    Определения, связанные с измерением поглощения электромагнитного излучения, основаны на двух законах. Закон Бугера—Ламберта связывает поглощение с толщиной слоя поглощающего вещества и выражается соотнощением  [c.32]

    В ряде случаев даже при использовании монохроматического излучения могут наблюдаться отклонения от закона Бугера — Ламберта — Бера, обусловленные процессами диссоциации, ассоциации и комплексообразования. При наличии таких отклонений следует пользоваться не формулой (5), [c.34]

    Поглощение излучения пробой описывает закон Бугера-Ламберта-Бера [c.21]

    Поглощение бактерицидного излучения испытуемой водой ха рактеризуется коэффициентом поглощения а, который входит в уравнение закона Бугера — Ламберта — Беера Е = Еав °- , где Е — облученность после прохождения слоя поглощающего вещества, мкВт/см2 В — облученность на поверхности вещества, мкВт/см X — толщина слоя поглощающего вещества, см а — коэффициент поглощения бактерицидного излучения водой, см .  [c.164]

    В ряде случаев даже при использовании монохроматического излучения могут наблюдаться отклонения от закона Бугера—Ламберта—Бера, обусловленные процессами диссоциации, ассоциации и комплексообразования. При наличии таких отклонений следует пользоваться не формулой (6.1), а экспериментально найденной зависимостью оптической плотности от концентрации. [c.165]

    Закон Бугера-Ламберта с соответствующими значениями К в принципе применим для всего диапазона электромагнитных излучений видимого света, инфракрасшх и ультрафиолетовых лучей, радиоволн, рентгеновских и у-лучей. Однако при практическом применении следует учитывать, что по ряду причин он имеет лишь приближенный характер [ ]. [c.90]

    Основной источник систематических ошибок связан с не-монохроматичностью излучения. Монохроматор может выделить из спектра излучения источника более или менее широкий, но всегда конечный участок спектра, который мы называем полосой монохроматора. Любая измеренная в точке величина (/, Т, В,) является эффективной, определенным образом усредненной в пределах полосы монохроматора, и результат такого усреднения в общем случае существенно зависит от ширины полосы монохроматора. Практически заметные отличия наблюдаемых величин от истинных будут в тех случаях, когда ширина полосы монохроматора сравнима с шириной полос (линий) поглощения и тем более когда первая превосходит вторую. При этих же условиях теряют силу простые законы поглощения (3)—(6). Величина наблюдающихся инструментальных отклонений от соотношений (3) — (6) зависит от величины погашения, соответственно произведения сх равные отно-сптельные изменения с и а по отдельности приводят к равным аффектам. То, что инструментальные отклонения являются в равной мере отклонениями от закона Бугера-Ламберта (3) и закона Беера (4), позволяет отличать их от действительных отклонений от закона Беера (4), наблюдающихся только при изменении концентрации с. Эффекты, связанные с немонохроматичностью излучения, особенно велики при измерениях спектров газов. Ширина полосы обычных призменных монохроматоров много больше расстояний между линиями и ширины линий вращательной структуры полос поглощения. Поэтому в пределах полосы моно- [c.494]

    Отклонения, вызываемые не строго монохроматическим излучением. Закон Бугера — Ламберта — Бера точно справедлив только для монохроматического излучения. В спектрофотометрических измерениях применяют монохроматоры, т. е. спектральные аппараты, которые снабжены выходной щелью, вырезающей из спектра узкий участок. Но монохроматор может дать строго монохроматическое излучение только в том случае, если он снабжен бесконечно узкой щелью. В действительности реальные аппараты снабжены щелью какой-то определенной ширины, что вызывает некоторое отклонение от закона Бугера — Ламберта—Бера. Особое значение немонохроматичность излучения приобретает при измерениях в инфракрасной области спектра. [c.246]

    Закон Бугера — Ламберта — Бера выведен в предположении наличия светового излучения, имеющего вполне определенную длину волны. Такое излучение называют монохроматическим. Немонохрома-тичность вызывает отклонения от закона Бугера — Ламберта — Бера. [c.291]

    Выражение (16.12> используют для расчета ней центрации определяемого вещества в ( ютометр че-ском аналнзе. Этот закон всегда разделяют на две части. Зависимость между оптической плотностью вещества А, толщиной слоя Ь [уравнение (16.8)] называют законом Бугера, иногда Ламберта или Бугера — Ламберта. Другую часть — зависимость оптической плотности от концентрации (количества поглощающих центров в единице объема) называют законом Бера. Однако это неверно. Еще в 1924 г. С. И. Вавилов писал ...Трудно постигнуть основания той упорной исторической несправедливости, с которой. .. законы, совершенно ясно и отчетливо формулированные Бугером, соединяют с именами других авторов (закон Бера, законы Ламберта и пр.). Частично эта несправедливость была исправлена зависимость поглощения излучения от толщины поглощающего слоя теперь часто называют законом не Ламберта, а Бугера. Однако зависимость ослабления интенсивности излучения от числа частиц в поглощающей среде и в настоящее время называют законом Бера. Нелепость такого утверждения ясно показана также Д. П. Щербовым .  [c.319]

    Закон Бугера-Ламберта если среда однородна и слой в-ва перпендикулярен падающему параллельному световому потоку, то I = д ехр (— keif, где 1д и / -интенсивности со-отв. падающего и прошедшего через в-во света, толщина слоя, -коэф. поглощения, к-рый не зависит от толщины поглощающего слоя и интенсивности падающего излучения. Для характеристики поглощат. способности широко используют коэф. экстинкции, или светопоглощения к = kl2,303 (в см ) и оптич. плотность А =lg Igjl, а также величину пропускания Т= I g. Отклонения от закона известны только для световых потоков чрезвычайно большой интенсивности (для лазерного излучения). Коэф. к зависит от длины волны падающего света, т.к. его величина определяется электронной конфигурацией молекул и атомов и вероятностями переходов между их электронными уровнями. Совокупность переходов создает спектр поглощения (абсорбции), характерный для данного в-ва. [c.14]

    Единого универсального детектора для ЖХ не существует. Наиб, распространенный и высокочувствит. -УФ фотометрич. Д. х., в к-ром анализируемые в-ва детектируются путем измерения кол-ва излучения, абсорбируемого при прохождении света через проточную ячейку детектора (объем ячейки 2-10 мкл). Детектор используют либо в диапазоне 180-400 нм, либо на определенных длинах волн, чаще всего 254 нм. Кондентращ1Я в-ва определяется по закону Бугера-Ламберта-Бера. Источники излучения-ртутная лампа низкого давления, дейтериевая лампа с соответствующими фильтрами. [c.27]

    Интенсивность полосы поглощения молекулы определяется вероятностью соответствующего электронного (или колебательного) перехода. Для характеристики интенсивности полосы служит молярный коэф. поглощения 6 (см. Абсорбционная спектроскопия), определяемый, согласно закону Бугера-Ламберта-Бера, как е = А1С1, где А = = — Ig Г= — lg(///o), Г-пропускание, и / -интенсивности соотв. падающего и прошедшего через в-во излучения, С-молярная концентрация в-ва, поглощающего излучение, /-толщина поглощающего слоя (кюветы), в см. Обычно е<10 , в ИК области е<210 (л/моль см). Закон Бугера-Ламберта-Бера лежит в основе количеств, анализа по спектрам поглощения. [c.397]

    При прохождении рентгеновского излучения через вещество некоторые фотоны будут потеряны за счет фотоэлектронного поглощения, а другие будут рассеяны. Интенсивность 1о рентгеновского луча, проходящего через слой тол-НЦ1НОЙ (1 и плотностью р, уменьшится до интенсивности I в соответствии с хорошо известным законом Бугера—Ламберта—Бера  [c.62]

    В данном уравнении К представляет собой масштабный коэффициент, необходимый для того, чтобы привести экспериментальные данные (полученные в произвольном масштабе, зависящем от размера кристалла и интенсивности пучка рентгеновского излучения) к абсолютному масштабу рассеяния (величины /), используемому при определении расчетных структурных амплитуд (Fhfei) (или F ) из известных координат атомов Xj, yj, zj с использованием уравнения 11.2-7. Фактор А представляет собой коэффициент коррекции на поглощение рентгеновского излучения в соответствии с законом Бугера—Ламберта—Бера, который также должен учитьшать размер и характер (распределение сходных по симметрии граней) кристалла. Фактор Лоренца L компенсирует разницу в эффективных временах измерения для брэгговских отражений и зависит от брэгговского угла в и схемы экспериментальной установки. Р — поляризационный фактор, который позволяет учесть тот факт, что эффективность дифракции рентгеновских лучей зависит от поляризации падающего луча. [c.400]

    Излучение источника фокусируется зеркалами на диспергирующее устройство (призма из высококачественного кварцй фракционная решетка). Там пучок разлагается в спектр, изображение которого тем же зеркалом фокусируется на выходной щели монохроматора. Выходная щель из полученного спектра вырезает узкую полосу спектра чем уже щель, тем более монохроматична выходящая полоса. С помощью зеркала монохроматизированный пучок разделяется на два одинаковых по интенсивности луча один проходит через кювету сравнения, а другой - через кювету с образцом. Вращающейся диафрагмой перекрывают попеременно то луч сравнения, то луч образца, разделяя эти лучи во времени. После прохождения кювет световой поток зеркалами направляется на детектор, которым обычно служит фотоэлемент или фотоумножитель. После детектора сигнал усиливается и поступает на специальное электронное устройство -разделитель сигналов, где он раздваивается на два канала сигнал образца и сигнал сравнения. В обоих каналах сигналы усиливаются и подаются на самописец, который регистрирует отношение степени пропускания световых лучей через кювету образца к пропусканию светового потока через кювету сравнения. Логарифм данного отношения равен разности оптических плотностей образца и эталона эту величину можно записать, если перед самописцем установлено логарифмирующее устройство. В этом случае спектр будет представлять зависимость оптической плотности от длины волны или волнового числа и зависит от концентрации измеряемого образца. Для получения спектра, не зависящего от концентрации раствора, экспериментально полученный спектр перерисовывают по точкам, пользуясь законом Бугера-Ламберта-Беера, в спектр в координатах lg (или )- X (или V), Нерегистрирующие спектрофотометры - однолучевые приборы, измеряющие по отдельным точкам (спектрометрический метод). В сочетании с измерительной системой по схеме уравновешенного моста это наилучшие приборы для точных количественных измерений, которые осуществляются путем сравнения сигналов при попеременной установке в световой пучок образца и эталона. Основной их недостаток состоит в большой затрате времени для записи спектра, а не полосы поглощения при единственном значении длины волны. [c.185]

    В зависимости от используемой аппаратуры в фотометрическом анализе различают спектрофотометрические методы, основанные на поглощении веществом монохроматического излучения УФ- и ИК-диапазонов, колориметрические и фотоколоримет-рические методы, основанные на поглощении веществом немонохроматического излучения видимой части спектра. Ощжделения, связанные с измерением поглощения электромагнитного излучения, основаны на объединенном законе Бугера-Ламберта-Бера в виде [c.163]


Смотреть страницы где упоминается термин Закон излучения Ламберта: [c.374]    [c.283]    [c.337]    [c.7]    [c.251]    [c.521]    [c.14]   
Электрические явления в газах и вакууме (1950) -- [ c.317 , c.361 ]




ПОИСК





Смотрите так же термины и статьи:

Закон излучения

Ламберт

Ламберта закон



© 2025 chem21.info Реклама на сайте