Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород, методы очистки

    Примечание. Водород, применяемый для восстановления, должен быть химически чистым и не содержать примесей, главным образом кислорода. Метод очистки водорода и применяемую аппаратуру см. ОСТ 5136 — Метод определения кислорода в меди. [c.542]

    Примечания. 1. Применяют технический азот (из баллона или газометра), из которого был удален кислород. Методы очистки азота от примесей кислорода приведены на стр. 95 (см. прим. 1). [c.84]


    Отходящие газы, не содержащие токсичных веществ, также должны быть рассеяны в атмосфере, так как прн повышенном содержании инертного газа снижается концентрация кислорода в воздухе. Методы очистки газов необходимо сочетать с рассеиванием нх в атмосфере. [c.71]

    Вторая реакция используется в одном из методов очистки газов от примеси кислорода. Газ пропускают через сосуд с медными стружками, залитыми раствором ЫНз. Кислород окисляет медь [c.585]

    Этот результат показывает принципиальную техническую возможность реализации магнитного способа очистки жидкого водорода от парамагнитных частиц твердого кислорода. В случае применения для улавливания парамагнитных частиц гиперпроводящих или сверхпроводящих соленоидных магнитных устройств, создающих более сильные магнитные поля и крутые градиенты, магнитное устройство может быть выполнено более компактным. Следует отметить, что длина магнитного устройства сильно зависит от радиуса улавливаемых частиц I 1/о , поэтому для частиц очень малых размеров, приближающихся к броуновским, выбранный метод окажется неэффективным.. Кроме того, для очень малых частиц магнитная восприимчивость уменьшается, что не учитывалось в решении задачи. Разумеется, что наиболее эффективны магнитные методы очистки от примесей с ферромагнитными свойствами [36]. [c.138]

    Для повышения выхода кокса из прямогонных остатков предпочтительно использовать гудрон, имеющий более высокую коксуемость. В отдельных случаях приходится отходить от этого общего правила. При выдаче рекомендаций для коксования прямогонных остатков эхабинских (сахалинских) нефтей нами был выбран мазут, а не гудрон, так как бензиновая фракция, полученная при коксовании гудрона (в полную противоположность мазуту), оказалась настолько нестабильной, что не поддавалась обычным методам очистки. Применение специальных методов очистки было мало эффективно. По-видимому, в вакуумном отгоне эхабинской нефти нафтенового основания находятся в повышенном количестве гомологи нафталина и другие полициклические ароматические углеводороды, которые, по данным Н. И. Черножукова и С. Э. Крейна [274], являются эффективными ингибиторами против окисления нафтеновых и парафиновых углеводородов молекулярным кислородом, а при отгоне вакуумного газойля из остатка эти естественные ингибиторы удалялись. [c.25]

    Биологический метод очистки сточных вод получил большое распространение благодаря практически полному обезвреживанию многих органических (и неорганических) соединений, в том числе токсичных, простому аппаратурному оформлению, сравнительно небольшим эксплуатационным расходам. Недостаток метода — малая скорость биологических окислительных процессов, для завершения которых необходимы большие объемы очистных сооружений окислительная мощность аэротенков не превышает 1 кг/(м -сут). Для интенсификации биологической очистки начали применять аэрирование сточных вод кислородом в герметически закрытых аэротенках (окситенках), окислительная мощность которых составляет до 5 кг/(м -сут). [c.251]


    Одним из методов очистки газообразного водорода от кислорода является каталитическое восстановление [c.55]

    Для нормальной работы низкотемпературной аппаратуры ожижительной установки газообразный водород требуется предварительно очищать до содержания примесей 10 —10 объемных долей. Существующие методы очистки водорода позволяют удовлетворить указанные требования. Так, метод каталитического восстановления позволяет очистить водород от кислорода до содержания последнего 10" ° объемных долей, а методом адсорбции можно очистить водород от азота и кислорода до содержания их не более 2- 10 ° объемных долей [27]. [c.60]

    В некоторых случаях желательно, с точки зрения контроля процесса, проводить непрерывные измерения какого-либо компонента, например кислорода в отходящих топочных газах или следы опасных веществ, однако чаще всего отбор газов является подготовительной стадией, позволяющей выбрать соответствующие методы очистки и предложить необходимые конструкционные материалы. [c.73]

    Учитывая то обстоятельство, что полициклические ароматические углеводороды с короткими боковыми цепями обладают низким индексом вязкости, большой склонностью к окислению кислородом с образованием смолистых веществ, указанным выше путем можно отделить от нефтяной масляной фракции нежелательные, низкоиндексные углеводороды. На этом основан весьма важный в технологии производства масел метод очистки их при помощи избирательного растворения нежелательных углеводородов в соответствующих -(селективных) растворителях. Осно-вой принципа очистки при помощи селективных растворителей является свойство молекул последних ассоциироваться с молекулам углеводородов, преимущественно ароматического ряда, с образованием комплексов нерастворимых при данной температуре в очищенном масле. [c.74]

    Многие методы очистки природных и сточных вод основаны на окислительно-восстановительных реакциях. К таким методам относятся биологическая очистка сточных вод, каталитическое разрушение органических веществ кислородом воздуха, обескислороживание воды в паросиловом хозяйстве, удаление железа и марганца пз воды, обеззараживание воды, дехлорирование воды химическими и физико-химическими методами и др. [c.103]

    Транспортными называются реакции переноса вещества п виде летучих соединений при высоких температурах. Сущность метода очистки ясна из следующего конкретного примера. В ампулу (рис. 22) помещают очищаемое вещество А, например никель, в ампуле имеется определенная концентрация газа-переносчика (галоген, кислород, пары воды и т. д.), в данном случае оксид углерода (П). Газ-переносчик при нагревании реагирует с очищаемым веществом с образованием летучего вещества, и за счет диффузии это вещество переносится в другой конец ампулы, где имеется другая температура. Там происходит разложение диффундирующего вещества. В приведенном примере при 50—80 С ( ]) оксид углерода (II) вступает в реакцию с никелем с образованием карбонила Ы1(С0)4  [c.66]

    Очень хороший метод очистки азота (а также водорода, аргона и некоторых других газов) от кислорода основан на применении активированной меди, нанесенной на силикагель .  [c.19]

    Наиболее эффективным и быстрым методом очистки азота от трудно отделяемых примесей аргона и кислорода является метод адсорбционной хроматографии на активированных молекулярных ситах типа 5А. [c.180]

    Ввиду того, что равновесие в системе графит - водород сильно зависит от температуры, причем с повышением температуры количество метана уменьшается и при 1000 °С близко к нулю, возможен перенос углерода из мест с более низкой температурой в места с более высокой температурой (где углерод может осаждаться). При взаимодействии с диоксидом углерода направление переноса массы углерода имеет обратное направление - от более горячих мест к менее горячим. Водород не образует с графитом слоистых соединений. Хемосорбция водорода происходит по активным местам, на что указывает полное прекращение хемосорбции водорода после адсорбции кислорода на поверхности графита при температуре жидкого азота. При повышенных температурах водород реагирует с адсорбированным на графите кислородом, что является эффективным способом удаления поверхностных оксидов с графита, т.е. методом очистки его поверхности. [c.127]

    В ряде случаев ни один из рассмотренных выше методов очистки индивидуального вещества или разделения смеси не дает желаемых результатов. Тогда возникает необходимость применять более сложные приемы. Часто затруднения бывают связаны с отсутствием подходящего растворителя для перекристаллизации или с невозможностью перегнать вещество в обычно применяемой аппаратуре. Некоторые контрольные вещества либо термически неустойчивы, либо легко окисляются кислородом воздуха и при работе с ними приходится пользоваться специальными приемами. [c.246]


    Для удаления следов кислорода из газа эффективен метод очистки активной медью при тем пературе 170—200°С. Способ приготовления активной меди,. применяемая аппаратура и требуемые условия очистки описаны да стр. 146. [c.177]

    Снижения содержания ЗОг в дымовых газах можно достигнуть двумя путями 1) очисткой котельного топлива от серы (гидрообессеривание) и 2) очисткой дымовых газов. О гидрообессеривании нефтяных остатков сказано в гл. УП. Для очистки дымовых газов разработан ряд методов — мокрая очистка растворами различных оксидов и солей (аммиачно-бисульфитный, магнезитовый и другие методы) и сухая очистка адсорбентами (активированным углем, оксидом меди и др.). Однако большие объемы газов, подвергаемых очистке, а также разнообразие компонентов (оксиды азота, оксид углерода, водяные пары, азот) обусловливают значительные трудности для создания достаточно экономичного метода очистки. Концентрацию оксидов азота в продуктах сгорания снижают, уменьшая коэффициент избытка воздуха, т. е. снижая содержание кислорода в зоне горения. [c.320]

    Наибольшее число исследований и публикаций посвящено очистке дымовых газов. По данным [48], проведены промышленные и опытно-промышленные исследования по 26 процессам очистки дымовых газов от сернистого ангидрида с применением неорганических твердых веществ, их растворов и взвесей, 34 процессам растворами органических веществ и 10 процессам другого типа. Наличие такого большого числа процессов и методов очистки, из которых пока ни один не получил широкого промышленного применения, указывает на сложность решения проблемы. Необходимо создать процесс не только конкурирующий с гидрообессериванием топлива, но и доступный для технологического оформления, учитывая большие объемы дымовых газов, подлежащих очистке, и наличие в них разнообразных компонентов (кислорода, окислов азота, окисей углерода, водяных паров, золы, окислов металлов и т. д.). Методы очистки дымовых газов можно разделить на мокрые и сухие . [c.134]

    Этот процесс особенно целесообразен при сравнительно низком биологическом потреблении кислорода поступающими стоками. При этом, разумеется, образуется относительно небольшое количество активного ила, очистка таких сточных вод (после коагуляции) активным илом без добавки химикалий очень затруднительна, так как незначительное увеличение содержания твердых веществ не обеспечивает развития микрофлоры и затрудняет разложение. Следовательно, в подобных случаях сочетание химического и биологического методов очистки дает вполне реальные преимущества. [c.284]

    Флотационный метод очистки обеспечивает, помимо удаления механических примесей, загрязнений (растворенных и коллоидных), также снижение значений БПК и ХПК, удаление летучих компонентов растворение в воде кислорода воздуха. Эффективность процесса флотации колеблется в довольно широких пределах от 20 до 99 /о- Наиболее часто флотационный метод очистки применяют в локальных сооружениях для удаления основной массы загрязнений. Флотационный процесс протекает в 4—6 раз быстрее отстаивания при одинаковом эффекте удаления загрязнений. [c.51]

    Метод жидкофазного окисления. Этот метод очистки основан на окислении органических веществ, растворенных в воде кислородом при температурах 100 - 350 С и давлении 2-28 МПа. При высоких давлениях растворимость в воде кислорода значительно возрастает, что способствует ускорению процесса окисления органических веществ. Принципиальная схема жидкофазного окисления органических веществ в сточных водах показана на рисунке 55, а. [c.140]

    При абсорбции окисн углерода жидким азотом одновременно поглощаются и такие высококипящие компоненты конвертированного газа, как кислород и аргон, а также удаляются метан, этилен, ацетил(ш и другие углеводороды, образование которых неизбежно при паро-кислородной конверсии газообразных и газификации жидких углеводородов. Возможность получения таким путем азото-водородной смеси, практически не содержащей каталитических ядов и инертных (в реакции синтеза аммпака) примесей, является большим преимуществом низкотемпературного метода очистки конвертированного газа от остаточных количеств окиси углерода. [c.317]

    Поверхностно-активные вещества неблагоприятно влияют, а миогда делают невозможной очистку сточных вод общепринятыми методами. Так, сточные воды, содержащие соли нефтяных сульфокислот, неионогенпые поверхностно-активные вещества и др. нельзя очистить биохимическим методом. Это связано с тем, что поверхностно-активные вещества являются ядами для биоценоза, практически не окисляются, снижают соотношение биологической потребности кислорода и окисляемости, замедляют рост активного ила и тормозят процесс нитрификации, вызывают образование обильной устойчивой пены.. 4эротенки могут работать в устойчивом режиме при содержании ОП-7, ОП-10, алкнларилсульфатов и сульфонатов ие более 10 мг/л. Очистка жидких отходов упариванием также затруднена в присутствии ПАВ из-за обильного пенообразования, что затрудняет работу дистилляционных установок, а при переходе пены в конденсат приводит к уносу загрязнений. Эффективность этого метода очистки увеличивается в 100 и более раз после предварительного удаления ПАВ. [c.209]

    Цех очистки этилена был предназначен для очисгки этанэтиленовой фракции от углекислого газа и серосодержащих соединений 10%-ным раствором едкого натра, от метана и окиси углерода ректификацией и от ацетилена и кислорода методом гидрирования метан-водородной фракции на катализаторе. Реактор гидрирования представлял собой аппарат колонного типа высотой 6800 мм, диаметром 800 мм толщина стенок обечайки составляла 15 мм. Объем реактора 3,85 м . [c.334]

    Смолы ИЗ нефтей можно также уда-лять, применяя адсорбирую-пще земли или животный уголь. Эта обработка является весьма важным методом очистки нефти. Адсорбированные минеральные масла могут быть удалены бензином, а смолы — соответственными растворителями. Таким образом подбором соответственных растворителей достигается также и разделение смол. Гольде и Эйхман последовательно применяли действие бепз1ша, эфира, тяжелого бензина и хлороформа на животный уголь, адсорбировавший смесь смол. С 1юмопц,ю этих растворителей они получили экстракты, у которых удельные веса и вязкости постепенно увеличивались, а содержание углерода и водорода уменьшалось за счет повышения содержания кислорода и серы. Количество смол обычно возрастает при- переходе от низших фракций к высшим. Гурвич приводит следующие цифры, относящиеся к различным дестиллатам бакинской нефти  [c.114]

    Одним из иерсиективнь1х методов очистки сточных вод является жидкофазное окисление органических веществ растворенным в воде кислородом воздуха. Этот метод можно применять к обезвреживанию органических веществ разного строения и состава. Он имеет ряд преимуществ обезвреживание любых органических веществ, отсутствие загрязнения воздуха, универсальность и безопасность в работе. [c.264]

    Адсорбционной очистке подвергаются масла, уже очищенные серной кислотой или селективными растворителями. При этом применяют два метода — очистку контактированием с тонкоизмель-ченной отбеливающей глиной (контактная очистка) и фильтрацию через ее слой. Гидроочистка применяется для удаления из масел соединений, содержащих серу, азот и кислород. [c.266]

    В связи с вышеизлохенным перед специалистами завода была поставлена задача провести информационный поиск в области действующих технологий физико-химической доочистки, при этом предпочтение было отдано флотационным методам, достаточно изученным, имеющим хорошую теоретическую и расчетную базы. На их основе созданы промышленные установки с широким спектром применения. При этом наибольшее распространение получили воздушно-флотационные методы очистки, принцип работы которых основан на извлечении дисперсных частиц из сточной воды с помощью пузырьков воздуха или кислорода. Многообразие этих методов базируется на различных способах введения в очищаемую жидкость пузырьков. Наиболее распространены следующие методы флотации механическая - импеллерная, пневматичес-itaa, напорная (с выделением воздуха из раствора). [c.168]

    Предпосылкой для применения флотационного метода очистки сточных вод являетсяиаличие в них флотационно-активных веществ, так как присутствие их не требует введения реагентов. Наличие в сточной воде поверхностно-активных веществ способствует образованию обильной пены на аэрируемых очистных сооружениях (в преаэраторах, аэротенках), что нежелательно для аэробных биохимических процессов, так как пена затрудняет контакт кислорода воздуха с микрофлорой сооружения. Способы разрушения пен основаны на замещении или разрушении структурных адсорбционных слоев, стабилизирующих пену. К пеногасителям относятся вещества, вытесняющие стабилизатор из поверхностного слоя, но сами не образующие механически устойчивых слоев. [c.103]

    Для глубокой очистки чаще всего используют методы экстракции и ректификации. В отдельных случаях применяют химические, сорбционные и кристаллофизические методы. Очистка Ge U затруднена его очень большой реакционной способностью, особенно в сочетании с хлором и хлористым водородом. Такие обычные материалы аппаратуры, как кварц, стекло, эмаль, загрязняют тетрахлорид кремнием (в виде соединений с хлором и кислородом, силоксанов и т. п.), мышьяком и [c.193]

    Эффективный метод очистки водорода от примесей, в частности от азота и пнертных газов, основан на диффузии его через раскаленную пластинку из металлического палладия или из сплавов палладия с золотом или серебром. Схематично установка для очистки газа этим методом представлена на рис. 15. Водород, очшцвНЕЫЙ от примеси As и Sb щелочным раствором КМпО , вводят в Палладиевую ампулу 7, расположенную в кварцевой трубке 3 в обогреваемую электропечью 2. Кварцевую трубку предварительно тщательно вакуумируют. Через стенку палладиевой ампулы в трубку диффундирует чистейший водород, содержащий не более 10"7% азота и кислорода. Удобно пользоваться для термодиффузионноы очисткл водорода специальным аппаратом , производительностью 35 л/ч. [c.87]

    Очистка редких газов от некоторых сопровождающих примесей (кислород, азот, двуокись углерода, водяные пары) может быть проведена химическими методами и не вызывает затруднений. Вазделеаие смеси редких газов друг от друга в оановном осуществляется с применением физических методов адсорбции и фракционированной конденсации и дистилляции. При этом а каждом отдельном случае необходимо учитывать относительные количества индивидуальных газов в смеси и другие условия. Вследств-ие этого существующие методы очистки и разделения редких газов в основном разработаны для частных случаев в других случая , требуется изменение методики работы.. [c.294]

    Э. используют в полупром. масштабах для глубокой очистки металлов (Ga, In, РЗЭ) в жидкой фазе. Для РЗЭ Э. в твердом состоянии - осн. метод очистки, т. к. РЗЭ реагируют со всеми газами, кроме благородных, и здесь недоступны традиц. методы очистки, особенно от примесей кислорода, азота и углерода. Э. применяют для выращивания монокристаллов и эпитаксиальных слоев полупроводниковых соед., напр. GaAs (элжтроэпитаксия). Э. в тв дой фазе - одна из причин отказов полупроводниковых приборов и электронных устройств, работающих при высоких плотностях тока. Изучение закономерностей Э. позволяет сильно увеличить срок службы этих приборов. В области Э. можно ожидать новых открытий, особенно в случаях Э. на фанице твердых и жидких фаз, при фазовых переходах. Об этом свидетельствует факт аномально высокой подвижности примесей при зонной плавке и резании металлов (эффект Бобровского). [c.453]

    Реакции окисления часто используются длп очистки химически инертных материалов. Так технический бор, содержащий микропримеси щелочных, щелочноземельных металлов, ал[оми-ния, титана и других металлов, обрабатывают при бГзО—900° С сухим хлором (или бромом) без примсси кислорода. Образовавшиеся гялогениды микроиримесей затем выщелачиваются горячей водой [20]. Но подобные гетерогенные химические реакции не являются эффективными методами очистки вещества, так как с их помощью можно удалить только поперхпостные загрязнения. [c.419]

    Очистку газа от кислорода методом гидрирования можно осуществлять также на катализаторах, основным активным компонентом которых является медь. Так, глубокая очистка от кислорода азотоводородной смеси, содержащей СО, происходит одновременно с гидрированием окиси азота и ацетилена на цинкхроммедном катализаторе [79—81]. Процесс проводят при 150—200 °С и объемной скорости до 20 ООО ч" 1. [c.402]

    Метод очистки основан на контактировании сероводородсодержащего газа с водным раствором соли железа с образованием серы и последующим окнсленнем раствора кислородом воздуха в ирисутствии микроорганизмов. [c.444]

    Для определения кислорода предложено много методов. Основные затруднения при определении кислорода в натрии (и других щелочных металлах) заключаются в способе отбора проб и в отделении оксида щелочного металла от суммы выделенных примесей (гидридов, нитридов, гидроксидов, карбонатов, карбидов). Классический метод основан на отделении натрия от Na20 амальгамированием ртутью и его ацидиметрическом титровании [308, 673, 978. Из навески 2 г металлического натрия можно определить 16 мкг кислорода с погрешностью 5% [673]. Более совершенны методы, основанные на амальгамировании натрия и его определении методом фотометрии пламени [308, 673, 978]. При определении (5—30)-10 % кислорода в натрии стандартное отклонение 13-10 % [308]. Указывается, что при амальгамировании в ячейке определенной конструкции вакуум составляет 10 мм рт. ст. [673]. В методе определения кислорода амальгамированием учтены различные поправки на контрольный опыт, обусловленные чистотой атмосферы в боксе, размерами и чистотой площади внутренней поверхности реактора, методом очистки ртути и поверхности ампулы для образца [836], удалось значительно снизить поправку -на контрольный опыт. [c.194]


Смотреть страницы где упоминается термин Кислород, методы очистки: [c.142]    [c.61]    [c.103]    [c.103]    [c.292]    [c.438]    [c.399]    [c.50]   
Окисление металлов и сплавов (1965) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Метод очистки



© 2025 chem21.info Реклама на сайте