Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий соединения, растворимость

    Рубидий и цезий марганцовокислые относятся к малорастворимым соединениям. Растворимость перманганата рубидия при 0°—0,5 г, при 60°—4,7 г на 100 г воды растворимость перманганата цезии при 0° — 0,1 г, при 60°— 1,3 г на 100 г воды. Синтез перманганатов рубидия и цезия основан на осаждении их из растворов перманганатом калия и дальнейшей очистке путем перекристаллизации [1]. [c.72]


    Соединения калия (I), рубидия (I), цезия (I). Производные калия и его аналогов являются преимущественно солями и солеподобными соединениями. По составу, кристаллическому строению, растворимости и характеру сольволиза их соединения проявляют большое сходство с однотипными соединениями натрия. [c.492]

    Большинство металлоорганических связей полярно-кова-лентные. Только у щелочных металлов электроотрицательность достаточно низка, чтобы возможно было образование ионных связей с углеродом, но даже алкиллитиевые соединения по своим свойствам напоминают скорее ковалентные, а не ионные соединения. Простые алкильные и арильные производные натрия, калия, рубидия и цезия представляют собой нелетучие твердые вещества [93], нерастворимые в бензоле и других органических растворителях, в то же время алкильные производные лития — растворимые, хотя, как правило, тоже нелетучие твердые вещества. В таких растворителях, как эфир и углеводороды, алкиллитиевые соединения не существуют в виде мономерных частиц [94]. Наблюдения за понижением точки за- [c.234]

    В подгруппу щелочных металлов периодической системы входят литий, натрий, калий, рубидий, цезий и франций. Элементы этой подгруппы 5-типа похожи друг на друга и дают большое количество аналогичных химических соединений. Так, например, они образуют самые сильные растворимые в воде основания, называемые едкими щелочами. [c.230]

    Соли щелочных металлов, за редким исключением, являются солями растворимыми, относящимися к группе сильных электролитов. Соли слабых кислот подвергаются в водном растворе гидролизу растворы их имеют щелочную реакцию. Летучие соли щелочных металлов окрашивают бесцветное пламя горелки в характерные цвета соединения натрия—в желтый цвет, лития — в карминовый, калия — в фиолетовый, рубидия — в краснофиолетовый и цезия — в фиолетовый. [c.183]

    Для получения калия, бария, рубидия и цезия электролиз расплавленных солей оказывается практически неприменимым из-за высокой химической активности и большой растворимости этих металлов в расплавленных соединениях. Производство их невелико и осуществляется преимущественно термическим восстановлением соединений различными восстановителями Ыа, СаСг, А1, 51, Ре—81. А1—81. [c.318]

    По растворимости рубидиевые и цезиевые шениты занимают, в общем, промежуточное положение между простыми сульфатами и квасцами рубидия и цезия. Для медных, кобальтовых и никелевых шенитов характерна меньшая растворимость рубидиевых соединений [c.89]


    Бромиды рубидия и цезия — негигроскопичные соединения, очень хорошо растворимые в воде (табл. 12) и выделяющиеся из водных растворов в виде блестящих кубиков или ромбических додекаэдров. Очень хорошо растворяются в муравьиной кислоте. В метаноле и этаноле растворяются умеренно [10]. [c.103]

    Хлоратный метод. Наибольшей сложностью отличается фракционированная кристаллизация солей рубидия, при которой в зависимости от порядка изменения растворимости соединений в ряду щелочных металлов в твердой фазе накапливаются примеси либо калия, либо цезия. Обычно свойства однотипных соединений калия, рубидия и цезия закономерно изменяются в направлении увеличения порядкового номера элемента. Это наряду с высокой растворимостью почти исключает возможность применения простых солей для разделения трех близких по свойствам щелочных элементов. [c.140]

    Тетрафенилборат лития может найти широкое применение в аналитической химии, как и тетрафенилборат натрия, от которого он выгодно отличается большей растворимостью как в воде, так и в органических растворителях. Основные области возможного применения тетрафенилбората лития— весовое и объемное определение калия, аммония, рубидия, цезия, таллия (I), а также органических соединений—аминов, алкалоидов, некоторых обезболивающих и лекарственных веществ [1], [c.33]

    Гексанитрокобальтаты рубидия и цезия имеют различный химический состав. Так, при действии хлорида или сульфата рубидия на водный раствор Ыаз[Со(Ы02)б] выпадает мелкокристаллический Желтый осадок переменного состава КЬхКаз-г[Со(К02)б] ад. Число атомов рубидия в соединении меняется от дг=1,92 до д =2,94 в зависимости от кислотности раствора и концентрации рубидия [457]. Растворимость такого осадка при 17° С приблизительно равна 5,05 10 г в 100 г воды. При нагревании осадок теряет свою кристаллизационную воду и выделяет двуокись азота. Остаток от [c.155]

    К первой группе следует отнести щелочные и щелочно-земельные металлы — литий, натрий, калий, рубидий, цезий, кальций, стронций, барий. К этой группе, вероятно, можно отнести некоторые металлы группы редких земель — лантан, церий, самарий, европий, иттербий [22]. Все эти металлы обра- зуют со ртутью относительно прочные химические соединения. Растворимость их в ртути достаточно велика. Образование амальгам сопровождается значительным тепловым эффектом и изменением изобарного потенциала ДС. Для этих металлов при образовании амальгам ДС <С О, потенциалы их амальгам в растворах вследствие этого значительно менее отрицательны, чем потенциалы чистых металлов. Сильное межатомное взаимодействие компонентов приводит к значительному отклонению свойств образующихся амальгам от законов идеальных растворов. Это проявляется, в частности, в характере изменения активности амальгам с изменением их концентраций. У всех металлов, входящих в первую группу, энергия связи М—М меньше энергии связи М—Hg. Перенапряжение водорода на амальгамах, образованных этими металлами, по-видимому, не сильно отличается от перенапряжения водорода на ртути. [c.11]

    Ионы рубидия и цезия бесцветны и по химическим свойствам аналогичны ионам калия все они осаждаются хлорной кислотой, платинохлористоводородной кислотой, гексанитрокобаль-татом (П1) натрия, тетрафенилборнатрием, гексанитродифениламином и другими реагентами. Соединения рубидия по растворимости занимают промежуточное положение между соответствующими соединениями калия и цезия. Для цезия имеются реагенты, которые позволяют обнаружить его достаточно уверенно 13 присутствии рубидия и калия. Ряд солей рубидия и цезия дают хорошо образованные кристаллы, это используется для их микрокристаллоскопического обнаружения. [c.42]

    Хороший выход по току можно получить только при снижении температуры электролиза. Этого можно достигнуть добавлением к поваренной соли других соединений, образующих с Na l низкоплавкие смеси. В то же время эти соединения не должны участвовать в электролизе во избежание загрязнения полученных натрия и хлора другими веществами. Добавляемые соли не должны вме-. сте с тем резко увеличивать растворимость натрия в расплаве и снижать электропроводность электролита. Необходимо также в качестве добавки в Na l применять легкодоступные и дешевые вещества. При выборе солевых добавок следует исключить все соединения, катион которых более электроположителен, чем Na. Из табл. 32 следует, что с этой точки зрения пригодны только соли кальция, калия, бария и натрия. Соединения стронция, лития, рубидия и цезия из-за высокой стоимости не могут иметь практического значения. Такие соединения как сульфаты, карбонаты, нитраты и гидроокиси, содержащие кислород, изменяют анодный процесс, поэтому не могут применяться в качестве добавок. Бромиды и иодиды дороги и применение их также будет влиять на анодный процесс. Фториды бария и кальция имеют высокую температуру плавления. [c.311]


    H2SO4 получались растворимые сульфаты лития и других щелочных элементов, а также в большом количестве сульфат алюминия. Во всех случаях первоначально из растворов выделяли калиевые квасцы, первые фракции которых были обогащены менее растворимыми квасцами рубидия и цезия, а затем, после сложной очистки растворов, осаждали Ь12СОз. В последующий период развития технологии соединений лития главные варианты сернокислотного метода переработки лепидолита были усовершенствованы и частично упрощены [118]. [c.37]

    Метафосфаты (МеРОз) -НзО — белые волокнистые кристаллические вещества моноклинной сингонии плотность при 20° соответственно 3,30 и 3,78 г/см [59, 60]. Параметры кристаллической решетки [60] соединение рубидия — а = 12,12 б = 4,23 с = 6,48 А Р = 85° соединение цезия — а = 12,71 Ь = 4,32, с == 6,83 А 3 = 83°. При нагревании метафосфаты рубидия и цезия полимеризуются, образуя кольцевые структуры. В отличие от (ЫаРОз),, и (КРОз) метафосфаты рубидия и цезия растворимы в воде [10]. [c.92]

    Соли кислородных кислот галогенов. Кислородсодержащие соединения рубидия и цезия с фтором неизвестны. Кислородсодержащие соединения с другими галогенами являются солями типа МеНаЮ (п = 1, 2, 3 или 4). С увеличением п (при данном галогене) увеличивается устойчивость солей и уменьшается их растворимость в воде. В ряду солей типа МеНаЮз термическая устойчивость возрастает, а растворимость в воде уменьшается от хлоратов к иодатам. При этом соли рубидия по сравнению с солями калия и цезия наименее растворимы в воде, а различие в растворимости уменьшается от хлоратов к иодатам. Аналогично изменяется растворимость перхлоратов калия, рубидия и цезия. [c.94]

    Прочие соли кислородсодерж ащих кислот. Из других солей кислородсодержащих кислот заслуживают внимания монохроматы, дихроматы,перманганаты и перренаты рубидия и цезия. Хроматы и дихроматы имеют значение для получения металлических рубидия и цезия, остальные соединения интересны в связи с их низкой растворимостью в воде. [c.96]

    Соли органических кислот. Примечательной особенностью органи-1еских производных рубидия и цезия является значительная растворимость их средних солей ряда органических кислот, в то время как рас-воримости соответствующих им кислых солей малые. Поэтому в форме -сислых солей органических кислот рубидий и цезий могут быть сконцентрированы и выделены из растворов различного происхождения. Большое достоинство подобных соединений — возможность получения [c.97]

    Растворимость гидрооксалатов калия, рубидия и цезия при 2Г соответственно 2,46 3,03 и 4,34 г в 100 г воды [88]. Их часто используют как промежуточные соединения в процессах очистки различных солей этих элементов ввиду легкости перехода к карбонатам, а следовательно, и к другим солям после завершения стадии очистки. Они выделяются ири действии на нагретые растворы солей рубидия и цезия твердой щавелевой кислоты, взятой из расчета, чтобы раствор был насыщен ею после охлаждения и выделения осадка МеНз(С204)а-2Н20 [101. [c.99]

    Соединения с серой. Рубидий и цезий, как установлено при изучении систем Rb — S и s — S [10, 103], образуют с серой нормальный сульфид (моносульфид) Me2S и полисульфиды. И тот и другие гигроскопичны, растворимы в воде из водных растворов выделяются в виде гидратов. [c.104]

    Интересны, ввиду незначительной растворимости, смешанные гексацианоферраты рубидия и цезия с магнием и кальцием. Так, растворимость в воде при 25° Mei2Mgg[Fe( N)6]7-12НгО (в г/л) соли рубидия — 0,22, соли цезия — 0,10, растворимость Me2 a[Fe( N)e]-лНаО в тех же условиях соли рубидия — 0,18, соли цезия — 0,038 [1241. Столь низкая растворимость смешанных гексацианоферратов рубидия и цезия может быть использована как в аналитических, так и в технологических целях. К числу наименее растворимых и наиболее удобных в технологическом отношении соединений принадлежат смешанные гексацианоферраты рубидия и цезия с никелем (II) [1271. [c.110]

    Практическое приложение исследований растворимости и свойств Me [Sb, Hal +3m] и Me [BimHal +3ml подробно освещено в наших работах [117, 235—239]. Решение вопроса о применении тех или иных соединений при разделении калия, рубидия и цезия зависит от поставленной задачи. Использование комплексов висмута дает возможность обогащать более бедные рубидием концентраты. [c.142]

    Технологические же достоинства АнГ исключительно высоки АнГ легко и просто синтезируются, выделяясь из растворов в виде хорошо фильтрующихся кристаллических осадков, характеризуются высокими температурными коэффициентами растворимости и высокой (в среднем 10—30) кратностью очистки. Применение АнГ как промежуточных технологических продуктов полностью исключает дополнительные операции по очистке, так как нелетучие ионы в процесс не вводятся, перевод АнГ в очищенные соединения (простые галогениды) достигается термическим разложением при невысокой температуре и полной регенерации галогенов и межгалогенов. Все это и определяет выбор АнГ и эффективность их использования для получения наиболее чистых соединений рубидия и цезия. Этим же объясняется то обстоятельство, что АнГ широко применяются в лабораторной практике и твердо прокладывают себе путь в технологию. Выше можно найти немало примеров, подтверждающих высказанную мысль. [c.152]

    Соединения типа АХО где А--КЬ или Ся, X — галоид, представляют в настоящее 1время интерес по крайней мере в двух отношениях. Во-первы,ч, благодаря высокому температурному коэффициенту растворимости и сравнительно низким температурам термического разложения эти соединения могут быть использованы для глубокой очистки рубидия и цезии от примесей и последующего получения высоко чистых галогснидов этих металлов — важнейших материалов для специальной оптики и других областей новой техники. Во-вторых, хлораты, броматы и йодаты рубидия и цезия могут получить непосредственное применение благодаря собственным физическим свойствам, в частности пьезоэлектрическим. В обоих случаях необходимы препараты высокой чистоты. Наконец, очищенные соединения могут быть использованы для получения других (кроме галогенидов) высоко чистых солей рубидия и цезия. [c.77]

    Для получения макроциклических полиэфиров в лаборатории в основном используют такие источники темплатных катионов, как гидроксиды натрия и калия, трт-бутилаткалия и гидрид натрия. Они достаточно хорошо растворимы и к тому же более доступны и дешевы, чем соединения других щелочных металлов Соли лития, рубидия и цезия редко используют для синтеза, хотя имеются данные, свидетельствующие о том, что катионы цезия могут служить универсальными темплатными агентами [477, 478] Синтезировать макроциклы большого размера можно также в присутствии органических оснований — гуанидина н тетраметилгуанидина или солей тетрабутиламмония [478, 479], однако эффективность этих темплатных агентов намного меньше, чем соединений щелочных металлов. [c.170]

    Галогениды рубидия и цезия, особенно хлориды, являются наиболее- изученными соединениями, образующими бесцветные кристаллы, легко растворимые в воде. Галогениды рубидия и фторид цезия имеют кубическую гранецентрированную решетку типа МаС1, а хлорид, бромид и иодид цезия — кубическую объемноцентриро- [c.91]

    Соли рубидия и цезия, в анионе которых лигандом является кислород, обычно называют солями кислородсодержащих кислот. Анионы у солей кислородсодержащих кислот могут быть по своему строению тетраэдрическими (сульфаты, фосфаты, перманганаты, перренаты, хроматы, перхлораты, перйодаты), пирамидальными (сульфиты, хлораты, броматы, иодаты), плоскими, в виде правильного треугольника (нитраты, карбонаты) и, наконец, просто треугольниками (нитриты). Соли, анионы которых содержат элементы VII группы, плохо растворяются в воде и разлагаются прп нагревании с выделением кислорода. В большинстве случаев рубидиевые и цезиевые соли кислородсодержащих кислот не образуют кристаллогидратов при обычной температуре. Малоустойчивые в водных растворах сульфиты и нитриты рубидия и цезия йЛегко взаимодействуют с аналогичными соединениями переходных элементов, давая комплексные соединения, отличающиеся высокой стабильностью в растворе и, как правило, незначительной растворимостью в воде. [c.113]

    Соединения типа Ме25а Об (где х=3, 4, 5,. .., п) представляют собой класс малоизученных политионатов рубидия и цезия. Анионы политионатов, видимо, имеют линейное строение и могут быть отнесены к типу двуядерных комплексных анионов, в которых роль связывающих мостиков выполняют отрицательно заряженные ионы или нейтральные атомы серы. Политионаты рубидия и цезия хорошо растворимы в воде, причем растворимость возрастает с увеличением в молекуле соли числа атомов серы. [c.119]


Смотреть страницы где упоминается термин Рубидий соединения, растворимость: [c.598]    [c.148]    [c.29]    [c.120]    [c.93]    [c.108]    [c.109]    [c.111]    [c.111]    [c.127]    [c.140]    [c.141]    [c.141]    [c.141]    [c.143]    [c.172]    [c.414]    [c.120]    [c.126]    [c.146]   
Справочник по общей и неорганической химии (1997) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Рубидий



© 2025 chem21.info Реклама на сайте