Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метанол окислительное дегидрировани

Рис. 13.1. Технологическая схема окислительного дегидрирования метанола Рис. 13.1. <a href="/info/562669">Технологическая схема окислительного дегидрирования</a> метанола

    В качестве примера безопасного проведения процесса рассмотрим окислительное дегидрирование метанола в производстве формальдегида. [c.323]

    Технологическая схема производства формальдегида окислительным дегидрированием метанола с системой автоматизации реакционного узла представлена на рис. Х1У-4. [c.324]

    Изложенный метод был использован при решении задачи оптимизации, промышленного процесса получения формальдегида окислительным дегидрированием метанола на серебряном катализаторе. [c.313]

    Б. ОКИСЛИТЕЛЬНОЕ ДЕГИДРИРОВАНИЕ МЕТАНОЛА В ФОРМАЛЬДЕГИД [c.155]

    Эта реакция является эндотермической, и ее проводят в реакторе, показанном на рис. 2. Процесс происходит при температурах 400—500°С над металлическим катализатором, таким, как медь, серебро или сплав меди и серебра, содержащий обычно также кремний. Ниже в данной главе будет онисан процесс окислительного дегидрирования метанола, где показано, что обычное дегидрирование неосуществимо на практике и в настоящее время в промышленности не используется. Однако существует заманчивая идея дегидрирования метанола с образованием формальдегида, который в этом случае теоретически должен получаться почти безводным, а также водорода, который можно использовать различными способами. К сожалению, дегид- [c.150]

    Сочетание дегидрирования и окислительного дегидрирования смесей, обогащенных метанолом. Существуют два различных процесса окислительного дегидрирования метанола в формальдегид. Один из них осуществляют при недостатке кислорода и избытке метанола, а другой, наоборот, — при избытке кислорода н низком содержании метанола. Эти два условия выбраны не только из-за различия характеристик используемых катализаторов, но и потому, что они лежат за пределами взрывоопасной области. [c.153]

    Технологическая схема производства формальдегида окислительным дегидрированием метанола изображена па рис. 139. Метанол, содержащий 10—12% воды, из напорного бака I непрерывно поступает в испаритель 2. Туда же через распределительное устройство подают воздух, очищенный от пыли и других загрязнений. Воздух барботирует через слой водного метанола в нижней части испарителя и насыщается его парами. В 1 л образующейся 1 аро-воздушной смеси должно содержаться 0,5 г метанола. Поддержание такого состава смеси очень важно для обеспечения взрывобезопасности и нормального протекания процесса. Поэтому работа испарительной системы полностью автоматизирована поддерживают постоянные уровень жидкости в испарителе, ее темпера-туру (48—50" С) и скорость подачи воздуха, благодаря чему обеспечиваются необходимые температурный режим и степень конверсии в адиабатическом реакторе. [c.476]


    Для окисления метанола в формальдегид разработаны два различных процесса. В одном катализатором является серебро это процесс окислительного дегидрирования. В другом процессе применяется молибденовый катализатор, промотированный железом, и этот процесс является прямым окислением /40/. [c.310]

    Если бы метан удалось окислить непосредственно в формальдегид и метанол, то можно было бы отказаться от дорогостоящих и энергоемких стадий получения синтез-газа и метанола. Поэтому реакция окислительного дегидрирования метана в формальдегид и метанол была щироко исследована. Реакцию осуществляют в трубчатом реакторе (рис. 1 и 2) при температурах 450—600°С. Катализатор является уникальным среди рассмотренных нами это гомогенный газофазный катализатор — оксид азота. Выходы целевых продуктов достаточно высоки, но конверсия исходного метана чрезвычайно низка и составляет 2—4%. Количества метанола и формальдегида в продуктах приблизительно одинаковы. [c.159]

    Трубчатые реакторы. Стабильность процесса в трубчатом реакторе определяется в основном величиной внутреннего диаметра трубки (ВДТ), При увеличении ВДТ конструкция реактора становится проще и возможно увеличение его мощности, но при этом ухудшается стабильность аппарата, выражающаяся, например, в увеличении параметрической чувствительности и величины динамического заброса [37, 38]. Решающими факторами при выборе максимального ВДТ для экзотермических процессов являются параметрическая чувствительность, динамические характеристики, допустимое гидравлическое сопротивление слоя катализатора, избирательность процесса п точность стабилизации входных параметров, которые определяются из анализа стационарных и нестационарных процессов в трубках разного диаметра. Для процессов эндотермических и протекающих вблизи равновесия определяющими параметрами являются, как правило, гидравлическое сопротивление и мощность аппарата. Максимальные значения ВДТ для процессов окисления метанола в формальдегид — 25 мм, окислительного дегидрирования н-бутенов — 21 мм, синтеза винилхлорида при концентрированном ацетилене — 55 мм и разбавленном — 80 мм [38], дегидратации <к-окси- [c.14]

    Окислительное дегидрирование осуществляют в реакторе, показанном на рис. 2. Трубки имеют диаметр около 25 мм и помещены в жидкий теплоноситель даутерм или в расплавленную смесь нитратов и нитритов натрия и калия. Реакцию ведут в интервале температур 290—425 °С при соотношении метанол/воздух около 1 13. В качестве катализатора используют молибдат железа с отношением Ре/МоОз от 3 до 5. Катализатором может быть также молибдат висмута, который будет описан более подробно ниже в данной главе. На молибдате железа конверсия приближается к 100%, причем в катализате содержится менее [c.155]

    Во втором томе даются сведения о каталитических процессах исчерпывающего и селективного гидрирования, обычного и окислительного дегидрирования, синтеза метанола, получения дизельного топлива из монооксида углерода и водорода. Рассмотрены также общие вопросы подбора катализаторов, свойства и применения некоторых гетерогенных и гомогенных катализаторов. Завершает второй том описание катализаторов производства серной кислоты. [c.6]

    Вследствие этого и, следовательно, малого выхода формальдегида технологический процесс прямого окисления метана становится экономически невыгодным. Основная масса формальдегида производится поэтому из метанола по двум методам окислительным дегидрированием и окислением. [c.295]

    Производство формальдегида окислительным дегидрированием метанола [c.295]

    На рис. 13.1 представлена технологическая схема производства формальдегида окислительным дегидрированием метанола. [c.296]

    В промышленности формальдегид получают преимущественно двумя путями неполным окислением метана (или его гомологов) и окислительным дегидрированием метилового спирта. Формальдегид выпускают в полимерной форме (параформ по МРТУ 6-05-930—65) или в виде водного раствора — формалина. Последний, согласно ГОСТ 1625—61, изготавливают двух марок ФБМ—нестабилизированный и ФМ — стабилизированный метанолом. Основные технические требования к формалину приведены в табл. 39. В наибольших количествах формальдегид идет на производство полимеризационных и поликон-денсационных полимеров, смол, а также изопрена, фармацевтических препаратов и т. д. [c.168]

    В чем отличие процессов производства формальдегида из метанола окислением его и окислительным дегидрированием  [c.308]

    Рассмотрим совместное использование известных нам законов термодинамики и кинетики на примере выбора оптимального режима ведения процесса получения формальдегида окислительным дегидрированием метанола  [c.189]

    Для замены серебра разработаны окисные катализаторы окислительного дегидрирования метанола. Наиболее эффективными из них являются окислы молибдена и титана. Для повышения активности к окислам молибдена добавляют до 37 % окиси железа. Смешанные катализаторы более активны и селективны, процесс на них протекает при более низких температурах (350—400 °С) и при большом избытке воздуха в реакционной смеси. Селективность катализатора достигает 95 %. Эти катализаторы постепенно вытесняют ранее принятые в промышленности серебряные. [c.199]


    С каким процессом сходен процесс производства формальдегида окислительным дегидрированием метанола по оптимальным условиям, техргологическоп схеме и конструкции реактора  [c.260]

    В промышленности формальдегид получают окислительным дегидрированием метанола пли окислением углеводородных газов. [c.303]

    Ряс. 1.14. Трубчатый реактор для окислительного дегидрирования метанола и окислительного аммонолиза пропилена [c.56]

    Опасность аварии в процессе окислительного дегидрирования метанола обус.ловлена также возможностью образования формаль-дегидо-воздушных смесей. Пределы воспламенения формальдегида с воздухом составляют нижний 7% (об.), верхний 73% (об.). Формальдегид склонен к полимеризации, что вызывает опасность забивки аппаратуры полимерами. Поэтому для предотвращения аварии следует принимать меры, исключающие образование форм-альдегидо-воздушных смесей. [c.326]

    При окислительном дегидрировании метанола при температуре 800 К и атмосферном давлении протекают следующие реакции  [c.200]

    Реакции (10) и (11) являются равновесными в термодинамическом смысле. Как видно из рис. 10, равновесие обоих превращений существенно сдвинуто в сторону образования продуктов реакции. Значение константы равновесия для реакций окислительного дегидрирования значительно выше, чем для простого дегидрирования-. Это означает, что реакция (11) может развиваться до практически полного исчерпания реагента, взятого в недостатке, в данном случае кислорода. Неизрасходованный метанол может подвергаться лишь простому дегидрированию или побочным превращениям. Расчеты, проведенные на основе анализа экспериментальных данных, показали, что доля метанола, израсходованного по реакции (И), составляет, в условиях процесса на серебряном катализаторе, около 60%, а остальное —по реакции [c.34]

    Большое распространение приобрело модифицирование серебряного катализатора различными металлами и их оксидами. Так, было выявлено промотирующее действие оксидов цинка, бериллия, циркония, сурьмы(III) и некоторых других. С другой стороны, такие оксиды, как олова(IV), марганца(VI), железа(VI), кальция, натрия, титана (IV) в той или иной степени ингибируют процесс окислительного дегидрирования метанола [134]. Имеется ряд патентов, в которых рекомендуется применять сплавы серебра с медью, теллуром, кадмием [135] и золотом [136, 137]. Если содержание кадмия в сплаве составляет 4—15%, то рекомендуемое соотношение золота с серебром составляет от 0,5 1 до 1 1. В обоих случаях выход повышается на 4—5%. [c.55]

    Таким образом, в основе превращения метанола на окисном контакте, как и на серебре, лежит реакция окислительного дегидрирования метанола. По существу единственной побочной реакцией данного процесса является дальнейшее окисление образовавшегося формальдегида. См. ур. (13) —(14). [c.61]

    Неполное окисление Окислительное дегидрирование Крекинг Риформинг Полимеризация Паровая конверсия оксида углерода Синтез метанола [c.115]

    Формальдегид (метаналь) НСНО получают окислительным дегидрированием метанола в присутствии воздуха над катализатором Ag, окислением метанола над Fe/Мо-катализато-ром, а также из синтез-газа. Бесцветный газ, т.кип. -19 °С, обладает резким запахом хорошо растворим в воде, спиртах, умеренно - в бензоле, диэтиловом эфире, хлороформе. Применяют в производстве фенолоформальдегидных смол, синтетического каучука и лекарственных средств. Для удобства хранения, транспортировки и применения выпускают в виде 37 0%-го водного раствора (формалин) и твердого полимера (параформ). Антисептическое средство. ПДК 0,05мг/м . [c.192]

    Крупнотоннажными промышленными продуктами яв-тся фактически только формальдегид, уксусный альде-, ацетон и циклогексанон Остальные альдегиды и кето-производятся в значительно меньших количествах Формальдегид в настоящее время получают в основ-А окислительным дегидрированием метанола в присут-ии воздуха над серебряным или оксидным железо-мо-деновым катализатором, который находит все более рокое применение (X Адкинс, Г К Боресков, Г Д Ко- [c.617]

    Большое значение имеет метод окисления метана — природного газа с образованием формальдегида. Производство формальдегида в нефтехимической промышленности достигло крупных масштабов, одпако оно в основном осуществляется окислением метанола, пропана и бутана. Формальдегид получается в промышленности двумя методами — окислительным дегидрированием метанола в присутствии катализатора  [c.290]

    Безопасность процесса повышается добавлением к исходному метанолу воды, что одновременно повышает выход и конверсию процесса окислительного дегидрирования на катализаторе в виде медной сетки или серебра, осажденного на пемзе. Для обеспечения безопасной эксплуатации установки формальдегида узел омисли-тельного дегидрирования метанола, как правило, автоматизируют. [c.324]

    Чтобы сопоставить экспериментальные кинетические данные с гипотезой о механизме реакции, необходима последовательная работа всех трех комплексов программ, причем программы ССА и ПП работают только один раз для каждого варианта механизма. Следует подчеркнуть, что число операций по расчету функций отклонений и их производных в полученных по изложенному алгоритму программах близко к числу операций, полученных при ручном программировании. САКР была использована для исследования кинетики и механизмов и получения кинетических уравнений в реакциях окислительного дегидрирования бутенов в дивинил на оксидном Bi—Мо-катализаторе, окисления этилена на серебре, синтеза карбонила никеля, окисления хлороводорода, на катализаторе u la—КС1 (1 1), окислительного хлорирования этилена на солевых хлормедных катализаторах, синтеза метанола на катализаторе ZnO/ rgOg, хлорирования метана и др. Для большинства из этих реакций число рассмотренных вариантов механизмов составляло от 10 до 20. Число найденных параметров для этих реакций составляло 15—25 [13]. [c.204]

    Окислительное дегидрирование проводят при недостатке кислорода, поэтому глубокое окисление не получает значительного развития. В то же время само дегидрирование, инициируемое кислородом, протекает быстрее, и все ранее упомянутые побочные реакции не так заметны, как при дегидрировании первичных спиртов. Это позволяет работать при более высокой температуре (500—600°С), большой скорости реакции и времени контакта 0,01—0 03 с. Выход формальдегида на пропущенное сырье достигает 80—85% при степени конверсии метанола 85—90%. Замечено, что добавление воды к исходному метанолу повышает выход и степень конверсии, по-видимому, в результате разложения ацеталей. Р атализаторами синтеза формальдегида этим методом служит металлическая медь (в виде сетки или стружек) или серебро, осажденное на пемзе. Последний катализатор оказался более эффективным и широко применяется в промышленности. [c.475]

    Обе эти реакции происходят ири практически одинаковых темиературах и давлениях. Эндотермичность и экзотермичность реакций совпадают. Глубина протекания процесса 70% (остается 30% неирореагировавшего метанола). Приблизительно половина из 70% продуктов получается за счет экзотермического окислительного дегидрирования, которое в свою очередь способ- [c.154]

    Эту реакцию осуществляют в реакторе, показанном на рис. 5. Как и описанный выше реактор с серебряной сеткой для синтеза формальдегида, он помещен под теплообменником, который является также паровым котлом, куда попадают выходящие из реактора газы. Температура реакции около 1250°С. Типичные катализаторы — платиновая и родиевая сетки или платпна и родий, нанесенные на керамические гранулы. Выход составляет около 90%, а конверсия — 80%. Заслуживает внимания сходство процессов синтеза H N и окислительного дегидрирования СН3ОН в смесях, обогащенных метанолом эти реакции не идут до конца, и попытки увеличить конверсию исходных веществ резко снижают выход целевых продуктов. Возможно, что в обоих случаях происходит так называемое водородное отравление, которое ведет к самоотравлению или отравлению продуктами. Это важное явление, но подробнее его обсуждать мы не будем. [c.156]

    Окислительное дегидрирование метанола представляет гетерогенно-каталитический процесс, протекадющий в газовой фазе на твердом катализаторе. В этом процессе совмещены экзотермическая реакция окисления метанола  [c.295]

    СНзОН НСНО СО СН3ОН + Нз СН4 + Н2О, для подавления которых в метанол вводится до 10% воды. Во избежание глубокого окисления метанола процесс окислительного дегидрирования проводится при недостатке кислорода. В то же время реакция дегидрирования (г) инициируется кислородом, что позволяет уменьшить удельный вес побочных реакций. Процесс окислительного дегидрирования проводится при температуре 500—600°С и времени контактирования около 0,02 с. В этих условиях выход формальдегида в расчете на пропущенное сырье составляет 80—85% при степени контактирования 0,85—0,90. [c.296]

    Технологический процесс прямого окисления отличается от ранее описанного процесса окислительного дегидрирования высокой степенью конверсии метанола (0,99), селективностью по формальдегиду, достигающей 96% и высокой экзотермич-ностью. Поэтому для окисления метанола в нем используют трубчатые реакторы с интенсивным охлаждением циркулирующей в межтрубном пространстве водой или другими хладоаген-тами, К достоинствам метода относятся также низкие расходные коэффициенты по сырью и энергии. На рис. 13.2 представлена технологическая схема производства формальдегида прямым окислением метанола. [c.297]

    Основным типом реакторов с теплообменом через стенку являются трубчатые реакторы (рис. 1.13), представляющие собой различного типа теплообменники. Например, реактор для окислительного дегидрирования метанола и окислительного аммоно-лиза щюпилена в акрилонитрил представляет собой пучок трубок, помещенных в цилиндрический теплообменник (рис. 1.14). Если катализатор находится в трубах, то такой реактор называется трубчатым, а реакторы с катализатором в межтрубном пространстве - кожухотрубными. [c.55]

    Собственно образование формальдегида осуществляется в результате протекания параллельных реакций простого и окислительного дегидрирования метанола (тепловые эффекты АРгэв найдены на основе данных [29], AQ298 = —АЯгаз)  [c.33]

    САКР была использована для исследования кинетики и механизмов и получения кинетических уравнений в следуюпцих реакциях окислительного дегидрирования бутенов в дивинил на оксидном W — Мо-катализаторе [19] окисления этилена на серебре [20] синтеза карбонила никеля окисления хлористого водорода на СиСЬ—КС1 (1 1)-катализаторе окислительного хлорирования этилена на солевых хлормедных катализаторах синтеза метанола на катализаторе 7пО/СггОз [21] хлорирования метана [22] гидрирования ароматических соединений на металлах платиновой группы [23—25] и т. д. Для большинства из этих реакций число рассмотренных вариантов механизмов составило 10—20, а число найденных параметров— 15—25. [c.51]


Смотреть страницы где упоминается термин Метанол окислительное дегидрировани: [c.461]    [c.32]   
Технология нефтехимического синтеза Часть 1 (1973) -- [ c.297 ]

Технология органического синтеза (1987) -- [ c.169 ]




ПОИСК







© 2025 chem21.info Реклама на сайте